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A market-based task allocation framework for autonomous underwater
surveillance networks

Gabriele Ferri, Andrea Munafò, Alessandra Tesei, Kevin LePage

Abstract— Realisation of underwater robotic surveillance
networks raises several challenges for marine robotics. The un-
derwater scenario is typically characterised by intermittent and
unreliable communication. This makes it challenging to develop
task allocation schemes suited to work effectively in underwater
surveillance applications. We propose a market-based approach
to task allocation, which works in a completely distributed way.
Through periodic auctions, the algorithm achieves the dynamic
assignment of robots to tasks throghout the mission. There is no
central auctioneer and any robot becomes an auctioneer when
it intents to execute a task. Through periodic auctions, all the
robots are sequentially allocated to the tasks. The algorithm is
designed to increase the robustness to poor communication and
to allow task reallocation, to adapt the allocation to the evolving
scenario. Results from computer simulations are reported that
support the proposed approach. An Anti-Submarine Warfare
application is considered to test the scheme. In this application,
the surveillance of areas of different dimensions has to be
accomplished by a team of AUVs.

I. INTRODUCTION

Recent advances in marine robotics suggest that Marine
Unmanned Systems (MUS) can be effectively used in un-
derwater surveillance networks [1], [2]. Today’s robots offer
the promise to guarantee persistent monitoring at lower
costs than traditional approaches, which consist in statically
deployed sensors, or are based on the use of expensive
and time consuming ship-based operations. Compared to
traditional assets, these small, low-power, sensorised and
mobile units have usually limited processing and communi-
cation capabilities, but when deployed in a spatially separated
manner, they can be interconnected to form an intelligent
network able to achieve high mission performance.

Robotic networks can take advantage of the presence of
both static and mobile nodes [2], [3]. Static nodes can collect
data at fixed locations for extended time periods forming the
backbone of ad hoc communication infrastructures. Mobile
units build upon acquired data and use their mobility to
extend the operational area and to adapt mission objectives
to the changing environmental and mission conditions. This
results in the possibility for the network to efficiently adapt to
evolving scenarios increasing its reconfigurability, reliability
and robustness.

At NATO STO-Centre for Maritime Research and Ex-
perimentation (CMRE), we have been pursuing this ap-
proach [4]–[7] developing and demonstrating at sea a robotic
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network for Anti-Submarine Warfare (ASW) which embod-
ies a complete multi-static active sonar system (see Fig. 1).
The network is composed of one or more active sources
(transmitters), which transmit signals (pings), which once
reflected off some objects can be recorded by one or more
receivers that are mounted on-board AUVs.

The cooperation among the nodes has the potential to
increase the network effectiveness. Communication becomes
therefore central for the network operations. Data exchange
between the nodes allows data fusion [8], which can improve
target detection and tracking. It is also fundamental to solve
the Multi Robot Task Allocation (MRTA) problem [9], [10].

Multi-Robot Task Allocation (MRTA) consists in finding
an optimal assignment of each team member to one or more
tasks which compose a general mission, optimising a defined
team utility function. In its simplest formulation (each task
can be assigned to exactly one robot and one robot cannot
be assigned to more than one task), the MRTA becomes an
instance of the Optimal Assignment Problem (OAP) [9]. The
Optimal Assignment Problem can be solved in a centralised
way by using the Hungarian method [9] or in a distributed
fashion by using the auction algorithm [11]. The relaxation
of the constraints of OAP leads to more mathematically
demanding problems (also NP hard). In general, MRTA is
not a one-time assignment and becomes a dynamic decision
problem, since utilities may vary or tasks can terminate or be
created. The static assignment can not be longer considered
applicable and iterative procedures must instead be sought
[12], [13].

A key feature for the MRTA policies is if they work in a
centralised or distributed way. In centralised approaches, all
the information is communicated to a central entity (a server)
that usually calculates the optimal allocation. The strong
point of these approaches is that they can use the best known
algorithms and usually have more information available than
distributed or local algorithms [14]. A centralised planner
can in theory compute the optimal allocation. In practical
situations, where communication is not perfect and reliable,
distributed approaches are required.

Several approaches aimed to decentralise existing classical
approaches have been proposed in the robotics commu-
nity [9], [10], [14]. In general, they provide sub-optimal
solutions, but they can handle poor communication and
require reduced computational burden.

