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Abstract—Autonomous Underwater Vehicles (AUVs) present a
low-cost alternative or supplement to existing underwater surveil-
lance networks. The NATO STO Centre for Maritime Research
and Experimentation is developing collaborative autonomous
behaviours to improve the performance of multi-static networks
of AUVs. In this work we lay the foundation to combine a range-
dependent acoustic model with a three dimensional measurement
model for a linear array within a Bayesian framework. The
resulting algorithm is able to provide the vehicles with an
estimation of the target depth together with the more usual
information based on a planar assumption (i.e. target latitude
and longitude). Results are shown through simulations and as
obtained from the REP16 sea trial where for the first time a
preliminary implementation of the method was deployed in the
C-OEX vehicles.

I. INTRODUCTION

The usual approach in ocean exploration, surveillance and
reconnaissance is based on using active or passive sonar sys-
tems composed of either source-receiver pairs (active sonars),
or receivers only (passive sonars) [1]. When arrays of sensors
are available as receivers [2], they can be used to perform
spatial filtering of the signals incident upon it [3], thereby
providing directionality information (i.e. the ability to dis-
criminate from which direction the signal is being radiated).
Traditionally, these systems are deployed on vessels, frigates or
submarines which, being equipped with towed arrays, represent
the assets of surveillance networks. However, this approach
is platform and manpower intensive, hence very costly. Au-
tonomous Underwater Vehicles (AUVs) have recently gained
a great interest in many applications in underwater surveillance
due to their low cost, covertness, persistencyy, together with
their ability to being equipped with high performance sensors.
In [4] an experimental network composed of mobile and fixed
nodes was deployed off the coast of Norway with the objective
of creating an integrated security system which could include
aerial, terrestrial and underwater assets for the protection of
off-shore and coastal installations. The usage of AUVs for
ASW has been proposed in [5] where rather than performing
ASW with a single, large, highly capable, capital ship or sub-
marine, the authors propose to have a system of many, small,
limited capability, low-cost systems working in concert. The
sensors and underwater assets make collaborative decisions
independent of an operator and carry out the necessary changes
to their actions. A more recent approach has been described

in [6] where the vehicle autonomy is linked together with the
on-board real-time tracker so that the vehicle can optimally
modify its trajectory to be in the best position to lock on the
potential target, hence minimising the expected target position
error and increasing its ability to maintain tracks. As opposed
to more traditional assets, these small, comparatively low-
cost and low-power vehicles are characterised by very limited
computational and communication capabilities [7], [8], [9].
However, when these robots are deployed in large numbers
and properly interconnected [10], [11], they can create an
intelligent network that is able to go beyond the limitations
of the individual sensors, to achieve a network gain, with
important features of scalability, robustness, and reliability.
One attempt to move into this direction was reported in [12]
where the authors resolve the port-starboard ambiguity coming
from the usage of linear arrays sharing information between
the nodes of the network, hence exploiting the spatial diver-
sity that is obtained using different sensors at once. Similar
concepts are also discussed in [13] where the AUVs/nodes of
a multi-static sensor network share local information, namely
contacts and tracks, demonstrating that the system increases its
robustness and resilience. This paper extends previous work
in several important ways. We borrow from [13] the idea
of using a range-dependent acoustic model to calculate the
predicted probability of target detection Pp. This Pp is then
combined within a Bayesian framework to compute a posterior
distribution for the target location at each ping. This approach
has been generalised and a three dimensional measurement
model has been devised to optimally solve the problem of 3D
localisation of an underwater target. Using this information, the
vehicles can then collectively decide their position in the 3D
environment to optimise some mission-driven measurements of
the network performance. The resulting approach overcomes
the known right-left or port-starboard ambiguity created by
the cylindrical symmetry of a single line of hydrophones
[14] proposing a unified framework in which the ambiguity
is instead utilised for the robot advantages. This fits inside
the concept of “active perception”, which requires robots that
can both estimate quantities of interest and autonomously
take actions to improve those estimates [15]. The promising
effectiveness of the method is shown through simulations
and at-sea results as obtained during the recent Recognized
Environmental Picture (REP) Atlantic 2016 sea trial where one
AUV was deployed and successfully reduced its uncertainty in
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determining the depth of an echo-repeat target.

