Follow Us:

View Item 
  •   CMRE Open Library Home
  • CMRE Publications
  • Reprints
  • View Item
  •   CMRE Open Library Home
  • CMRE Publications
  • Reprints
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-view target classification in synthetic aperture sonar imagery

Thumbnail
Abstract
This work proposes an elegantly simple solution to the general task of classifying the shape of an object that has been viewed multiple times. Specifically, this problem is addressed in the context of underwater mine classification where the objectiveis to discriminate targets (i.e., mines) from benign clutter (e.g., rocks) when each object is observed in an arbitrary number of synthetic aperture sonar (SAS) images. The proposed multi-view classification algorithm is based on finding the single highest maximum correlation between (i) a set of views of a training shape of interest and (ii) a set of views of a given testing object. Classification is performed by using this measure of similarity, which we term the affinity, directly. This approach obviates the need for explicit feature extraction and classifier construction. Moreover, the framework induces no constraints on the number of views that each object can possess. Promising experimental results usingreal SAS imagery demonstrate the feasibility of the proposed approach for multi-view classification of underwater mines. In particular, it is shown that classification performance improves dramatically as the number of views of the objects increases.

URI
http://hdl.handle.net/20.500.12489/652

Report Number
NURC-PR-2009-006

Source
Originally published in: Proceedings of the 3rd International Conference and Exhibition on Underwater Acoustic Measurements: Technologies and Results, 21-26 June, 2009, Nafplion, Greece.

Collections
  • Reprints

Date
2009/12

Author(s)
Williams, David
; 
Groen, Johannes

Show full item record
NURC-PR-2009-006.pdf (678.6Kb)

Browse

All of CMRE Open LibraryCommunities & CollectionsBy Issue DateAuthor(s)TitlesSubjectsTypeThis CollectionBy Issue DateAuthor(s)TitlesSubjectsType

My Account

LoginRegister

  • Contact Us
  • Send Feedback
  • Employment
  • Procurement
  • Fact Sheets
  • News Feed
  • Conditions of Use
  • Publications Feed
  • Press Release
  • News Archive
  • STO (Science and Technology Organization)
  • Find us on Facebook
  • Follow us on Twitter
  • Watch us on Youtube
  • Webmail
 

 

© 2018 STO-CMRE
Powered by KnowledgeArc