Stochastic models such as collaborative or adversarial
stochastic frameworks [10], [14] can be used to provide
an optimal control strategy in tightly-coupled domains.
Drawbacks of these models are, however, numerous: they
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Fig. 1. CMRE cooperative ASW multi-static network as deployed during
LCAS15 trial.

are computationally expensive and include some degree of
centralisation to compute joint policies.

Behavioural approaches can provide ad hoc solutions for
MRTA, such as the ALLIANCE architecture solution pro-
posed in [15], which represents one of the earliest demonstra-
tions of iterated assignment architectures to multi-robot task
allocation [9]. These approaches, while easy to implement
in a robotic team, generally lack a detailed evaluation of the
optimality of the solutions found.

A task allocation algorithm can be seen as a method
to distribute common resources among the team members.
Inspiration can be drawn from the human market economies,
in which the individual pursuit of profit leads to the redistri-
bution of resources and to an efficient production of output
[16]. This idea originated a family of strategies popular in
robotics, the auction/market based schemes.

In this virtual economy robots are traders, tasks are traded
as commodities and virtual money acts as currency. Robots
compete to get assigned to a task by participating in auctions
which produce efficient distributions based on preferences.
When the system is correctly designed, each robot acts to
maximise its own profit and this action improves the group
efficiency. This is the core of the market-based approaches:
the design of the costs, revenues and auctions mechanisms
in such a way that the pursuit of individual profit leads to
globally efficient solutions.

In the so-called auction-based algorithms, bids are based
only on estimated costs [12]. More in general, when bids in-
volve costs and rewards we talk of market-based approaches.
Auction/marked based schemes, in general distributed, have
been applied in several scenarios [10], [13], [16], [17] and
can have also centralised elements (e.g. the leaders concept
as in [17]), residing in the middle of the spectrum between
centralised and distributed approaches. These methods have
gained popularity in the robotics community.

We underline that the limitations of underwater commu-
nication (unreliability, low range and low bandwidth) [18]
make MRTA challenging in an underwater scenario and
make a centralised approach not feasible. This adds to the
engineering difficulties in deploying and managing teams

of vehicles. For these reasons, examples of experiments at
sea in which multi-robot coordination is demonstrated are
rare. Only a few examples are present in which groups of
robots are coordinated in formation [19] and in which a team
of gliders is controlled in adaptive sensing missions [20].
Task allocation schemes in complex underwater multi-robot
systems are usually tested in simulation environments [1],
[21]–[23], in general without the required emphasis on the
role of communication in the performance of the adopted
algorithms.

In this paper, we propose the PADA (Periodic Auctions
Distributed Algorithm) as a viable solution to MRTA for an
underwater surveillance robotic network. PADA works by
using negotiations among neighbouring nodes and requires
only local communications. The task allocation is solved
through periodic auctions. In each auction, a node bids in a
virtual market to be assigned to the task it is best suited to.
Particular attention has been paid to make the auction scheme
robust to intermittent communications. In our scenario, we
consider continuous tasks (i.e. tasks which do not terminate)
consisting in surveillance of areas for detecting possible
intruder targets. An ASW network, similar to CMRE’s, is
considered as a case study to demonstrate our approach.

II. AREA SURVEILLANCE TASK

We consider the team’s mission composed of area surveil-
lance tasks. The AUVs are requested to survey some areas
respecting some time constraints. The vehicles have to sense
the area of interest periodically with their sensor (the towed
hydrophone array) due to the dynamic nature of the problem
(the possible intruder moves).

Each task ti is associated with a geographical area Ai and
a racetrack path which the robots cover when allocated to ti.
More optimised paths could be adopted to cover the region,
nevertheless a simple track is used for a better evaluation
of the MRTA. We allow that more than one robot can be
assigned to the same task. This violates the assumption of
the classical OAP and makes our problem more difficult.

A. Coverage index

A coverage index for Ai is built based on the cumulative
probability of detection on the patrolled area, computed over
a moving, relatively narrow, temporal window. High values
of this quantity imply that a target, if present, will likely be
detected, potentially leading to successful target tracking and
classification.