The rest of the document is organised as follows: The
extension from a planar bistatic localisation to a three di-
mensional scenario is presented in Section II. How to use
this information as a measurement model is described in
Section III, and its integration within a particle filter that is able
to provide the vehicles with a full posterior on the target state is
described in Section III-B. Computer simulations to show the
effectiveness of the approach are reported in Section IV, and
results from a recent sea-trial in Section V. Finally, conclusions
are drawn in Section VI.

II. 3D BISTATIC LOCALISATION

The typical approach to quantify bistatic contact localisa-
tion relies on a planar assumption where the contributions of
varying source, target and receiver depths on the distances and
angles are neglected [16]. This is usually justified by the typ-
ical geometries of interest in many surveillance applications,
where the target can be considered far from the sonar elements
(i.e. source and receivers). The planar assumption simplifies
the problem and allows to have simple equations to calculate
the estimated target position given the measured quantities:
the propagation time 7 and the bearing 6, relative to the array
heading ¢%, as produced by the array signal processing [14].

In usual AUV set-ups, receiving sensors are composed of
uniformly spaced linear arrays, with a beamformed output that
is cylindrically symmetric. In the planar case, this means that
it is not possible to discriminate if an echo is detected from the
port or starbord side of the array (port-starboard or left-right
ambiguity).

It is not possible to rely on the planar assumption when
the target is close to the source or the receiver of the sonar,
in this case in fact the depth component has a non negligible
impact that needs to be accounted for. Furthermore, the left-
right ambiguity generated in the case of the planar assumption
is usually seen as a complication with an impact on the
detection and tracking capability, leading often to performance
degradation [12].

When the problem is tackled as a three dimensional
scenario, although the geometry becomes more complicated,
interesting new features emerge, such as the possibility of
tracking the depth of the target, and to include the port-
starboard ambiguity into a unified formulation.

The measured quantities are the same as per the planar
case. More in details, we consider:

e 7 is the measured propagation time from source to
receiver

e 0 is the measured bearing from receiver to target, and
relative to the array bearing

e ¢ is the array heading

e ' is the array pitch

Rt

e  receiver location: X BT
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Fig. 1. Bistatic source-target-receiver geometry in the three dimensional
case. The target lies on the intersection between the bistatic ellipsoid and the
beamforming ambiguity cone of the linear array.

Fig. 1 illustrates the source-target-receiver geometry in the
bistatic case. The target estimated position can be obtained
intersecting the bistatic ellipsoid (obtained once the measured
propagation time from source to receiver is available) with the
cone of ambiguity coming out of the linear array beamforming
(i.e. the cone that is obtained once 6, the measured bearing
from receiver to target, and relative to the array bearing is
available).

Defining, Iy, as the rotation matrix around the y-axis
(pitch), and R, as the rotation matrix around the z-axis
(heading), the bistatic ellipsoid with center in x, = (x%4+x'?)/2
, can be defined, in the inertial frame < I >, as:

(X — Xc) * RL,% « Ax Ry o, *(x—%.) =1 (1)

where:

1/a®> 0 0
A=| 0 1 o ©)
0 0 1/

with a = ¢7/2, b* = a? — C?, and C = ||x° — x|, and
d="0.

