Follow Us:

View Item 
  •   CMRE Open Library Home
  • CMRE Publications
  • Reprints
  • View Item
  •   CMRE Open Library Home
  • CMRE Publications
  • Reprints
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The new muesli complexity metric for mine-hunting difficulty in sonar images

Thumbnail
Abstract
A new image complexity metric has been developed that fuses the concept of lacunarity, a measure of pixel intensity variation, with the notion of spatial information, a quantity that captures edge energy. This new metric, which we call the ?muesli? complexity, successfully quantifies the relative difficulty of performing target detection in synthetic aperture sonar (SAS) images. This has been experimentally validated via the results of a human operator study, as well as the results of an object detection algorithm, using a set of over 3000 SAS images collected in diverse environments. In the former assessment method, it has been observed that the subjective human rankings of image difficulty correlate well with the complexity value. In the latter examination approach, it has been observed that the degrees to which false alarms are generated and true targets are missed by the detection algorithm are each proportional to the complexity value of the image.

URI
http://hdl.handle.net/20.500.12489/749

Report Number
CMRE-PR-2019-008

Source
In: 2018 OCEANS-MTS/IEEE Kobe Techno-Ocean (OTO), doi: 10.1109/OCEANSKOBE.2018.8559193

Collections
  • Reprints

Date
2019/05

Author(s)
Williams, David P.

Show full item record
CMRE-PR-2019-008.pdf (5.231Mb)

Browse

All of CMRE Open LibraryCommunities & CollectionsBy Issue DateAuthor(s)TitlesSubjectsTypeThis CollectionBy Issue DateAuthor(s)TitlesSubjectsType

My Account

LoginRegister

  • Contact Us
  • Send Feedback
  • Employment
  • Procurement
  • Fact Sheets
  • News Feed
  • Conditions of Use
  • Publications Feed
  • Press Release
  • News Archive
  • STO (Science and Technology Organization)
  • Find us on Facebook
  • Follow us on Twitter
  • Watch us on Youtube
  • Webmail
 

 

© 2018 STO-CMRE
Powered by KnowledgeArc