The robots sense the environment according to a prob-
abilistic sensor model. It is assumed that all the sensor
measurements are temporally and spatially independent. A
patrolled area Ai is discretised into cells. The computed
cumulative probability of detection is stored in an X × Y
matrix, Mi

k. The value M i
k(i, j) is the cumulative probability

of detection of the cell (i, j) at time k for Ai. Initially, all
the entries of the matrix Mi

0 are initialised to zero. Then, as
the the robots scan the area with their sensors, the matrix is
updated according the following procedure:
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M i
k(i, j) =


1− (1−M i

k−1(i, j))
∏

s(1− ps(rs, βs))
if (i, j) ∈ D(xs, ψs)
M i

k−1 otherwise
(1)

where the product is over the number of robots assigned to
the area under consideration, and ps(r, βs) is the probability
of detection of robot rs for the cell (i, j). This depends on
the distance rs and bearing angle βs of the cell with respect
to the position of rs, that is xs, and its heading angle, ψs.
The cell (i, j) is updated only if it is in D(xs, ψs), the
sensor footprint. Mi

k is computed considering a moving time
window of length L. That is, by iteratively using (1) from
time indices k − L− 1 to k.
Mi

k is the probability that at least one of the sensors
detects a target (if present) in the area Ai at least once in the
last L scans. This takes into account the dynamic nature of
the problem: since the target can move, we only trust recent
measurements.

To define the task utility we need to express the coverage
through a single number. We define a matrix Hi of dimen-
sions X×Y representing the objective cumulative probability
of detection over all the cells of the area. Hi is the goal to be
reached set by the mission designer. We can now compute an
index αi, which is a measure of how much the set objective
has been met by the sensing assets. At a certain time k, we
compute αi as:

αi =
∑
i,j

ϕi
i,j with


ϕi
i,j = Hi(i, j)−M i

k(i, j)
if Hi(i, j)−M i

k(i, j) > 0
ϕi
i,j = 0

if Hi(i, j)−M i
k(i, j) ≤ 0

(2)

The method is inspired by the sampling on-demand
paradigm proposed in [24]. The Hi matrix allows the defini-
tion of requirements in terms of the quality of the survey,
and provides a way to vary the objective coverage over
the different sub-regions of the area Ai, since some areas
can be more important to patrol than others. The computed
number αi describes concisely how well the area Ai has been
surveyed. The lower αi is (0 if the goal is fully reached),
the more the set objective has been achieved.

Urgency factor

An urgency factor, Ii(t), is introduced to quantify how
urgently Ai needs to be surveyed. Ii(t) is initialised to 1.
It increases over time if αi is larger than a certain pre-fixed
threshold η, meaning the area is not adequately covered. Ii(t)
is computed as:

Ii(t) = δ + (1− δ)λ(t− t0)(t−t0) (3)

where t0 is the time from which the increase of the urgency
factor has started, λ is a value function of (t− t0) to shape
the increase of Ii(t) with time. As the time increases, and
the area is not adequately surveyed, Ii(t) gets larger up to
the maximum value equal to δ.

t0 is modified on the basis of how the patrolling is
proceeding. If αi becomes lower than η, t0 is increased and
causes a reduction of Ii(t). The process guarantees that Ii(t)
comes back to the value of 1 only if αi ≤ η for a certain
time.

The urgency factor increases the importance to survey an
area if the survey objectives have not been achieved. To lower
Ii(t), the team has to patrol the area adequately, reaching the
mission objectives for a certain amount of time.

Surveillance task utility

We are now able to write the task utility uki, for a robot
k to perform a task i. This utility, computed by each robot,
is used in the auction-based MRTA algorithm. For ti, with
the associated area Ai, we compute the utility as:

uik = wi
k − cik (4)

wi
k being the reward to accomplish the task as computed by

rk and cik the cost associated to rk to reach the racetrack
associated to ti. wi

k is the reward the robot would have to
be assigned to the task. This quantity drives the robots to
decide on which task to bid. wi

k is defined as:

wi
k = αi

k

Ni

Nmax
Iik(t) (5)

with αi
k the current coverage index of Ai as computed in

(2) by rk with its knowledge of the other robot actions, Ni

is a measure of the dimensions of the area Ai and Nmax a
measure of the largest area in the tasks to allocate. Iik(t) is
the urgency index for ti as computed in (3) by rk.