Ry..¢. = Ry Ry, 3)
S R
(Y -y
¢ = —tan 1 (M) , (@]
s ZS — ZR
o= — — Z 7 ). 5
ve= 3 ““(meRO ©)

The ellipsoid (1) can be expressed into the receiver’s body
frame < b >, i.e. the reference frame centered at the location
of the receiver x* and with the x-axis aligned to the surge
direction, applying

Xp = R; 5X — R; oX (6)
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Fig. 2. Linear array ambiguity as obtained from 10. The source is located
in x¥ = (0,0,0), the receiver at x'* = (2250, 1500,0) with a pitch 7 =
20 deg and heading ¢'* = 10 deg. The target is shown as a black filled circle.

where ¥ is the array pitch angle, and ¢ is the array
heading.

In the receiver’s body frame, the array ambiguity cone (i.e.
a cone with aperture along the x-axis of the body frame) can
be expressed, in cylindrical coordinates r, W as:

xp =71/R, @)
yp = rcos(V), 8)
zp = rsin(U). )

where R = tan(6) determines the aperture of the cone and
it depends on the measured bearing #, and ¥ = [0, 27].

The intersection (in the vehicle’s body frame) between the
bistatic ellipse and the array ambiguity cone is finally obtained
substituting (9) into (6), as a function of the cylindrical
coordinates r, U:

A(T)yr? 4+ B(W)yr + C (1), = 0; (10)

where A(U),, B(¥), and C(¥), are the coefficients of
the equations and depend on the specific source-receiver-target
geometry.

It is usually more convenient to express equation (10) in
Cartesian coordinates in the inertial frame. This can be done
applying (9) and the inverse of (6): x = Ry, 4Xp + xt

Fig. 2 shows an example of intersection between the
bistatic ellipse and the ambiguity cone of the linear array. Note
that applying (10) two intersecting curves are obtained, one
per each of the nappes of the double cone. Disambiguation
between the two can easily be done using the array measured
bearing 6.

III. LOCALISATION OF A TARGET

A. Measurement model

We consider the case where the team’s only way of sensing
the target is through a uniform linear array able to measure, at
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time ¢, the signal bistatic propagation time 7, from source to
target to receiver, and the bearing 6; from the receiver to the
target.

Let x%(t) = [a7,y7, 27 ]T be the source position at time
t, while the receiver position at ¢ is x"*(¢) = [27, 47, 2] and
its heading and pitch are p&(t) = [¢F, v [].

Given the array produced measurements, the associated
measurement function is:

2(t) = {gj an

where

H B [|XT(t) —xF (O] + [Ix" (6) = x5 ()] + w“”}
0:] —

7 () —x" (B (1)) o
—acos (\\x’;(t)fx’;(t)mv\vf%(wu) +uw'(t)

o[]S 5 8 e

where x7(t) = 2], yf, 2] | T is the target location, v¥(t)
is the receiver’s velocity vector, which depends on the vehicle’s
heading and pitch. w7 (t) and w®(¢) are the additive noise to
the range and bearing, respectively.

The bistatic ambiguity problem results in the ambiguity
function described in (10) which corresponds to points having
the same bistatic range (i.e. belonging to the bistatic ellipsoid)
and with bearing corresponding to the linear array conic
ambiguity obtained from equation 9, with R = tan (0).

Fig. 3 shows a conceptual representation of the uncertainty
reduction that can be obtained with the proposed measurement
model. When only one measurement (top row, left in Fig. 3)
is available, the intersection between the bistatic ellipse and
the ULA cone is not able to identify the depth of the target.
However when more measurements are collected with different
vehicle pitch angles, their intersection leads towards a reduc-
tion in the uncertainty of the target depth. The ability of the
measurement model to identify the target in the x — y plane is
the same as that of the planar bistatic localisation case. Finally,
measurement errors, missed detections and clutter are included
as proposed in [17].

