Follow Us:

View Item 
  •   CMRE Open Library Home
  • CMRE Publications
  • Reprints
  • View Item
  •   CMRE Open Library Home
  • CMRE Publications
  • Reprints
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks

Thumbnail
Abstract
Deep convolutional neural networks are used to perform underwater target classification in synthetic aperture sonar (SAS) imagery. The deep networks are learned using a massive database of real, measured sonar data collected at sea during different expeditions in various geographical locations. A novel training procedure is developed specially for the data from this new sensor modality in order to augment the amount of training data available for learning and to avoid overfitting. The deep networks learned are employed for several binary classification tasks in which different classes of objects in real sonar data are to be discriminated. The proposed deep approach consistently achieves superior performance to a traditional feature-based classifier that we had relied on previously.

URI
http://hdl.handle.net/20.500.12489/813

Report Number
CMRE-PR-2019-073

Source
In: 2016 23rd International Conference on Pattern Recognition, Cancún, México, 4-8 December 2016, pp. 2497-2502, doi: 10.1109/ICPR.2016.7900011

Collections
  • Reprints

Date
2019/06

Author(s)
Williams, David P.

Show full item record
CMRE-PR-2019-073.pdf (1.604Mb)

Browse

All of CMRE Open LibraryCommunities & CollectionsBy Issue DateAuthor(s)TitlesSubjectsTypeThis CollectionBy Issue DateAuthor(s)TitlesSubjectsType

My Account

LoginRegister

  • Contact Us
  • Send Feedback
  • Employment
  • Procurement
  • Fact Sheets
  • News Feed
  • Conditions of Use
  • Publications Feed
  • Press Release
  • News Archive
  • STO (Science and Technology Organization)
  • Find us on Facebook
  • Follow us on Twitter
  • Watch us on Youtube
  • Webmail
 

 

© 2018 STO-CMRE
Powered by KnowledgeArc