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Converted Measurements
Bayesian Extended Target
Tracking Applied to X-band
Marine Radar Data

GEMINE VIVONE
PAOLO BRACA
KARL GRANSTRÖM
ANTONIO NATALE
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X-band marine radar systems are flexible and low-cost tools for
monitoring multiple targets in a surveillance area. They can provide
high resolution measurements both in space and time. Such features
offer the opportunity to get accurate information not only about the
target kinematics, as other conventional sensors, but also about the
target size.
In this paper we exploit the random matrix framework to track

extended targets. Proper measurement models to deal with the
radar’s measurement noise and its conversion into Cartesian coor-
dinates are presented here. Benefits of the proposed extended target
tracking using converted measurements can be mainly related to the
problem of the targets’ size estimation, while advantages on estima-
tion of the targets’ kinematic features can be considered negligible.
The validity of the proposed approach has been demonstrated by
using both simulated and real data. Gains up to 70% for the tar-
gets’ width estimation accuracy and around 65% for the length are
observed on real data. The integration of the proposed model into
the gamma Gaussian inverse Wishart probability hypothesis density
tracker is also provided and tested on real data.
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I. INTRODUCTION

Securing the waterways is of critical importance, and
surveillance activities take on a central role. Ship traffic
monitoring and port protection represent big challenges
(e.g. in terms of law enforcement, search and rescue,
environmental protection, and resource management)
and, in the last years, it has stimulated intensive research
activities, e.g. [9], [22], [31], [41].
Radars are widely exploited technologies. Among

these, X-band marine radar systems represent flexible
and low-cost tools for tracking of multiple targets. Fea-
tures, such as high resolution in both space and time,
make these kinds of systems very appealing because,
if compared to conventional radars, they are able to
provide indications about the targets’ size and not only
about targets’ kinematics. This additional information
can be very helpful for subsequent signal processing
phases, e.g. target classification.
The tracking literature is mostly focused on ap-

proaches that make the hypothesis of at most one detec-
tion per target for each frame, see for instance [3], [7],
[28], [31], [41], which is no longer valid for the data
considered in this paper. We refer to this problem as
extended target tracking (ETT). Several approaches can
be found in the literature to address the ETT problem.
Bar-Shalom, et al. [3] propose to segment the ac-

quired image. Clustering and centroid extraction phases
are subsequently used to provide data for feeding the
probabilistic data association (PDA) algorithm. A tech-
nique for data association using a multi-assignment ap-
proach to track a large number of closely spaced (and
overlapping) targets is also presented in [24]. In [14],
the authors propose an approach for ETT under the
assumption that the number of received measurements
is a Poisson distribution. The algorithm is illustrated
with point targets, which may generate more than one
measurement and have a 1-D extension. A sequential
Monte Carlo method is also proposed in [13], where
sensor measurements are modeled as a Poisson process
with a spatially dependent intensity parameter, which
leads to the representation of physical extent as an in-
tensity distribution that avoids the evaluation of explicit
data association hypotheses. A similar approach is taken
in [8] where track-before-detect theory is used to track
a point target with a 1-D extent. The application of
track-before-detect theory together with particle filters
on X-band marine radar data has also been investigated
in [11]. An interacting multiple model data augmenta-
tion algorithm and a modified version of the mixture
Kalman filter are proposed for extended target track-
ing in [2]. Two models, based on support functions
for smooth object shapes and extended Gaussian im-
age in the non-smooth object case, are proposed and
used for extended target tracking in [39]. In [34] the
problem of group structure inference and joint detection
and tracking for group and individual targets within a
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Bayesian filtering framework is addressed. Group dy-
namical models from a continuous time setting, the in-
teraction models for closely spaced targets, and a group
structure transition model are proposed. Baum, et al.
introduce in [5], [6] the random hypersurface model
for estimating both kinematic and shape parameters of
extended targets. Specific estimators are derived for el-
liptic and star-convex shapes. In [30], Mahler proposes
an expansion to extended targets of his probability hy-
pothesis density filter [29] to manage the multi-target
tracking problem. Unfortunately, the proposed filter re-
quires processing of all possible measurement set par-
titions, which is generally unfeasible to implement. An
approach for limiting the number of considered parti-
tions is proposed and discussed in [20]. A sequential
Monte Carlo multi-target Bayes filter based on finite
set statistics is exploited for pedestrian tracking in [35].
Furthermore, a nonlinear Bayesian methodology for im-
age sequences incorporating the statistical models for
the background clutter, target motion, and target aspect
change is proposed in [10].
A popular and computationally efficient framework

to handle this issue, under the hypothesis of elliptical
spread of the target, is provided by Koch in [25] where
an approximate Bayesian solution to the target tracking
problem is proposed. Random matrices are exploited
to model the ellipsoidal object extensions, which are
treated as additional state variables to be estimated or
tracked. The target kinematic states are modeled us-
ing a Gaussian distribution, while the ellipsoidal target
extension is modeled using an inverse Wishart distri-
bution. Random matrices are used to model extended
targets under kinematic constraints [26]. In [45], [46]
and [19], the integration of random matrices into the
probabilistic multi-hypothesis tracking and the proba-
bility hypothesis density filter, respectively, address the
multi-target tracking problem. Furthermore, a new ap-
proach is derived in [12] to overcome some of the weak-
nesses in [25]. Indeed, in [25] sensor inaccuracies are
neglected and, if they are large in comparison to tar-
get size, the lack of modeling may lead to an overesti-
mation of target size, see [11]. New measurement and
time updates for [12] are proposed in [33] and [21],
respectively. An extension of random matrices for non-
ellipsoidal group and extended target tracking based on
a combination of multiple ellipsoidal sub-objects, each
represented by a random matrix, is discussed in [27]. A
comparison between random matrices and the random
hypersurface model [5] under a single target assump-
tion is given in [4]. An interesting application using
real-world radar data, acquired during the recovery op-
erations of the Costa Concordia wreckage in October
2013, and the random matrices framework is reported
in [16], [17].
An overview of the state-of-art for group and ex-

tended target tracking techniques is given in [32]. Se-
quential Monte Carlo methods and their variants are
mainly discussed. An overview including Markov chain

