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Abstract—Seaports are spatial units that do not remain static
over time. They are constantly in flux, evolving according
to environmental and connectivity patterns both in size and
operational capacity. As such any valid decision making re-
garding port investment and policy making, essentially needs
to take into account port evolution over time and space;
thus, accurately defining a seaport’s exact location, operational
boundaries, capacity, connectivity indicators, environmental
impact and overall throughput. In this work, we apply a
data driven approach to defining a seaport’s extended area
of operation based on data collected though the Automatic
Identification System (AIS). Specifically, we present our adap-
tation of the well-known KDE algorithm to the MapReduce
paradigm, and report results on the port of Rotterdam.

Keywords-big data, KDE, AIS, port location estimation,
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I. INTRODUCTION

The gateway to European commerce and industry is

one of the most complex and dense port networks in the

world. These hubs connect seaborne trade and passengers

to the multimodal transportation networks in Europe, which

include rail, road, air and inland waterways. A recent

report published by the European Commission calculated

that 74% of goods imported and exported and 37% of

exchanges within the Union transit through seaports [1],

[2]. Interestingly though, from the roughly 1200 ports along

the 70 000 km EU coastline, approximately 20% of this

traffic is served by only three ports: Rotterdam, Antwerp

and Hamburg [3]. Today EU ports are facing a number of

unique challenges, which include [1], [2]

• A significant increase in vessels size, speed and vol-

ume; in particular ultra-large container ships, new types

of Roll-on/Roll-off (RORO) ferries and gas-carriers,

are putting pressure onto traditional port structural

infrastructures, while increasing maritime risks, as these

vessels are difficult to maneuver in small shipping

lanes;

• Significant developments in the energy trades, with a

shift from oil and refined products towards gas that

This work is supported by the NATO Supreme Allied Command Trans-
formation (SACT) under project SAC000608 – Data Knowledge Opera-
tional Effectiveness, by Microsoft Research through a Microsoft Azure for
Research Award, and by MarineTraffic.

require significant gasification facilities in ports and

potential volumes of dry biomass and CO2 transport

and storage;

• Adherence to stricter requirements on environmental

performance and alternative fuels.

In the midst of an economic recession, significant invest-

ment is required to keep the EU ports competitive, including

extensions of berths, deepening of basins and canals to en-

able large vessel maneuvering, new terminal and operational

procedures to allow for parallel coordination of services,

implementation of Information and communications tech-

nology (ICT) logistic systems and supply management and

much more. According to the EU commission, the complex-

ity of the administrative procedures for customs clearance

results in big delays at ports, representing just another major

obstacle to the competitiveness of sea shipping and the

efficiency of Union ports [4]. Additionally, port security

has come into the public spotlight, as ports are critically

important infrastructures and potential gateways for unlawful

trades concerning drugs, weapons, counterfeited goods and

even explosive materials.

Recognizing the vital role the ports play in the Union’s

economy, international competitiveness and the single mar-

ket integration, a number of EU wide policies and directives

are being implemented, which aim at guaranteeing the

availability of a well-connected port infrastructure. As such,

the European Transport Infrastructure Plan identifies 329

ports of common interest, including 104 ports of strategic

interest, 9 multimodal core network corridors that start

and end in seaports and reserves a budget of 26 billion

EUR for the period 2014–2020. It is the objective of the

European port policy, while respecting the overarching need

for better infrastructure planning, to stimulate competition

among ports and ensure that adequate capacity is available

for a sustainable growth of European trade and effective

port operations [3]. It is important to note though that al-

though investments are necessary, simultaneously the World

Economic Forum states that, in transport, only 40% of

load capacity is used nowadays. Now more than ever, it

is a necessity to examine the potential of enhancing the

efficiency of the logistic chain by exchanging data, by
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exploring and exploiting the benefits of digitalization [5].

Increasing the capacity and redesigning ports, at the cost

of the taxpayer, should be contained at no more than what

is operationally necessary [6]. Similar to other industries,

decisions regarding the redesign of ports areas, their increase

in operational capacity and infrastructure, need to be based

on measurable data which can be transformed into actionable

information.

