Search
Now showing items 1-4 of 4
Long-term vessel kinematics prediction exploiting mean-reverting processes
(CMRE, 2019/06)
Long-term target state estimation of non-manoeuvring targets, such as vessels under way in open sea, is crucial for maritime security. The dynamics of non-manoeuvring targets is traditionally modelled with a white noise ...
Anomaly detection and tracking based on mean-reverting processes with unknown parameters
(CMRE, 2019/05)
Piecewise mean-reverting stochastic processes have been recently proposed and validated as an effective model for long-term object prediction. In this paper, we exploit the Ornstein-Uhlenbeck (OU) dynamic model to represent ...
Consistent estimation of randomly sampled Ornstein-Uhlenbeck process long-run mean for long-term target state prediction
(CMRE, 2019/06)
In this letter, we study the problem of estimating the long-run mean of the Ornstein-Uhlenbeck (OU) stochastic process and its effect on the long-term prediction of future vessel states, which is a crucial problem for ...
Modeling vessel kinematics using a stochastic mean-reverting process for a long-term prediction
(CMRE, 2019/06)
We present a novel method for predicting long-term target states based on mean-reverting stochastic processes. We use the Ornstein-Uhlenbeck (OU) process, leading to a revised target state equation and to a time scaling ...