Monte Carlo (MCMC) methods, random matrices ap-
proaches, and random finite set statistics techniques is
also provided.
In radar signal processing a crucial point is given by

the data conversion. The measurement of the target’s
position is usually reported in polar coordinates, while
the target position and dynamic are usually modeled in
Cartesian coordinates. The effects of data conversion
have to be properly taken into consideration.
In this paper, we propose to investigate further the

conversion between polar and Cartesian coordinates
into the approach presented in [12]. An extended tar-
get tracking algorithm is presented here and two mea-
surement models using two kinds of coordinate con-
versions (i.e. the standard and the unbiased ones) are
illustrated and integrated into the random matrix frame-
work. Sects. II-C and III-B show the proposed mod-
els and how it is possible to integrate them into the
random matrix framework. Furthermore, we derive that
the update equations are similar to the ones in [12].
Estimations for both kinematic parameters (i.e. posi-
tions and velocities) and sizes are performed. The per-
formance of the proposed models are assessed on both
simulated data (reproducing three different scenarios)
and real data acquired by an X-band marine radar in-
stalled in the Gulf of La Spezia, Italy. Comparisons with
the measurement model that neglects the sensors’ noise
effects (e.g. [25]) and the one with a constant covari-
ance matrix [12] are provided. Automatic identification
system (AIS) static and kinematic reports are exploited
as ground truth in order to assess the performance. The
simulation results are confirmed by real data. Ten differ-
ent target datasets exploiting different kinds of targets,
with over 103 frames of acquisition, are used to obtain
a significant statistical analysis. It is demonstrated that
the main advantage is the improvement in the estima-
tion of target size, while comparable performance can be
shown on the estimation of kinematic parameters. More
specifically, gains up to 70% for the targets’ width es-
timation accuracy and 65% for the length are observed
by exploiting the proposed models. The integration of
the proposed model into the gamma Gaussian inverse
Wishart probability hypothesis density tracker [17] to
address real scenarios with clutter and expected multiple
extended targets is also provided and tested on real data.
To the best of the authors’ knowledge, this represents
the first attempt to integrate the coordinate conversion
into the random matrix framework and to quantitatively
evaluate the effects of the sensors’ noise and data con-
version in ETT using both simulated and X-band ma-
rine radar data. Indeed, even if other few performance
assessments relied upon these data can be found in the
literature, see [11], [17], a serious analysis on the effects
of the sensors’ noise has not been accounted for.
Furthermore, the problem of dealing with non-

linearities is of great interest in radar signal processing
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especially because these strategies risk to fail in spe-
cific cases and ad hoc improvements need to be imple-
mented, see e.g. [37]. This is also the case of the pro-
posed paper, in which the non-linearity problem (con-
version of data) is completely neglected for the ETT
literature, which has attracted great interest in the re-
cent years. The impact in neglecting the noise and its
conversion between polar and Cartesian coordinates is
particularly clear, see Sect. V, on the target’s size es-
timation. Nowadays, many papers propose its own ex-
tended target tracking approach and these techniques
are increasing interest thanks to the high resolution fea-
tures of several new radar systems. However, all these
approaches neglect the polar-Cartesian conversion issue
causing a bias in the estimation of the targets’ exten-
sion. Thus, new researches can arise from this paper
integrating the conversion in these approaches and by
evaluating the benefits on real radar data. The contribute
of the paper is twofold:

² Theoretical. We derive first the converted measure-
ment extended target tracking (CM-ETT), which rep-
resents the extension of the converted measurement
Kalman filter to the context of extended targets, see
Sects. II-C and III. Furthermore, the similarities with
respect to the work of Feldmann et al. [12] are re-
marked. Similar update equations can be derived but
exploiting a state-dependent covariance noise matrix.

² Experimental. We show that the CM-ETT signif-
icantly outperforms the ETT state-of-the-art strate-
gies by validating it in extensive experiments, that
is hardly to find in this literature. Several simulated
scenarios have been tested quantifying the benefits in
using the proposed model. Furthermore, the use of
10 real datasets including data from several kinds of
targets, acquired by our X-band marine radar in the
Gulf of La Spezia, together with the AIS information
enables us to further corroborate the simulated out-
comes on real data. The integration with the multiple
extended target strategy in [17] is also provided and
validated on a challenging real data set.

The work presented in this paper is an extension
of previously reported progress on ETT applied to X-
band marine radar data [40]. A broader experimental
analysis, a more detailed analysis of the literature, the
introduction of the unbiased coordinate conversion, and
the extension to the multiple ETT case integrating the
proposed converted measurement model into the gamma
Gaussian inverse Wishart probability hypothesis density
tracker [17] validating it on real data, can be considered
the main novelties of this paper with respect to the
conference version.
The paper is organized as follows. Sect. II describes

the Bayesian extended target modeling, including a co-
ordinate conversion model approach. Sect. III presents
the filtering equations that the modeling lead to. Sect. IV
is devoted to the integration of the proposed approach
into the gamma Gaussian inverse Wishart probability

hypothesis density tracker. The experimental results us-
ing both simulated and real data are shown in Sect. V.
Results in the multiple extended target tracking case are
presented in Sect. VI. Finally, conclusions and future
developments are drawn in Sect. VII.

II. BAYESIAN EXTENDED TARGET MODELING
This section is devoted to the description of the pro-

posed measurement model using converted measure-
ments and its integration into the Bayesian extended
target tracking framework presented first in [25], and
later improved in [12] with the consideration of the
sensors’ measurement errors. It is worth pointing out
that the above-mentioned papers concentrate attention
on the track filtering. Estimations under observation-
to-track association uncertainty with possible presence
of missed detections and false alarms are out-of-scope.
The same assumption is made in this paper. Readers
who are interested in this topic are instead encouraged
to see [17] and Sect. IV in order to get deeper insights
about the problem of the extended multi-target tracking
for X-band marine radar data.

A. State Model
The extended target kinematics (position and veloc-

ity) are defined in 2D Cartesian coordinates and mod-

eled by the vector xk
¢
=[xk, _xk,yk, _yk]

T, where xk, yk and

_xk, _yk are the position and velocity components along
the X, Y directions, respectively, and [¢]T is the trans-
pose operator. The extended target’s extent (shape and
size) is assumed elliptic and is modeled by the positive
definite matrix Xk.
Let Zk = fZmgkm=0 denote all the measurement sets

up to and including frame k. The extended target state,
i.e. xk and Xk, is Gaussian inverse Wishart distributed,

p(xk,Xk j Z
k) =N (xk; x̂kjk,Pkjk)IW(Xk;®kjk,X̂kjk) (1)

where x̂kjk and Pkjk are the expected value and covari-

ance of the Gaussian distribution, and X̂kjk and ®kjk are
the expected value and degrees of freedom of the inverse
Wishart distribution.

B. Dynamic Model
The target’s motion is described by a nearly constant

velocity model [3]. The state-update equation is as
follows

xk = Fxk¡1 +¡wk (2)

where F= F̃ Id, Id is the identity matrix with dimen-
sion d£ d (i.e. 2£ 2 in our case), denotes the Kro-
necker product,

F̃=
·
1 Ts

0 1

¸
, (3)

Ts is the sampling time, ¡ = ¡̃ Id,

¡̃ = ¾pos ¢
·
T2s =2

Ts

¸
, (4)
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and ¾pos represents the process noise (equal in both X
and Y directions). The process noise wk takes into ac-
count the target acceleration and the unmodeled dynam-
ics and it is assumed to be Gaussian with zero-mean and
identity covariance matrix.
The time evolution of the extent Xk is modeled as

approximately constant over time. This model is accu-
rate for targets that can be assumed to move linearly, i.e.
targets that do not turn significantly (a turn causes the
extension to rotate). For the scenarios considered in this
paper this assumption is true. Motion models for turning
targets can be found in related literature, see e.g. [21].