Data science involves principles, processes, and tech-

niques for understanding phenomena with the ultimate goal

of improving decision making, as this generally is of

paramount interest to business. Data-driven decision-making

(DDDM) refers to the practice of basing decisions on the

analysis of data rather than purely on intuition [7]. While

in the past, sea transport surveillance had suffered from a

lack of data, current tracking technology has transformed the

problem into one of an overabundance of information, lead-

ing to a need for automated analysis. The major challenge

faced today is developing the ability to identify patterns

emerging within these huge datasets, fused from a variety

of sources and generated from monitoring a large number

of vessels on a day-to-day basis. The extraction of implicit

and often unknown information from these datasets belongs

to the field of data mining and data science. Progressively

huge amounts of structured and unstructured data, tracking

vessels during their voyages across the seas are becoming

available, mostly due to the Automatic Identification System

(AIS) that vessels of specific categories are required to carry.

These datasets provide detailed insights into the patterns

that vessels follow, while they can operate as benchmarking

tools for port authorities regarding the effectiveness and

efficiency of their ports. A data-driven approach to seaborne

transportation could potentially,

• Accomplish a decrease in port congestion and seaways

by monitoring and improving the forecasting of vessel

arrivals (ship sizes, cargoes, ETAs, loading/discharge

times) to enable better planning and execution of port

operations (virtual arrivals);

• Achieve a reduction of accidents at sea by timely

detecting hazardous situations (including malicious

events) based on the vessels trajectory, behavior (e.g.

speed, course) and context (e.g. weather conditions or

nearby ships), while proposing measures of proactive

prevention; and

• Contribute to the reduction of green-house gas (GHG)

emission intensity for each vessel by providing data to

increase and optimize operational efficiency.

Benchmarking ports will support greater transparency in

policy making, stakeholder decision making, public funding

while promoting healthy competition between the ports

themselves. Benchmarking measurements include maritime

connectivity indicators, current port operational capacity,

number of port calls, type of vessels, call size, cargo

throughput, intermodal connectivity, vessel time at anchor-

age outside port, number of vessel waiting to be processed,

while taking of course into consideration the specific char-

acteristics of regions and other port externalities. Generating

valid and reliable measurements though regarding ports

statistics is a highly complex task. We often overlook the

fact that maritime networks operate as “small worlds”, where

content and size varies over space and time, under the

influence of the trade and carrier patterns. Such spatial units

are often not well defined and delimited, such as port region,

port system, port range as they evolve according to patterns

[8]. The stepping stone for any useful analytics and data

driven approach to port planning is accurately defining a

seaport’s location and operational boundaries, so capacity

and efficiency can be calculated. This paper discusses work

in progress at the NATO STO Centre for Maritime Research

and Experimentation (CMRE) to estimate port areas in a

scalable, data-driven way. Knowing the extent of port areas

is an important component of larger maritime traffic analysis

systems that employ computational techniques to achieve

Maritime Situational Awareness (MSA). For example, ac-

curately detecting which vessels visit a given port and its

surrounding areas enables the study of vessel traffic Patterns

of Life (PoL’s) in a region, the calculation of summary

statistics on the volume and type of vessels, and the detection

of discrepancies in the vessel-declared origin and destination

ports.

In our approach, we exploit the large volume of historical

and real-time AIS data to estimate the port areas in a

data-driven way, with minimal reliance on other sources

of information. However, as the amount of available AIS

data grows to massive scales, computational techniques for

MSA —which we call computational MSA— must also

contend with acquiring, storing, and processing the data.

We are addressing these challenges by leveraging a cluster

of computers to store the AIS data and to serve the spatial

clustering and density estimation operations underlying the

proposed port area algorithm. The proposed approach can

be extended to other types of areas besides ports: off-

shore platforms, anchorage areas, and fishing grounds can

be detected automatically and their extent estimated using

this approach. This is particularly beneficial because often

these types of areas have dynamic boundaries that change

with the seasons, as a consequence of newly introduced local

vessel traffic schemes, or as new maritime support facilities

become available. Thus, being able to estimate automatically

and quickly the current extent of stationary areas worldwide

becomes essential.