B. Estimation

The ULA measurements are non-linear function of the
target state and can easily lead to non-trivial multi-hypothesis
belief distributions [18], [19]. A convenient approach to in-
corporate such non-linear measurements and approximate the
posterior of the target state is based on the use of particle
filters [20], [21], [12]. Alternative approaches are of course
possible, including those based on linearisation [17], [22].
One alternative and particularly appealing option in this case
is based on using constrained satisfaction programming and
interval analysis [23] since the problem can be approached in
its full non linearity.
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Three dimensional localisation of a static target. Top row, left: Only one measurement is available and this leads to an uncertainty box where target

depth cannot be discriminated. Top row, middle: the second available measurement is done with the AUV at a different pitch resulting in a tilted uncertainty
box. Top row, right: the target position lies in the intersection of the measurement uncertainties leading to a reduced uncertainty in depth. Bottom row, left: a
third measurement becomes available with yet another pitch angle. Bottom row, right: the target location belongs to the intersection of all three measurements
hence further reducing the uncertainty in depth. Note that all depths below 215 m have been excluded.

In what follows we restrict our analysis to the Bayesian
framework of particle filters. More formally, let x’ () =
[z,y,2]T be the state of the target at time ¢, and z*(t) be
the position of the i-th member of the team. We indicate
with § = [xF(t),xZ(¢),...,xE(t)] the full configuration of
vehicles, and we consider that at each ping each vehicle
moves in the environment and makes up to K measurements
z; = {z1,2i2,..., % K }. The belief at time ¢ is the distribution
of state conditioned on all measurements up to time ¢, that are
incorporated recursively in a typical Bayesian filter, and it is
approximated as a weighted sum of Dirac delta functions in
the particle filter approximation [24]:

bBl(Xt) =
np(lx,) / bel(xe1)p(xi[xi1)d%; 1
~ ijé(xt — )A(])

J

Q

13)

where 7 is a normalising constant, £; is the position of
particle j and w; is the associated weight. The target state
estimate is finally calculated as the Minimum Mean Square
Error (MMSE):

x(t) = /X(t)P(x(t)|Z1:t)dx(t) ~ ijf(j (14)

J

C. Target motion model

The target is modeled through a nearly constant velocity
model [17]:

x(t) = Ax(t — 1) + Bv(¢) (15)

where A is the state transition matrix, and Bv(t) is used to
include unmodeled dynamics. v(t) is assumed to be Gaussian
distributed with zero-mean and covariance matrix Q = o21.

D. Vehicle control law

In order to exploit the advantages given by the 3D bistatic
localisation, the vehicles need to move in the water column
to obtain measurements that can reduce the uncertainty of the
target estimate. In this paper, the vehicle follows the control
law described in [13] to select their waypoint in the horizontal
plane. According to this method, each vehicle calculates the
full posterior of the target state; propagates the target state in
the future according to target model and uses a performance
prediction model (ARTEMIS [25]) that provides the detection
probability as a function of target and receiver position to
finally choose the path that will put the AUV in the best
position to maximise the detection probability. The optimal
path @ is selected by each vehicle minimising the expected
value of the probability of detection along a desired time
horizon L:
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k+L

U = arg MAT = E
i=k+1

[/ Pp(x,u)p(x;|z)dz;| (16)

When more than one vehicle is present, the aggregative
cost function proposed in [26] can be used.

Finally, the change in depth is chosen according to a pre-
planned yo-yo pattern (see, for instance, Fig. 7, which shows
the depth change of OEX Groucho during the REP16 trial).
This solution has the advantage of maximising the usage of
the span of the water column, minimising the number of pitch
changes for the AUV. Since when the array bends too much
the signal processing might not be able to correctly process the
acoustic data, this approach has limits the number of turning
required (up-down movements) by the vehicle and hence it
limits the change in the array shape due to changes in depth.

IV. SIMULATIONS

This section reports simulation results to test the proposed
scheme. We consider first the case in which the PD is
uniform in the entire area. In this case, the ability of the
proposed method to estimate the target’s depth depends only
on the spatial (or temporal) diversity that the system is able
to obtain from the measurements. The first scenario considers
two vehicles. The first vehicle (AUV1) starts at depth Om
and moves towards its final depth of 50m at a maximum
pitch angle of 20°, then it keeps constant depth. The second
vehicle (AUV2) moves at a constant depth of 0 m throughout
the mission. The target is moving at a constant depth of 50 m,

with a constant speed of 4ms~!.