C. Measurement Model Using Converted
Measurements

Measurements of the target’s positions are usually
provided in polar coordinates (i.e. in range and azimuth)
for data acquired by radar systems. However, the tar-
get motion is typically modeled in Cartesian coordi-
nates. Hence, a conventional linear Kalman filter can
be exploited only after the measurements have been
converted from polar to Cartesian coordinates. It is im-
portant for the tracking results that the effects of this
conversion are properly taken into consideration.
The components of the jth measurement vector at

frame k are defined as ³jk
¢
=[rjk ,

j
k]
T, where rjk and

j
k are

the jth range and azimuth radar measurements at frame
k, respectively. These measurements are modeled as the
true range and azimuth values, plus measurement errors
that are zero-mean Gaussian distributed with standard
deviations equal to ¾r and ¾ , respectively. To convert
measurements from polar to Cartesian coordinates we
employ the standard coordinate conversion,

zL,jk
¢
=[xL,jk ,y

L,j
k ]

T = [rjk cos
j
k,r

j
k sin

j
k]
T (5)

where the superscript L stands for linearization.
Taking the first order terms of the Taylor series

expansion of the standard coordinate conversion, i.e.
using linearization, we obtain the Cartesian coordinate
errors, which have zero-mean and covariance matrix [3]

RL(³jk ) = J(³
j
k )diag([¾

2
r ,¾

2])JT(³jk ), (6)

where

J(³jk ) =

"
cos j

k ¡rjk sin
j
k

sin j
k rjk cos

j
k

#
(7)

is the Jacobian matrix, and diag(¢) indicates a diagonal
matrix.
A remark is related to the validity of the standard

coordinate conversion. A rule of thumb is provided
in [3]. When it is not valid, the unbiased conversion [3]
can be exploited to deal with the problem of converting
measurements from polar to Cartesian coordinates. In

this case, we have that for the jth measurement at frame

k, zU,jk
¢
=[xU,jk ,yU,jk ]T, where

xU,jk = xL,jk b
¡1, (8)

yU,jk = yL,jk b
¡1, (9)

and b = exp(¡¾2=2) assuming that the noise in the polar
domain is Gaussian distributed.
The covariance matrix is as follows:

RU(³jk ) =

"
RU11(³

j
k ) RU12(³

j
k )

RU21(³
j
k ) RU22(³

j
k )

#
, (10)

where its elements are defined as [3]

RU11(³
j
k ) = (b

¡2¡ 2)(rjk )
2 cos2 j

k

+[(rjk )
2 +¾2r ][1+ b

4 cos2 j
k]=2, (11)

RU22(³
j
k ) = (b

¡2¡ 2)(rjk )
2 sin2 j

k

+[(rjk )
2 +¾2r ][1¡ b

4 cos2 j
k]=2, (12)

RU21(³
j
k ) =R

U
12(³

j
k ) = b

¡2(rjk )
2=2sin2 j

k

+[(rjk )
2 +¾2r ]b

4=2sin2 j
k ¡ (r

j
k )
2 sin2 j

k:
(13)

For the radar data used in this paper the standard
coordinate conversion was empirically found to be suf-
ficient, see Sect. V for further details.
We assume, as done in [12], [25], that at each

frame there is a set of nk independent Cartesian position
measurements, denoted Zk = fz

j
kg (i.e. either z

L,j
k or

zU,jk ). The detection set likelihood is

p(Zk j nk,xk,Xk) =
nkY
j=1

p(zjk j xk,Xk): (14)

Each detection zjk is modeled as a noisy measurement of
a reflection point yjk located somewhere on the extended
target. Further, each reflection point is modeled as a
point randomly sampled from the target’s extension.
The detection likelihood is thus

p(zjk j xk,Xk) =
Z
p(zjk j y

j
k,xk,Xk)p(y

j
k j xk,Xk)dy

j
k (15)

In other words, the detection likelihood (15) is the
marginalization of the reflection point y out of the
estimation problem.
For the type of radar systems considered here the

measurement noise is accurately modeled as zero mean
Gaussian,

p(zjk j y
j
k,xk,Xk) =N (z

j
k;y

j
k,R(y

j
k)), (16)

where R(y) is the covariance matrix (i.e. either RL(y)
using (6) or RU(y) using (10)) obtained when converting
polar radar detections to Cartesian coordinates. Further,

CMRE Reprint Series CMRE-PR-2019-076

4



the reflection points are accurately modeled as uniform
samples from the target shape,

p(yjk j xk,Xk) = U(y
j
k;xk,Xk): (17)

As suggested by Feldmann et al. [12], for an elliptically
shaped target the uniform distribution (17) is approxi-
mated by the following Gaussian distribution

p(yjk j xk,Xk) =N (y
j
k;Hxk,½Xk) (18)

where ½ is a scaling factor. Here H is a measurement
model that selects the position components in the state
vector (i.e. H= [Id,0d] where 0d indicates the null ma-
trix with d = 2 in our case). In a simulation study Feld-
mann et al. showed that ½= 1=4 is a good parameter
setting. In the result section we will address what is
an appropriate parameter setting when using real radar
data.
By combining equations (15), (16) and (18), the

likelihood is

p(zjk j xk,Xk) =
Z
N (zjk;y

j
k,R(y

j
k))N (y

j
k;Hxk,½Xk)dy

j
k:

(19)
The marginalization (19) is analytically intractable.

To achieve a computationally efficient measurement up-
date, two assumptions are made. First, assume that
in (16) the measurement noise covariance can be ap-
proximated as R(yjk)¼R(Hxk), i.e.

p(zjk j y
j
k,xk,Xk)¼N (z

j
k;y

j
k,R(Hxk)): (20)

REMARK In general, this approximation is less accurate
the larger the distance is between the reflection point
y and the target’s position, as given by Hxk. This im-
plies that the approximation is less accurate the larger
the target is, since a large target means that the distance
between the reflection point and position may be large.
For the radar sensors and the targets that are consid-
ered in this paper, we have empirically found that the
approximation is sufficiently accurate.

Following the assumption in (20), applying it in
(15), considering (18), and exploiting the product for-
mula for two multivariate Gaussian distributions, we
have that

p(zjk j xk,Xk)¼N (z
j
k;Hxk,½Xk +R(Hxk)): (21)

Considering that the prior target distribution is Gaussian
inverse Wishart, i.e.

p(xk,Xk j Z
k¡1) =N (xk; x̂kjk¡1,Pkjk¡1)

£IW(Xk;®kjk¡1,X̂kjk¡1), (22)

we assume that the following approximation holds, i.e.

p(zjk j xk,Xk)¼N (z
j
k;Hxk,½Xk +R(Hx̂kjk¡1)), (23)

namely the measurement noise covariance can be ap-
proximated by replacing xk with its predicted expected
value x̂kjk¡1.

REMARK This approximation is trivially satisfied when
R(¢) is a constant matrix. In general the assumption
holds approximately when R(¢) does not vary too much
in the uncertainty region for the extended target. Em-
pirically we have found that, for the sensors and targets
considered here, the signal to noise ratio is high enough
to make the uncertainty region small enough.