II. BACKGROUND AND RELATED WORK

In recent years extensive research has been performed in

exploring methods of increasing the effectiveness and effi-

ciency of ports through ICT; numerous research efforts have

focused around the themes of ICT as a method of supporting
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Figure 1. Density of AIS messages collected by MarineTraffic from
January to March 2015. Each pixel covers a 10-by-10 m square on the
ground and its color is (logarithmically) proportional to the number of AIS
messages whose reported positions fall within its footprint.

more efficient logistics supply chain management, security

management, greener performance and port benchmarking.

At an EU level, a number of collaboration research

projects have been funded related to improving the effi-

ciency and effectiveness of sea operations either through

the FP6, FP7 or Horizon 2020 instruments. As such the

SAIL project, which was funded under FP7, designed and

developed a novel system aimed at improving integrated

logistics management and decision support for intermodal

port and dry port facilities. The two year PPRISM project,

co-funded by the European Commission, delivered a shortlist

of indicators that form the basis of a future European Port

Observatory, which will take the form of a Port Sector

Performance Dashboard. This work was later followed up

by the PORTOPIA (Ports Observatory for Performance

Indicator Analysis) project, funded also under FP7, whose

main objective was to develop an enhanced ports observatory

with a set of indicators measuring EU ports performance,

activities and developments. The SUPPORT project aimed at

providing general methods, technology and training services

to be used by any European Port to upgrade their security

capability. In relation to security, various research projects

have been funded, such as the Maritime Navigation and

Information Services (MarNIS), Motorways & Electronic

Navigation by Intelligence at Sea (MONALISA), Advanced

National Networks for Administrations (ANNA), Vessel

traffic monitoring in EU waters (SafeSeaNet) and MOS.

AIS data has proven to be a valid method for monitoring

vessels and extracting valuable information regarding vessel

behavior, operational patterns and performance statistics. As

Tichavska, Cabrera, Tovar and Arana point out, AIS data in

research has been used for a variety of applications including

optimization of radio propagation channel techniques, real-

time statistical processing of traffic information, improving

ship traffic management and operations, sustainable transport

solutions and many more [9]. Pallotta, Vespe and Bryan

make use of AIS data for vessel pattern knowledge discovery

as a framework for anomaly detection and route prediction

[10]. Huijbrechts, Velikova, Michels and Scheepens present

their work performed in the scope of the METIS project

that makes use of AIS data for automated and consolidated

“situational understanding” [11]. Rashidi and Koto predict

the CO2 emitted by marine transport in Batam-Singapore

Channel using AIS data [12]. In [13], Ristic, La Scala,

Morelande and Gordon, use AIS data to extract motion

patterns which are then used to construct the corresponding

motion anomaly detectors. In relation to sea ports research

and AIS, Ricci, Marinacci and Rizzetto, made use of AIS to

model maritime terminals operations, specifically focusing

on the port of Messina [14]. While Donateo, Gregoris,

Gambaro, Merico, Giua, Nocioni and Contini evaluated the

contribution of harbor activities and ship traffic to PM2.5,

particle number concentrations and PAHs in a port city of

the Mediterranean Sea (Italy) [15]. Jing and Shuang perform

a safety evaluation of China’s maritime transport key nodes

based on AIS [16].

However, to the best of our knowledge, much less work

has been performed in relation to using AIS data to define

the exact seaport location and its operational boundaries, so

capacity and efficiency can be calculated. In this paper we

propose a method to estimate port locations and operational

areas in a scalable and unsupervised way, using the Kernel

Density Estimator (KDE) and taking advantage of one of

the most widely adopted distributed programming models.

In this work, our focus is on the port of Rotterdam.

Located in South Holland, within the Rhine-Meuse-Scheldt

river delta at the North Sea and provides high-frequency

connections to numerous destinations across Europe. The

port’s annual throughput amounts to some 465 million

tonnes, while the port area is more than 40 km, making it the

largest port in Europe and ninth in the world. From the port

of Rotterdam an extensive fleet of inland vessels transports

cargo via the Maas and the Rhine directly to the major

economic centers in the Netherlands, Germany, Belgium,

France, Switzerland and Austria. On a yearly basis more

than 30 000 seagoing vessels and 110 000 inland vessels

visit the port. It is also one of the most complex ports in

the world with numerous terminals including 6 deep sea

container terminals, 3 short-sea terminals and 18 empty

depots; 6 RORO and 19 general cargo terminals, 17 dry

bulk terminals, numerous oil refineries, chemical locations,

gas and power terminals and other.

