Follow Us:

View Item 
  •   CMRE Open Library Home
  • CMRE Publications
  • Reprints
  • View Item
  •   CMRE Open Library Home
  • CMRE Publications
  • Reprints
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mining maritime vessel traffic: promises, challenges, techniques

Thumbnail
Abstract
This paper discusses machine learning and data mining approaches to analyzing maritime vessel traffic based on the Automated Information System (AIS). We review recent efforts to apply machine learning techniques to AIS data and put them in the context of the challenges posed by the need for both algorithmic performance generalization and interpretability of the results in real-world maritime Situational Awareness settings. We also present preliminary work on discovering and characterizing vessel stationary areas using an unsupervised spatial clustering algorithm.

URI
http://hdl.handle.net/20.500.12489/862

Report Number
CMRE-PR-2019-122

Source
In: Proceedings of the OCEANS 2015 MTS/IEEE Conference, 18-21 May 2015, Genoa, Italy, doi: 10.1109/OCEANS-Genova.2015.7271555

Collections
  • Reprints

Date
2019/06

Author(s)
Cazzanti, Luca
; 
Pallotta, Giuliana

Show full item record
CMRE-PR-2019-122.pdf (3.638Mb)

Browse

All of CMRE Open LibraryCommunities & CollectionsBy Issue DateAuthor(s)TitlesSubjectsTypeThis CollectionBy Issue DateAuthor(s)TitlesSubjectsType

My Account

LoginRegister

  • Contact Us
  • Send Feedback
  • Employment
  • Procurement
  • Fact Sheets
  • News Feed
  • Conditions of Use
  • Publications Feed
  • Press Release
  • News Archive
  • STO (Science and Technology Organization)
  • Find us on Facebook
  • Follow us on Twitter
  • Watch us on Youtube
  • Webmail
 

 

© 2018 STO-CMRE
Powered by KnowledgeArc