Under the two assumptions above, the detection like-
lihood p(zjk j xk,Xk) assumes the same form as in [12]
replacing the covariance noise matrix R with its state-
dependent version R(Hx̂kjk¡1). Thus, the measurement
update results analogous to the measurement update
proposed in [12] by substituting Rwith R(Hx̂kjk¡1). This
approach is here called converted measurement extended
target tracking (CM-ETT) and its time and measurement
updates are presented in the next section.

III. CONVERTED MEASUREMENTS EXTENDED
TARGET FILTERING

In this section we show the time update and mea-
surement update for the models presented in the previ-
ous section.

A. Time Update

With the assumed independence between the esti-
mates for centroid kinematics and extension and fur-
ther assuming independent dynamic models for both of
them, the standard Kalman filter prediction equations
can be exploited [3], [12]:

x̂kjk¡1 = Fx̂k¡1jk¡1, (24)

Pkjk¡1 = FPk¡1jk¡1F
T+¡ : (25)

The prediction of the target’s extension comes directly
from the hypothesis that the extension does not tend to
change over time, i.e.

X̂kjk¡1 = X̂k¡1jk¡1: (26)

Finally, the prediction of the degrees of freedom param-
eter ®kjk¡1 is given as [12]

®kjk¡1 = 2+exp(¡Ts=¿)(®k¡1jk¡1¡ 2), (27)

where ¿ is a time constant related to the agility with
which the target may change its extension over time.

B. Measurement Update

The measurement updated expected value and co-
variance of the state vector estimate are obtained by a
Kalman filter update [12]

x̂kjk = x̂kjk¡1 +Kkjk¡1(z̄k ¡Hx̂kjk¡1), (28)

Pkjk = Pkjk¡1¡Kkjk¡1Skjk¡1K
T
kjk¡1, (29)
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where

Skjk¡1 =HPkjk¡1H
T+

Zkjk¡1
nk

, (30)

Kkjk¡1 = Pkjk¡1H
TS¡1kjk¡1 (31)

are the innovation covariance and the gain, and

Zkjk¡1 = ½X̂kjk¡1 +Rk(Hx̂kjk¡1) (32)

indicates the predicted covariance of a single measure-
ment. Note that Rk(Hx̂kjk¡1) depends on the predicted
expected value x̂kjk¡1 (differently from [12] where it is
constant) and the posterior of the kinematic state con-
ditioned on xk is again assumed to be close to a normal
distribution.
The updated expected value and degrees of free-

dom of the extension estimate X̂kjk are obtained as fol-
lows [12]

X̂kjk =
®kjk¡1X̂kjk¡1 + N̂kjk¡1 + Ẑkjk¡1

®kjk
, (33)

®kjk = ®kjk¡1 + nk, (34)

where

N̂kjk¡1 = X̂
1=2
kjk¡1S

¡1=2
kjk¡1Nkjk¡1(S

¡1=2
kjk¡1)

T(X̂1=2kjk¡1)
T, (35)

Ẑkjk¡1 = X̂
1=2
kjk¡1Z

¡1=2
kjk¡1Z̄k(Z

¡1=2
kjk¡1)

T(X̂1=2kjk¡1)
T, (36)

Nkjk¡1 = (z̄k ¡Hx̂kjk¡1)(z̄k ¡Hx̂kjk¡1)
T, (37)

and

z̄k =
1
nk

nkX
j=1

zjk, (38)

Z̄k =
nkX
j=1

(zjk ¡ z̄k)(z
j
k ¡ z̄k)

T (39)

are the centroid measurement and the measurement
spread. Note that the marginalized prior density of the
target extension is assumed to be an inverse Wishart
density [25]. This implies that the posterior is again of
the same form.

IV. GAMMA GAUSSIAN INVERSE WISHART
PROBABILITY HYPOTHESIS DENSITY

A multiple extended target tracker is briefly de-
scribed in this section. The converted measurements
model in Sect. II is integrated in the measurement up-
date exploiting the results in Sect. III to obtain an im-
provement in the targets’ size estimation. The core of
the tracker is a probability hypothesis density (PHD) fil-
ter which provides for each radar frame the kinematics,
the size and the shape, as well as the expected number
of detections relevant to each target occurring in the
surveillance area. The filter is fed with the measure-
ments provided by the detector described in Sect. V-D.

The extended target state »k can be redefined as

»k
¢
=(°k,xk,Xk), (40)

where the random vector xk and Xk represent again the
kinematic and extension states and °k > 0 is the mea-
surement rate that describes how many measurements
the target, on average, generates per frame. The num-
ber of target generated measurements is assumed to be
Poisson distributed, and °k is in this case the Poisson
rate [13], [14].
Conditioned on a history of previous measurement

sets, Zk, »k is modeled as a gamma-Gaussian-inverse
Wishart (GGIW) distribution [12], [18],

p(»k j Z
k) = p(°k j Z

k)p(xk j Z
k)p(Xk j Z

k) (41a)

= G(°k;®
g
kjk,¯kjk)N (xk; x̂kjk,Pkjk) (41b)

£IW(Xk;®kjk,X̂kjk)

= GGIW(»k;³kjk), (41c)

where ³kjk = f®
g
kjk,¯kjk, x̂kjk,Pkjk,®kjk,X̂kjkg is the set of

GGIW density parameters.
The probability hypothesis density (PHD) Dkjk(¢) is

an intensity function whose integral is the expected
value of the number of targets, and whose peaks corre-
spond to likely target locations, see [15], [29]. The PHD
intensity is typically approximated either using Sequen-
tial Monte Carlo methods, see [43], or using distribution
mixtures, see [20], [42]. In this case, the PHD intensity
Dkjk(¢) at frame k, given the measurement sets up to
and including frame k, is approximated by a mixture of
GGIW distributions,

Dkjk(»k) =
JkjkX
j=1

w(j)kjkGGIW(»k;³
(j)
kjk), (42)

where Jkjk is the number of components, w
(j)
kjk is the

weight of the jth component, and ³ (j)kjk is the density pa-
rameter of the jth component. On behalf of brevity, no
detail for the GGIW tracker is provided. The interested
reader can refer to [17] to get all the information related
to the time and measurement update equations and the
post-processing step (i.e. mixture reduction, track ex-
traction, and track estimation).

V. EXPERIMENTAL RESULTS

The validity of the proposed approach is here demon-
strated by exploiting both simulated and real data. The
latter are acquired by an X-band marine radar located
in La Spezia, Italy. Further to the aim of validating our
approach, as already proposed in [31], we exploit, for
tracking assessment, the automatic identification system
(AIS) [1] static/kinematic messages.
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Fig. 1. The X-band marine radar’s field of view (in red).

The proposed Bayesian ETT method is compared to
two other approaches: one random matrix-based track-
ing algorithm without a model accounting for the sen-
sors’ errors, i.e. with Rk = 0 [25], and another random
matrix-based approach that exploits a constant covari-
ance matrix R [12]. The proposed method (both in the
case of the standard and the unbiased conversion) is here
named converted measurements-ETT (CM-ETT). For a
constant covariance matrix R three different possibilities
are tested. They are calculated using (6) by setting j

k

to the azimuth mean value on the surveillance area, and
letting rjk assume one of three values. This gives three
different matrices: R1 calculated for targets that move
close to the sensor around range 0.5 km; R2 calculated
for range 2 km, corresponding to the middle of the con-
sidered surveillance area; and R3 hypothesizes that the
target sails in a longer range area, around 4 km range.
This section is organized as follows. A description

of the X-band marine radar experiment is provided to
the reader in Sect. V-A. The real datasets used for the
validation of the approach and the AIS message format
are briefly illustrated in Sects. V-B and V-C, respec-
tively. The detection strategy is presented in Sect. V-D,
while, Sects. V-E and V-F are related to the analysis of
the results on simulated and real data, respectively.