III. APPROACH

A. Data description

The AIS was originally conceived as a navigational safety

system to support vessel traffic services in ports and har-

bours, but soon after its adoption, and especially after the
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Figure 2. Implementation of the KDE with MapReduce logic. The leftmost block shows the the input data relative to a single port, which is organized in
partitions and stored on a DFS or a distributed database. Taking advantage of its linearity, the computation of the KDE can be distributed among multiple
nodes, each of which performs an expansion of the input partition with the Gaussian kernel.

International Maritime Organization (IMO) mandated AIS

transceivers to be installed onboard a significant number

of commercial vessels [17], AIS began being used also to

achieve broader MSA [18], which is the understanding of

the factors that impact the economy, environment, security,

and safety of the maritime domain.

The AIS communication protocol is asynchronous and

prescribes that different types of messages be transmitted

with different frequencies. In fact, the ITU 1371-4 standard

defines 64 different types of AIS messages that can be broad-

cast by AIS transceivers. In this work we focus on the 6 most

relevant ones for MSA, which account for approximately

90% of AIS typical scenarios [19]. Types 1, 2, 3, 18, and

19 are position reports, which include latitude, longitude,

speed-over-ground (SOG), course-over-ground (COG), and

other fields related to ship movement; type 5 messages

contain static-and-voyage information, which includes the

IMO identifier, radio call sign, name, ship dimensions, ship

and cargo types. In all messages, each vessel is identified

by its Marine Mobile Service Identifier (MMSI) number.

Since the first introduction of AIS, maritime traffic and

global compliance with the international requirements have

steadily increased, and the many worldwide networks of

AIS coastal receivers have grown, resulting in larger and

larger volumes of AIS data. Every month, this amounts to

many millions of AIS messages produced by hundreds of

thousands of unique vessels [20].

In the remainder of this paper, we use a dataset about 3.4
million AIS messages made available by MarineTraffic and

recorded from January to March 2015 in an area of about

300 square km over the port of Rotterdam. In Fig. 1 we

report, for reference, a density map of the dataset over the

area of interest; each pixel in the figure covers a 10-by-10
m square on the ground and its color is proportional to the

logarithm of the number of recorded AIS messages whose

reported positions fall within its footprint.

B. Kernel density estimation

Let us assume that xi ∈ R
k, with i = 1, . . . , n, are a

set of observations from a probability density f . Initially

introduced by Rosenblatt [21], a basic KDE of f has the

form [22]:

fn(x) =
1

nhk

n∑
i=1

Kh (x, xi) , (1)

where Kh is the kernel function, and h denotes the ker-

nel bandwidth (or window width), which is a smoothing

parameter. The choice of h has a strong influence on the

estimate, because different values highlight different features

of the data, depending on the density under consideration.

The choice of a kernel function, on the other hand, is not

crucial to the statistical performance, and a widely adopted

choice is the Gaussian kernel, defined as below

Kh(p, q) =
1

(2π)
k
2

√|Σ| e−
(p−q)TΣ−1(p−q)

2h2 . (2)

1) Convolution: Apart from a scaling factor, the KDE

formula (1) can also be seen as a convolution (which we

denote with the ∗ operator) between the empirical Proba-

bility Density Function (PDF) and the kernel function [23],

CMRE Reprint Series CMRE-PR-2019-068

4



that is

φn ∗Kh =

∫
D

(
1

n

n∑
i=1

δ (ξ − xi)

)
Kh (x− ξ) d

k
ξ

=
1

n

n∑
i=1

Kh (x− xi) = hkfn(x),

(3)

where φn is the empirical PDF, expressed as a sum of n
Dirac delta functions δ (·) centered in the data samples. A

computationally efficient variant of this formulation bins the

data samples into k-dimensional histograms, and convolves

the histogram with the kernels instead of the individual

delta functions. This variant is appealing when the data size

increases, because it produces an essentially identical result

at a fraction of the computational cost.

2) Adaptive KDE: Both the KDE in (1) and the KDE by

convolution (3) employ a fixed kernel bandwidth for all the

observed data points. An intuitive improvement is to weight

observations non uniformly; that is, extreme observations in

the tails of the distribution should have their mass spread in

a broader region than those in the body of the distribution.