The initial condition of the scenario is shown in Fig. 4.
Each vehicle is equipped with a uniform linear array to act as
receiver of an active sonar with a pulse repetition rate (PRI)
of 20s. Each AUV then shares its contacts with its teammate
using a Time Division Multiple Access Protocol, with a 10s
repetition cycle. The probability of detection is uniform and
set equal to Pp = 0.7. The particle filter is initialised with a
uniform distribution in a box of 23km x 30km x 300 m. The
clutter is uniformly generated in the area of interest, whereas
the target range and bearing measurements are considered to
be affected by an additive noise with standard deviation: o, =
0.0166 s, o9 = 2.5 deg.

The evolution of the particle filter target tracking on AUV2
is shown in Fig. 4 to Fig. 6 (a similar evolution is obtained
for AUV1). Note how the filter is able to quickly discard all
the depth solutions deeper than 150 m hence identifying it as
a shallow target. After less then 10 pings, in this simulation,
the MMSE then converges towards a depth of 75 m for both
vehicles, which is within the uncertainty of the measurements.
After 10 pings AUV has reached its maximum operating
depth stabilising its attitude at 50 m. From this moment on,
there is no more spatial diversity in the measurements (both
vehicles have 0° pitch) and the particles start to spread out
again in the entire the water column.
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Fig. 4. Simulated scenario 1 after the first ping. The source is at depth 70 m.
The target moves at a constant depth of 50 m. Particles are shown as black
dots. Green dots are used to show AUV 1’s contact, red dots for those received
from AUV2.

Fig. 5. Three dimensional view of the particle distribution on AUV2 after
three pings. Note that most of the particles gathered in the first 100 m of the
water column, identifying the target as shallow. In this specific case, the target
depth MMSE was 40 m.
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Fig. 6. Three dimensional view of the particle distribution on AUV2 after
eight pings. Most of the particles are still in the first 100m of the water
column with a larger cluster at 75m. After this ping, AUV1 stabilised at
50 m, with 0° pitch, hence not creating the necessary spatial diversity needed
to localise the target depth and the particle quickly spread out along the water
column.
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V. SEA TRIAL EXPERIMENTATIONS
A. REPI16 Atlantic

The proposed approach was tested in real time during the
Recognized Environmental Picture (REP) Atlantic 2016. The
trial’s objectives ranged from testing solutions for active and
passive sonars, to AUV behaviours.

The deployed equipment included two moored gateway
buoys, and two CMRE Ocean Explorer (OEX) AUVs. The
two AUVs, OEX Groucho and OEX Harpo, are vehicles of
4.5 m length and a diameter of 0.53 m, which can operate
at the maximum depth of 300 m. Their maximum speed is
1.5ms~! with a typical speed of 1ms~! while towing the
linear array to have a battery endurance of about 16 h.

Each OEX is equipped with a main computer and with
a configurable payload section. The main computer directly
commands the vehicle and maintains navigation. The payload
section is used for on-board signal processing [14], and to run
all the necessary communications components and for MOOS-
IvP autonomous decision making, and it is where the algorithm
presented has been implemented.

The vehicles are used in combination with the SLITA
towed-arrays [27]. The array is composed of 83 hydrophones
that can be used is sets of 32 to obtain the right sensor
spacing for a desired operating frequency, which in this work
is considered to be between 1 kHz and 4 kHz.

The Deployable Experimental Multistatic Undersea
Surveillance (DEMUS) source was used as primary active
source for this experiment. DEMUS is a programmable
bottom-tethered source capable of high source levels based
on free-flooded ring technology. The source is connected to
a radio buoy equipped with a GPS receiver which is used to
have a very accurate position estimation during the trial and
to synchronise the transmission times.