A. X-band Marine Radar Experiment

The X-band marine radar is a coherent linear fre-
quency modulated continuous wave radar [38]. It is a
compact and lightweight system, still maintaining a high
performance with relatively simple electronics, since the
transmitted power is low and constant.
The radar is installed in the Gulf of La Spezia (Italy)

(see the radar’s field of view in Fig. 1). The use of
pulse compression [44] and a small transmitted power
make it a compact, quickly deployable, and scalable
system, used for research in the areas of extended target
detection and tracking, with application to surveillance

TABLE I
Marine Radar Specifications

Parameter Specification

Frequency 9.6 GHz
Bandwidth Adjustable up to 150 MHz

Range resolution ¢r = 1 m
Antenna type Rotating slotted waveguide

Antenna angular resolution ¢ = 1±

Antenna angular aperture
elevation

20±

Gain 32 dBi
Azimuth antenna speed 0 (stopped) up to 40 revolutions

per minute
Polarization Linear horizontal

Transmitted power Adjustable 50 mW—5 W
(17—37 dBm)

Pulse repetition frequency Adjustable 350 Hz—10 KHz

of small craft at short to medium ranges (maximum 5—
6 km) for harbor protection and coastal surveillance.
The marine radar has an antenna mounted on a ro-

tor with variable speed of rotation and the possibility
to lock and hold the position towards a specific direc-
tion with 0:1± accuracy. The main radar parameters are
shown in Tab. I. The radiating system for this node con-
sists of two slotted waveguide antennas, one for trans-
mitting and another for receiving, both using linear hor-
izontal polarization. Nevertheless, cross polar vertical-
horizontal signatures can be collected in bistatic mode.
The high directivity of the slotted waveguide allows a
precise determination of the angular position of a target,
also allowing the acquisition of targets at long distance
with small power.

B. Datasets

Ten datasets have been acquired by the X-band
marine radar located in the Gulf of La Spezia, Italy.
They have been used for the performance assessment of
our approach. The 10 AIS tracks, one for each dataset,
are depicted in Fig. 2. They have been generated by
8 different ships. The main features of these ships are
briefly outlined below:

² Grand Holiday is a Bahamian passenger (cruise) ship
with Maritime Mobile Service Identity (MMSI) equal
to 255803790. The size of this ship is 222 m£ 32 m.
The gross tonnage is 46052 t.

² Palinuro is a three-masted, iron-hulled barquentine,
active as a sails training vessel for the Italian Navy.
The MMSI is equal to 247939000. The size of this
ship is 59 m£ 10 m.

² Fabio Duo is an Italian cargo with MMSI equal to
247241500. The size of this ship is 80 m£ 16 m. The
gross tonnage is 2080 t.

² Euro is an Italian passenger ship with MMSI equal to
247030500. The size of this ship is 28 m£ 6 m.

² Monokini is a pleasure craft with MMSI equal to
6904672. The size of this ship is 45 m£ 8 m.
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Fig. 2. AIS tracks for all the analyzed datasets.

² Maersk Savannah is a Danish container ship with
MMSI equal to 219231000. The size of this ship is
334 m£ 45 m. The gross tonnage is 92293 t.

² Portovenere is an Italian tug with MMSI equal to
247076200. The size of this ship is 28 m£ 10 m. The
gross tonnage is 279 t.

² San Venerio is an Italian tug with MMSI equal to
247841000. The size of this ship is 31 m£ 10 m. The
gross tonnage is 307 t.

C. AIS Data

Ships and vessels exceeding a given gross ton-
nage1 are equipped with AIS transponders for position-
reporting, as established by the SOLAS Convention [1].
Ships repeatedly broadcast their name, position, and
other details for automatic display on nearby ships.
While this allows ships to be aware and keep track of
other ships in their immediate vicinity, coastal states will
also be able to receive, plot, and log the data by means of
base stations along the coast. AIS reports contain both
dynamic information (e.g. latitude, longitude, course-
over-ground (COG), speed-over-ground (SOG), time)
and static information (e.g. vessel type, size informa-
tion).
To allow their proper use as ground truth for our

applications, AIS ship reports are checked in order to
remove possible outliers, missing position reports, and
unreliable data. An interpolation phase is also required
to align in time radar data and AIS contacts.

D. Detection Strategy

Each radar image is processed by a detector to ob-
tain a cloud of detections that represents the input for
the Bayesian extended target tracking approaches. In

1The AIS is required for all the ships exceeding 300 gross tonnage and
engaged on international voyages, for all cargo ships of 500 gross ton-
nage, not engaged on international voyages, and all passenger ships.
On average, a gross weight of 300 t corresponds to a length of about
25 m.

Fig. 3. (a) Amplitude of X-band marine radar data and
(b) detections with AIS information for Frame 30 on the Grand

Holiday dataset.

this paper, we exploit a maximum likelihood detec-
tor, which represents a good trade-off between compu-
tational burden and performance. Generally speaking,
other more computationally demanding approaches are
possible, i.e. an ordered statistic-based constant false
alarm rate (CFAR) detector [36], but their comparison
is here considered out of scope.
Two assumptions are made in this phase. First, the

conditional independence among nearby pixels is as-
sumed. Furthermore, the distributions of the power im-
ages under the target and non-target hypotheses are con-
sidered exponential. The rate parameters ¸t > 0 (i.e. un-
der target hypothesis) and ¸nt > 0 (i.e. under non-target
hypothesis), which characterize the whole exponential
distributions, are estimated using the k-means clustering
algorithm [23]. An example of detections for Frame 30
on the Grand Holiday dataset is depicted in Fig. 3.

E. Simulated Results

The analysis of results reached by the compared al-
gorithms on simulated data is here performed. Three
kinds of simulations are exploited in order to under-
stand the capabilities of the approach to work in similar
conditions with those expected in the real-world. First,
a ship of 80 m£ 30 m has been simulated sailing on
a straight line from 1 km to 4 km along the range di-
rection using a nearly constant velocity model [3] with
zero-mean Gaussian noise described by the parameter
¾pos, see Eq. (2). The spread of the detections is Gaus-
sian distributed in polar coordinates according to the
used model with scaling parameter ½ equal to 1. The
simulator parameters are shown in Tab. II.
Fig. 4 shows the comparison between the standard,

see Eq. (5), and the unbiased, see Eqs. (8) and (9), con-
versions. We can easily see that the outcomes provided
by both the models are equivalent (for both kinematic
and size estimations). This further corroborates the val-
idation limit rule of thumb in [3], which claims the
equivalence between the two models for the considered
radar and surveillance area extension. Indeed, following
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Fig. 4. (a) Position, (b) velocity, (c) length, and (d) width estimations for the proposed CM-ETT approaches on simulated data. Triangular
markers are used for indicating the approach using the standard coordinate conversion model, while, circles are exploited for the unbiased

conversion.