Specifically, instead of having a single value for h, in

the adaptive KDE approach hi, for i = 1, . . . , n, is the

bandwidth of the kernel centered in the i-th observation.

The first challenge is how to decide if an observation

belongs to a region of high or low density. The adaptive

approach [23] relies in fact on a two-stage procedure:

combining (1) with (2), a pilot estimate is first computed

to identify low-density regions coarsely, using a fixed band-

width factor. Since only a coarse idea is required of how the

density is distributed in the area of interest, here we can use

the convolved histogram (3), which comes at a fraction of

the computational cost required to compute (1).

3) Local bandwidth factors: Under the assumption that

the underlying distribution is k-variate normal, the optimum

(fixed) window can be written as [23]:

h∗ =
(

4

n(k + 2)

) 1
k+4

. (4)

The local bandwidth factors λi, for i = 1, . . . , n are then

given by

λi =

(
fn (xi)

g

)−α

, (5)

where 0 ≤ α ≤ 1 is the sensitivity parameter and g is

the geometric mean of the fixed-bandwidth density estimate

fn (xi) evaluated in the data points

log g =
1

n

n∑
i=1

log fn (xi) . (6)

The adaptive KDE of f can be finally expressed as

f̂n (x) =
1

n

n∑
i=1

1

(h∗λi)
k
Kh∗λi

(x,xi) . (7)

IV. IMPLEMENTATION AND RESULTS

Let us indicate now the full kinematic state of a vessel at

a generic time with χi = [ai, bi, vi]
T ∈ R

3, where a and b
represent the longitude and latitude coordinates, respectively,

of the ship in a geographic coordinate system, and v ≥ 0
is the instantaneous speed of the vessel. We introduce also

a reduced vessel kinematic state that doesn’t include the

instantaneous speed xi = [ai, bi]
T ∈ R

2. Finally, we observe

the ship traffic in the neighborhood of a port in the time

interval [0, T ], where T can be hours, days or even months,

depending on the application.

Our objective is to determine the area of the port given

the set of AIS observations X = {χi}ni=1, that can be made

up either by the full or reduced kinematic states of the ships

observed in the area of interest. Assuming that the samples

X are drawn from a probability density function f , the

proposed approach consists of applying the KDE to the data

samples, and determining the port extent using horizontal

cuts of the resulting estimated probability density function.

Unfortunately, the direct computation of the fixed

KDE (1) is highly inefficient, especially for large or highly

dimensional data sets. In fact several approaches have

been proposed in the past to reduce the computational

burden [24]–[26]. However, as the data set size and its di-

mensionality increase, even the aforementioned approaches

can easily become computationally prohibitive and therefore

distributed approaches are necessary. Zheng et al. [27] have

recently proposed randomized and deterministic distributed

algorithms for efficient KDE with quality guarantees, adapt-

ing them to the popular MapReduce [28] programming

model. As in [27], our approach is to take advantage of the

linearity of the KDE to distribute the computation among

many different nodes using the MapReduce distributed pro-

gramming model.

In Fig. 2 we report a conceptual representation of the

formulation of kernel density estimation problem in the

MapReduce framework. The leftmost blocks represent the

partitions of the input data relative to a single port. The prob-

lem of associating each data sample with the corresponding

port is a separate issue, that can be easily addressed using,

for instance, a k-Nearest Neighbor (k-NN) classifier. Taking

advantage of the linearity of the KDE, each Map function

produces an expansion of the given input partition with the

Gaussian kernel. Finally, the Reduce step is responsible for

summing up all the contributes and eventually produces

the final estimate. In the adaptive version, this schema

is expanded with the computation of the local bandwidth

factors, that are then associated to the corresponding data

samples in the partitions.

For our purposes, we consider the port as the extended
location where ships exhibit a very low speed. Consequently,

there are two possible approaches for estimating the density

function. One possibility is to compute the KDE in R
3 at a
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(a) Fixed-bandwidth KDE (b) Adaptive KDE

Figure 3. Comparison of fixed and adaptive bandwidth kernel density estimates computed in the Rotterdam port area. The fixed-bandwidth version (a)
produces a smoother result, but is unable to deal satisfactory with the low-density regions. The adaptive KDE (b) has a higher computational cost than the
fixed KDE, but it produces a spikier, and consequently narrower, estimate on low-density regions. Both the estimates have been computed on the available
data collected by MarineTraffic from January to March 2015, having selected only those ships whose speed reported by the AIS was not exceeding the
fixed threshold of 1 kn.

