Follow Us:

View Item 
  •   CMRE Open Library Home
  • CMRE Publications
  • Reprints
  • View Item
  •   CMRE Open Library Home
  • CMRE Publications
  • Reprints
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive filtering of imprecisely time-stamped measurements with application to AIS networks

Thumbnail
Abstract
Driven by real-world issues in maritime surveillance, we consider the problem of estimating the target state from a sequence of observations that can be imprecisely time-stamped. That is, the time between two consecutive observations can be affected by an unknown error or delay. We propose an adaptive filtering strategy able to sequentially detect the time delays and correctly estimate the target state. Two decision statistics for the presence of delay are derived, the first is non-parametric while the second is based on the Generalized Likelihood Ratio Test (GLRT). When a delayed measurement is detected, the Maximum Likelihood (ML) estimate of the delay can be used to correct the timestamps of the target observation used in the filter. The validation of the proposed method is carried out using Monte Carlo computer simulations and analyzing real-world data collected by a global network of Automatic Identification System (AIS) receivers.

URI
http://hdl.handle.net/20.500.12489/845

Report Number
CMRE-PR-2019-105

Source
In: 18th International Conference on Information Fusion, 6-9 July 2015, Washington DC, USA, pp. 359-365.

Collections
  • Reprints

Date
2019/06

Author(s)
Millefiori, Leonardo
; 
Braca, Paolo
; 
Bryan, Karna
; 
Willett, Peter K.

Show full item record
CMRE-PR-2019-105.pdf (1.468Mb)

Browse

All of CMRE Open LibraryCommunities & CollectionsBy Issue DateAuthor(s)TitlesSubjectsTypeThis CollectionBy Issue DateAuthor(s)TitlesSubjectsType

My Account

LoginRegister

  • Contact Us
  • Send Feedback
  • Employment
  • Procurement
  • Fact Sheets
  • News Feed
  • Conditions of Use
  • Publications Feed
  • Press Release
  • News Archive
  • STO (Science and Technology Organization)
  • Find us on Facebook
  • Follow us on Twitter
  • Watch us on Youtube
  • Webmail
 

 

© 2018 STO-CMRE
Powered by KnowledgeArc