TABLE II
Parameter Setting Simulator

Parameter Value Specification

Ts 2 s Sampling time
¾pos 10¡4ms¡2 Std. process noise

§
·
0:6653 ¡0:6453

¡0:6453 1:1764

¸
¢ 103 Cov. spread target

kmax 400 Number of frames
Nd 2000 Num. detects. frame
¾sr 0.5 m Std. noise range
¾s 0:5± Std. noise azimuth

the above-mentioned rule, the maximum range rmax that
allows proper use of the standard coordinate conversion
is defined as

rmax = 0:4
¾r
¾2
; (43)

that is, by substituting the values in Tab. IV, about 3 km,
in agreement with the defined surveillance area. Thus,

in order to ease the reading of the following results,
from hereon we will omit the unbiased conversion.

REMARK The rule of thumb in (43) results satisfied
in the most of radar systems, but this is not the case
in sonar systems or in long range radar with small
¾r and relatively large ¾ . When the above-mentioned
condition is not verified, the unbiasedness property
is not valid and the unbiased conversion has to be
exploited instead of the simpler linearization.

The estimations provided by the compared
approaches are depicted in Fig. 5. The outcomes con-
firm the ability of the proposed models to properly take
into account the measurement noise. Because the ana-
lyzed case shows a ship that sails radially with respect
to the radar position and the inaccuracy in range is less
than the one in azimuth (as we will see after for the
first real case), no difference is perceptible along the
range direction (i.e. the target’s length). The advantages
are instead obvious along the azimuth direction (i.e. the
target’s width). More specifically, comparing the pro-
posed approach with the one using Rk = 0 or the one
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Fig. 5. (a) Position, (b) velocity, (c) length, and (d) width estimations for the compared approaches on simulated data for a target that
follows a radial track.

using R1 it is clear that the more the target obtains large
values of range, the greater the advantages are (see the
differences for high time values). Both Rk = 0 and R1
result in the width being overestimated. Using R3 gives
the opposite behavior, i.e. the width is underestimated.
Finally, R2 gives a performance that is in-between the
results of the R1 and the R3 algorithms.
The second test case simulates the target sailing in

an almost constant range track. Because we simulate an
almost constant range track the opposite width/length
estimation results are expected with respect to the pre-
vious test case. Fig. 6 shows the kinematic and size es-
timations provided by the compared approaches. Again,
the CM-ETT shows its ability to properly estimate both
the length and width parameters. As expected, consid-
erable advantages are shown for the cross-range size
estimation (length), while comparable performance can
be pointed out for the estimation of the width parameter
(along-range size).
The third test case in Fig. 7, where a non-along con-

stant range and non-radial track is simulated, corrobo-
rates that the proposed CM-ETT gives improved perfor-
mance both for the cross-range size and the along-range

size. Again, comparing the proposed approach with the
one using Rk = 0 or the one using R1 it is clear that the
more the target obtains large values of range, the greater
the advantages are. Finally, R2 represents again a good
compromise among the compared approaches.
A final note is related to the estimation of the

kinematic parameters (i.e. position and velocity). All
the algorithms perform well and the results reached
by them can be considered comparable, see Figs. 5(a)—
(b), Figs. 6(a)—(b), and Figs. 7(a)—(b). Indeed, for this
application, the sensors’ inaccuracies mainly impact the
estimation of the ship sizes instead of the kinematic
parameters.
Finally, Tab. III shows the performance assessment

for all the three simulated test cases. Best results are
in boldface. The root mean square errors (RMSEs) in
position (i.e. ²pos), velocity (i.e. ²vel), width (i.e. ²wid),
and length (i.e. ²len) are calculated. Furthermore, the
RMS Frobenius error (FE) (i.e. ²FE) between the sim-
ulated (reference) matrix S, which describes the ellip-
soidal simulated target, and the estimations provided by
the 5 compared approaches X̂ is shown in Tab. III. This
is defined as kX̂¡SkF , where k ¢ kF is the Frobenius
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Fig. 6. (a) Position, (b) velocity, (c) length, and (d) width estimations for the compared approaches on simulated data for a target that
follows an almost along constant range track.

TABLE III
Performance Assessment on Simulated Data

Test Cases Methods ²pos ²vel ²wid ²len ²FE

Rk = 0 0.242 0.003 25.8 0.4 595.0
Rk =R1 0.242 0.003 25.2 0.4 578.3

Radial Track Rk =R2 0.242 0.003 17.3 0.5 361.5
Rk =R3 0.247 0.003 30.1 0.6 249.8
CM-ETT 0.242 0.003 0.2 0.4 18.9

Rk = 0 0.441 0.004 1.6 87.1 5414.6
Rk =R1 0.441 0.004 1.6 86.9 5396.0

Almost Constant Range Track Rk =R2 0.441 0.004 1.3 83.5 5117.4
Rk =R3 0.441 0.004 0.2 72.1 4232.3
CM-ETT 0.439 0.004 0.2 1.4 56.8

Rk = 0 1.545 0.004 8.1 12.3 677.9
Rk =R1 1.545 0.004 7.9 12.0 659.8

Non-along Constant Range/Non-radial Track Rk =R2 1.546 0.004 5.1 7.4 401.2
Rk =R3 1.548 0.004 29.8 8.1 584.2
CM-ETT 1.546 0.004 0.2 0.4 18.2

norm. This further metric is also able to capture all the
differences between estimated and reference matrices,
e.g. due to target rotations. The first samples are left out

in the calculation of the errors because of the random
initializations of the compared approaches. Conclusions
as above can be drawn starting from the analysis of the
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Fig. 7. (a) Position, (b) velocity, (c) length, and (d) width estimations for the compared approaches on simulated data for a target that
follows a non-radial and non-along constant range track.

outcomes in the table. These results will be further cor-
roborated by the analysis of the real data provided in
the next subsection.