(a) α = 0.3 (b) α = 0.5 (c) α = 0.7

Figure 4. Effect of the sensitivity α on the resulting PDF estimated with the adaptive bandwidth approach. The three panels refer to three different
sensitivity levels, namely α = 0.3 (a), α = 0.5 (b) and α = 0.7 (c). Smaller values of the sensitivity parameter α produce results that are more similar
to the fixed-bandwidth KDE, while spikier density functions are created with higher values of α, but they are inevitable more fragmented.

very high computational cost using the complete kinematic

states χi including also the ship speed, and then compute the

spatial density estimate f̄n(x) by marginalization of fn(χ)

f̄n (x) =

∫ vT

0

fn(χ) dv,

where vT is the speed threshold that discriminates the

stationary ships from those under way. Unfortunately, this

approach usually does not improve significantly the quality

of the resulting estimate over less computationally demand-

ing alternatives, especially in low-density regions.

The second possibility is to form the KDE in R
2 using

only the positional information xi of the ships that can be

considered stationary. In other words, given the set of all the

observations, we can build a subset of the positional states

of only those ships whose speed is below a desired threshold

vT , and compute the KDE on this subset. This approach can

be also seen as an approximation to the first one that trades

some result accuracy for a more affordable computational

cost.

Filtering out all the ships whose velocity exceeds the

threshold of 1 kn leaves us with a dataset of ≈ 1.5 million

samples, from an initial size of ≈ 3.4 million. These ≈ 1.5
million data samples are then used to compute the density

estimate, corresponding to the AIS messages received by

MarineTraffic from January to March 2015 whose reported

velocity was below 1 kn. Finally, we apply both the fixed

and adaptive bandwidth KDE to this data set.

We rely on a Apache SparkTM cluster made up by:

11worker nodes, each one equipped with 4 processing cores

and 14GB RAM; and 2 head nodes, each one equipped

with 8 processing cores and 14GB RAM, summing up to a
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total of 60 computing cores and 154GB RAM. In our setup,

the fixed KDE on the aforementioned area of interest takes

about 3minutes. The adaptive KDE has as first step a fixed-

bandwidth KDE and is more computationally expensive than

the fixed KDE by definition, taking, with the aforementioned

configuration, about 6minutes to run.

Fig. 3 shows a comparison between the port area of

Rotterdam computed with the fixed KDE (a) versus the

one computed with the adaptive KDE (b). The estimates

have been determined using the available data collected by

MarineTraffic from January to March 2015 and the fixed-

bandwidth approach in R
2, having selected only those ships

whose speed reported by the AIS was not exceeding the fixed

threshold of 1 kn. The horizontal cuts of the PDF surround

the position of the port, as recorded in the World Port Index

(WPI) [29].

As expected, the PDF exhibits multiple peaks, which are

presumably located in the areas with the highest activity.

However, thanks to the local weighting of the bandwidth

factors, the adaptive KDE is able to better isolate highly

active areas, with less probability mass concentrated in the

entrance of the port.

Finally, Fig. 4 demonstrates the effect of the parameter α
on the resulting estimate. It is apparent how smaller values

of α tend to produce similar results as the fixed KDE,

while higher values make the density estimate spikier but

necessarily more fragmented.

V. CONCLUSION AND FUTURE WORK

Estimating port locations and operational areas is an

essential component for achieving MSA. The large volume

of AIS data imposes algorithmic approaches that require

minimal human intervention and scale with the increasing

data volumes. The KDE-based approaches presented here

address these challenges by combining MapReduce with

fixed or adaptive kernel bandwidths. The results presented on

the single port of Rotterdam could be extended to other ports

worldwide, and a port analysis platform could be developed

that learns the port areas worldwide in an unsupervised way.

The proposed approach can also be extended to other types

of areas besides ports: off-shore platforms, anchorage areas,

and fishing grounds can be detected automatically and their

extent estimated in a data-driven, unsupervised fashion.
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