The target used for this experiment was an echo repeater
moving at a constant speed and at a depth of 70 m.

B. Results at sea

A preliminary test of the yo-yo based control law was
performed during the initial phase of the trial. This made it
possible to verify the ability of the vehicle to correctly followed
the required depth change and to test the behaviour of the array
during yo-yo movements so to understand the impact of having
a tilted array during contact formation [14]. The vehicle depth
change is shown in Fig. 7, with the real-time produced contacts
reported in Fig. 8.

Except for this initial test however, for the rest of the
experiment, we could not use the depth adaptation part of the
behaviour and the vehicles were kept at a constant depth of
70 m. For this reason, it was not possible to exploit the spatial
and temporal diversity coming from depth changes. However,
since the received signal SNR depends on the geometry of
the bistatic system and of course on the specific environment
encountered, including reverberation, bathymetry, sound speed,
multipath time spreading, etc. the filter was still able to produce
an estimation of the target depth relying on a non uniform
Pp/signal to reverberation plus noise ratio (SRNR) calculated
a priori using the ARTEMIS adiabatic normal mode model
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Fig. 7. Yo-yo movement followed by OEX Groucho during the REP16 sea
trial to control its depth during the area search experiments.

30 T T T T T T

251

20F e O T -

fast time

0 L
12:30 12:45 13:00 13:15 13:30 13:45 14:00 14:15
time

Fig. 8. Contacts produced by the real-time signal processing while OEX
Groucho was performing the yo-yo pattern shown in Fig. 7.

[28], [29], [25] initialised with environmental parameters col-
lected during the REP14 experiment that was held in 2014 in
the same area. In this case, the target tracking filter, although
not fully exploiting the three dimensional measurements, could
still match its detection performance with its a-priori detection
probability. Results are shown in Fig. 9. In the picture, the left
column shows an x-y overview of the target tracking, while the
right column shows the evolution of the particles with depth.
The filter was initialised with a uniform distribution within
a 15kmx15km area (shown through the red box in Fig. 9)
where the target was a-priori known to be. The filter was
able to converge to the x-y target location within the first 50
pings, estimating the target depth to be 50 m. At ping 85 a
new hypothesis for the target depth was generated at 75m
hence reducing the error with respect to the correct depth of
70 m. Unfortunately, short after this ping the real-time signal
processing was not able to correctly detect the echo repeat
target and we could not verify the convergence of the estimated
depth towards the correct value.

VI. CONCLUSIONS

This paper proposed to tackle the target tracking problem
in its full three dimensional aspects. Theoretical details have
been given to generalise the bistatic localisation to a 3D
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Fig. 9. Target tracking during the REP16 sea trial. The filter was initialised with a uniform distribution within a 15kmx15km area (shown through the red
box in Fig. 9) where the target was a-priori known to be. The filter was able to converge to the x-y target location within the first 50 pings, estimating the target
depth to be 50 m. At ping 85 a new hypothesis for the target depth was generated at 75 m hence apparently reducing the error with respect to the correct depth

of 70 m. Unfortunately, short after this ping the real-time signal processing was not able to correctly detect the echo repeat target and we could not verify the
convergence of the estimated depth towards the correct value.
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scenario, and to include the cylindrical ambiguity of a linear
array into the measurement model of a Bayesian filter. A
method of navigation for AUVs has been presented. The
approach is based on the Bayesian posterior produced by
the available observations done by the network, and on a
range-dependent acoustic model that is used to predict the
target detection probability for a given source-receiver-target
geometry. Coupling the full 3D measurement model with the
predicted detection probability makes it possible to estimate
the target depth together with its position in the x — y plane.
Results are shown through simulations and verified using data
collected during the REP16 experimental campaign. Although
these initial results are encouraging, more research is needed
to better understand how the signal processing uncertainties
might impact on the algorithm results.
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