F. Real X-band Marine Radar Data

The description of the outcomes on real data ac-
quired by the X-band marine radar described in Sect. V-
A is here provided. The main features of the 8 ships that
generate the 10 datasets are shown in Sect. V-B.
Initially, we determine an appropriate value for the

parameter ½ (cf. Eq. (18)). Two values of ½ are tested
using the CM-ETT approach. In a simulation study pre-
sented by Feldmann et al. [12], it is suggested to use
½= 1 to model a Gaussian spread of the detections,
while ½= 1=4 models a uniform distribution. Fig. 8
clearly shows that the CM-ETT with ½= 1=4 performs
better obtaining a closer match with the AIS ship infor-
mation. This experimental analysis confirms that data
with a uniform detection spread is best modeled by
½= 1=4. In the remainder of the paper, the compared
extended target filters are implemented with ½= 1=4.
The other tracking parameters used in the experiments

are shown in Tab. IV. The sampling time Ts is indicated
ranging from 2 s to 5 s. The reason why we have a
range instead of a fixed value is that the azimuth an-
tenna speed to acquire the 10 real datasets is different
from a dataset to the other, see Tab. I for the radar spec-
ifications. Hence, we have different parameters’ config-
uration in order to obtain a trade-off between the sam-
pling time and the number of samples acquired along
the azimuth direction, which, for instance, can have an
impact on the aliasing. Therefore, the Ts parameter used
in the tracking approach can be directly derived by the
selected azimuth antenna speed value _ (i.e. Ts = 60=

_).
The ¿ parameter is instead adjusted according to the
used Ts value. ¿ is related to the agility with which the
target may change its extension over time. Thus, the
datasets with lower Ts values tend to have a more static
(i.e. less variable along frames) target extensions (i.e.
higher ¿ parameters are advisable). This is due to the
fact that targets sail for a higher number of frames in
the same zone and, thus the acquisition system tends
to have a same target representation (i.e. less variable
target extensions are expected). However, the tuning of
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Fig. 8. (a) Position, (b) velocity, (c) length, and (d) width estimation for the CM-ETT using ½= 1 (red solid line) and ½= 1=4 (black
dashed line) on the Grand Holiday dataset.

TABLE IV
Parameter Setting Real Cases

Parameter Value Specification

Ts 2 s—5 s Sampling time
¿ 10/5 Agility object size
¾pos 0:2 ms¡2 Std. process noise

vmax 10 ms¡1 Maximum velocity
¾r ¢r=2 (see Tab. I) Std. noise range
¾ ¢ =2 (see Tab. I) Std. noise azimuth

this parameter as the other parameters in Tab. IV can-
not be considered critical, e.g. ¾pos and vmax have simply
been tuned according to the kinds of targets and the area
under test (i.e. medium and large ships that sail in the
near coastal area).
A graphic representation of the gains in estimating

the size by properly accounting for the measurement
noise is provided in Fig. 9 on the Grand Holiday dataset.
The target, in this case, is moving toward higher range
values in an almost radial direction, as can be seen
in Fig. 2. Six frames are depicted in Fig. 9 starting

from Frame 30 to Frame 180 with temporal resolution
equal to 60 s (i.e. an image every 30 frames). We only
compare results using the proposed approach and using
Rk = 0, because showing all results makes the figures
too cluttered. The more the ship sails toward high range
values (i.e. the higher the frame number), the greater the
spread of the detections. This behavior is mainly due to
the polar geometry of the acquisition of the radar.
A first remark is related to Fig. 9(a). Indeed, it is

simple to see that in the radar’s short range operat-
ing region, the proposed model that compensates the
radar’s noise effects does not gain advantage with re-
spect to the Rk = 0 model. The advantages between the
proposed approach and the Rk = 0 model become more
evident with increasing range. Note that due to the al-
most radial track, the target width parameter shows the
greatest performance gain. A better match between the
algorithm that runs with the proposed model and the
ground-truth is straightforward. These outcomes con-
firm the simulations and they are shown in Figs. 10(c)
and (d). Kinematic features are well captured by all the
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Fig. 9. Estimated ellipsoids provided by the Rk = 0, the CM-ETT, and the ground-truth on the Grand Holiday dataset. (a) Frame 30.
(b) Frame 60. (c) Frame 90. (d) Frame 120. (e) Frame 150. (f) Frame 180.

TABLE V
Performance Assessment on Real Data

Methods ²pos [m] ²vel [ms¡1] ²wid [m] ²len [m]

Rk = 0 35.4 0.85 38.4 41.0
Rk =R1 35.4 0.85 37.5 39.6
Rk =R2 35.4 0.84 23.5 26.8
Rk =R3 35.4 0.80 18.0 21.6
CM-ETT 35.4 0.84 11.8 14.3

approaches, see Figs. 10(a) and (b). For the error in po-
sition, a small displacement between the AIS reports and
the estimations provided by the presented algorithms
can be pointed out. This is due to the fact that the AIS
reports the position of the AIS transponder, while the
algorithms estimate the position of the center of the tar-
get, which generally speaking, can differ from the AIS
transponder’s position.
A further test case on the Portovenere dataset is also

detailed in Fig. 11. This dataset is composed of 130
frames. The AIS track is depicted in Fig. 2. Advantages
in the size estimations for the proposed model can be
easily pointed out, see Figs. 11(c) and (d). Again, no
gain can be seen in the estimation of the kinematic
parameters, see Figs. 11(a) and (b). In this case, due
to the non-radial track direction, these benefits can be
appreciated on both length and width size estimations.
To further corroborate the validity of the proposed

approach in providing an improved method of estimat-

ing the targets’ size and to have a more significant
statistical analysis, 8 further real test cases have been
performed (the total amount of frames analyzed by the
presented algorithms is about 103). On behalf of brevity,
the results are summarized in Tab. V, where the RM-
SEs in position ²pos, velocity ²vel, width ²wid, and length
²len averaged on all the datasets are shown. The Frobe-
nius error is not available for the real test cases because
of the lack of the targets’ real orientation in the AIS
information. Best results are in boldface. Due to the
random initialization of the algorithms, the first frames
are neglected to evaluate the RMSEs. No gain can be
pointed out for the kinematic parameters’ estimation and
the outcomes can be considered good in the light of
the above-mentioned considerations with regard to the
AIS information. The advantages are clear and the er-
rors in both width and length are significantly reduced
by properly considering the radar’s measurement noise.
The RMSEs in width are 11.8 m for the CM-ETT al-
gorithm, 18.0 m for the R3 method, and 38.4 m in the
case of the Rk = 0 approach. Whereas, the RMSEs in
length are 14.3 m, 21.6 m, and 41.0 m, respectively. A
histogram representation of the absolute errors in width
and length for the compared algorithms is depicted in
Fig. 12. The results for R1 and R2 are worse than the
results for R3, therefore we only compare the proposed
CM-ETT filter to R3 and Rk = 0. Same conclusions as
in Tab. V can be drawn.
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Fig. 10. (a) Position, (b) velocity, (c) length, and (d) width estimations for the compared approaches on the Grand Holiday dataset.

It is evident that by properly modeling the polar
measurement noise the errors in both width and length
are significantly reduced. For the data used here, the
average gains of the proposed CM-ETT approach are
70% compared to the Rk = 0 approach and 35% with
respect to R3 for the targets’ width estimation accuracy,
while advantages of 65% and 34%, respectively, can be
observed for the targets’ length estimation accuracy.

VI. MULTI-TARGET EXPERIMENTAL RESULTS

In this section the experimental results for the case
of multiple extended targets in a cluttered environment
are shown. The performance metrics used to assess the
quality of the approach are presented first. Afterwards,
the experimental results on a real dataset acquired by the
X-band marine radar located in the Gulf of La Spezia,
Italy, are described.

A. Performance Metrics

This subsection is devoted to the description of the
performance metrics, already introduced in [31], suit-
able for performance assessment in a multiple target and
cluttered environment. They are briefly listed, below:

² The time-on-target (ToT) is defined as the ratio be-
tween the time during which the tracker follows the
target and the whole time duration of the true target
trajectory. Its ideal value is 1.

² The false alarm rate (FAR) is defined as the number
of false track contacts normalized with the recording
interval and the area of the surveyed region. Its ideal
value is 0 that indicates no false alarm.

² The track fragmentation (NTF) is calculated by sum-
ming the number of radar tracks associated with a
unique AIS track. It provides a measurement of the
track fragmentation (TF). The ideal value is 1.

² The tracker accuracy (TA) is evaluated using the
errors in position (²pos), velocity (²vel), length (²len),
and width (²wid). Average values along frames are
provided as overall indexes. The ideal values are 0.

B. Experimental Results

The assessment is conducted on real data acquired
by the X-band marine radar. The main parameters
used for the GGIW-PHD approach are summarized in
Tab. VI. The dataset consists of 260 frames. AIS data
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Fig. 11. (a) Position, (b) velocity, (c) length, and (d) width estimations for the compared approaches on the Portovenere dataset.

Fig. 12. Histograms of absolute errors in (a) length and (b) width for the Rk = 0, the Rk =R3, and the CM-ETT approach calculated on all
the datasets.

are exploited as ground-truth. An example of the out-
comes of the GGIW tracker with converted measure-
ments model in the case of three very closely spaced
targets is shown in Fig. 13. The tracking results are de-

picted in Fig. 14. They show the estimations for both
kinematic and size parameters for all the targets in the
scenario. Solid lines denote the values provided by the
AIS, while dashed lines represent the estimations pro-
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Fig. 13. Tracking of three spatially close targets that are part of the multiple extended target data set: (a) Frame 70; (b) Frame 90. AIS
contacts are depicted with yellow square markers. The outcomes of the GGIW tracker with converted measurements model are indicated

with colored ellipses.

TABLE VI
Parameter Settings GGIW-PHD

Parameter Value Specification

Ts 2 s Sampling time
´k 1.04 Forgetting factor

¾a, ¾w 0:1 ms¡2,
0:1¼
180Ts

ms¡2 Kinematic noises

n 100 Extension uncertainty
¿ 99 Temporal decay
½ 1/4 Scaling parameter

¾r, ¾ ¢r=2, ¢ =2 (see Tab. I) Measurement noises
¯FA 100=V(A) m¡2 Clutter density
PD 0.99 Detection probability
PS 0.99 Survival probability
w(b)
k

10¡2 Birth weight

m(b)
k

05£1 Birth mean

P(b)
k diag 1,1,1,1,

0:01¼
180Ts

¶
Birth covariance

®(b)
k
, ¯(b)

k
0.04, 0.008 Birth rate

v(b)
k
, V(b)
k

120, 0:01Id Birth extension

w̄0 0.5 Extraction threshold
T 10¡3 Pruning threshold
U 25 Merging threshold

w̄1, w̄2, w̄3 1.1, 1, 0.8 Weight thresholds

vided by the GGIW tracker. The proposed approach
reaches overall good performance. More specifically,
we can appreciate only a small displacement between
AIS information and the tracker’s position estimation
due to the fact that our approach estimates the center of
the ellipse that represents the target (i.e. the ship), while
the AIS returns the position of the transponder located
on-board (usually not the ellipse’s center). A further
remark is related to the size estimation. Thanks to the
usage of the proposed model, the tracker is able to com-
pensate the usual bias in the size estimation with respect
to the AIS values mainly due to the non-idealities of the

acquisition system (i.e. the width of the radar antenna
pattern’s main lobe).
Regarding to the performance metrics, the TA in-

dexes confirm the previous analysis. Indeed, Tab. VII
shows limited errors. Average errors are 30.7 m and
0.69 ms¡1 that are due to the discrepancy between
the information provided by the radar and the one
that the AIS is able to provide. Average errors for
the size estimation are 19.7 m in length and 6.9 m
in width and can be considered limited for the ships
under test (we have ships hundreds meter long and
an obscuration phenomena that affects the size estima-
tion of the ship with maritime mobile service identity
(MMSI) equal to 351361000 and increases the ²len and
the ²wid).
The ToT is always very high (except for the ship

with MMSI = 247031200, which is on the border of
the surveillance area and could be not properly detected
for some frames and the ship with MMSI = 247222500
that is a pilot boat and is often shadowed by or merged
with the container ship with MMSI = 351361000). The
overall ToT is 85%, see Tab. VII. Furthermore, the TF
is almost ideal (with average values equal to 1:20). The
small reduction of this index is only due to the obscu-
ration phenomena for the container ship with MMSI =
351361000. Indeed, for about 40 frames, the passen-
gers ship with MMSI equal to 255803790 interposed
between the container ship and the radar causing a frag-
mentation of the container ship track for few frames and
a reduction of the size estimation for that period. Finally,
the FAR index is about 6:7 ¢10¡7 s¡1m¡2. Furthermore,
it is worth pointing out that the most of the false alarms
are due to signal leakages in the electronics, buoys, and
ghosts (coming from the radar antenna pattern’s sec-
ondary lobes).
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Fig. 14. Dashed lines represent tracks estimated by the GGIW tracker, while solid lines are used to depict AIS contacts. The association
between GGIW estimated tracks and AIS tracks is indicated with different colors.

TABLE VII
Tracking Metrics

MMSI Ship 247031200 247076200 247222500 255803790 351361000 Average Results

²pos [m] 5.05 14.3 20.1 51.6 62.7 30.7
²vel [ms¡1] 0.52 0.41 0.49 0.33 1.70 0.69
²len [m] 22.2 9.8 2.9 11.2 52.4 19.7
²wid [m] 4.0 2.4 7.2 5.2 15.8 6.9

ToT 0.66 0.91 0.69 0.99 0.98 0.85

NTF 1.00 1.00 1.00 1.00 2.00 1.20

FAR [m¡2s¡1] 6:7 ¢ 10¡7
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VII. CONCLUSIONS AND FUTURE DEVELOPMENTS

A maritime-surveillance system based on an X-band
marine radar has been presented. The ability to esti-
mate the targets’ positions, velocities, and sizes using
extended target tracking approaches relying upon ran-
dom matrices has been evaluated. Standard and unbi-
ased models have been proposed to properly take into
account the radar’s measurement noise. The validation
has been conducted on both simulated and real data ac-
quired by an X-band marine radar node installed in the
Gulf of La Spezia, Italy. The integration of the proposed
model into the gamma Gaussian inverse Wishart proba-
bility hypothesis density tracker has also been provided
and tested on real data. Although comparable perfor-
mance on the estimation of kinematic parameters has
been pointed out, the experimental analysis confirms
the ability of the proposed approach to better estimate
the targets’ size with respect to the approaches in [25]
and [12], thanks to the use of proper models of the
radar’s measurement noise. Average gains up to 70%
for the targets’ width estimation accuracy and 65% for
the length are observed on real data.
Future developments are devoted to the integration

of the converted measurements model in other extended
target tracking frameworks, such as the random hyper-
surface one, enabling a fair comparison among the dif-
ferent frameworks to track extended targets using po-
lar/Cartesian coordinate conversion.
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