The cost cik is a scaled distance from the current position
of the rk to the closest point of the racetrack associated to
Ai and gives a measure of how difficult it is for the robot to
reach the area.

III. PROBLEM DEFINITION

In our scenario we assume a set of n robots (denoted
r1, . . . , rn) and a set T of m tasks, denoted t1, . . . , tm. We
have to determine distributed control laws that partition the
robots into m groups of size lk associated to each task, tk,
with k = 1, . . . ,m. The tasks considered are the surveillance
tasks previously described. We also make the assumption that
one robot senses only the area related to the task to which
is currently allocated.

The proposed problem can be formulated as to find mn
non-negative integers γij (which must be either 0 or 1,
1 meaning that ri is assigned to tj), that minimise the
following group objective function J :

J =
m∑
i=1

wi + β
n∑

j=1

cj (6)

where wi is the reward related to ti computed by considering
the measurements of all the team robots, β is a weight factor
and cj is the cost of rj relative to the task which is currently
assigned to. The minimisation being subject to:

CMRE Reprint Series CMRE-PR-2019-061

3



∑n
j γij = 1, 1 ≤ i ≤ m∑m
i γij ≤ lj , 1 ≤ j ≤ n

(7)

Our problem is more complex than the OAP previously
described for several reasons. The first constraint of (7)
is present also in the OAP. It states that one robot can
be allocated to only one task. The second one, otherwise,
allows that up to lj robots can be assigned to tj . This
defines the problem as a Multi-Robot Task (MR) problem
[9], [10]. This is known in the multi-agent community as a
coalition formation problem which in its most general form
is intractable [9] and which has received a significant amount
of interest in the multi-robot coordination literature [10].

To minimise the group utility in (6) the group members
must survey the areas Ais (reducing wis) respecting the
required time constraints (dictated by the urgency factor Ii(t)
- see (5)). At the same time, the robots must reduce cjs, their
cost on the currently assigned task. This implies to reduce
the number of switching from one area to another which is
the main cause of the increase of cjs. One robot decides
to change the area to survey considering its reward and the
cost to reach that area: a trade-off needs to be reached by the
group between task switching and surveying the areas with
highest rewards.

We underline that the robots during the MRTA use approx-
imate information due to the limitations in communication.
They compute their coverage cognitive map M̂i

k for each Ai

which is an approximation of the real Mi
k. With the used

type of task, the computation of Mi
k requires information

from the other assets (i.e. their sensing location during the
navigation). The utilities of tasks are therefore influenced
by the actions of other assets incurring in cross-schedule
dependencies [10]. The utility of a robot for a task depends
also on the schedules of other robots in the system.

A. The Periodic Auctions Distributed Algorithm (PADA)

We propose a distributed market-based MRTA algorithm,
the Periodic Auctions Distributed Algorithm (PADA), in
which robots bid periodically for task allocations. We make
the assumption that each robot has knowledge of all the
tasks present in the system and of the maximum number of
robots which can be allocated to each task. PADA offers a
distributed approximation to (6) and (7) to be implemented
on underwater vehicles. There is no presence of a central
auctioneer which could be a problem in limited communi-
cation environments. In our framework, any robot becomes
an auctioneer when it plans to execute a task. Each robot
estimates, based on its local knowledge of the tactical scene,
the utilities of the tasks and selects the one which it wishes to
be assigned to. Then, the robot bids for that task. Periodically,
each robot evaluates the bids received for the task for which
it is bidding for and a winner of the auction is awarded (the
agent with the highest bid). The robots which are not the
winners of the auction select another task to bid for and
start other negotiations. The assignment process consists in

a sequence of such auctions taking place locally among the
robots which can communicate with each other. The auctions
are periodic to deal with unreliable communications. When
new information from some bidders is available, it is taken
into account in the current negotiation.

The task assignment is performed considering the status
and knowledge of the world attainable at the assignment time
(Instantaneous Assignment (IA) according to the taxonomy
in [9], [10]). Any situation unknown at the negotiation time
is not taken into account. However, PADA introduces means
to allow renegotiations (task reallocations) to reallocate dy-
namically tasks inside the team to better achieve the group’s
objective. This is necessary to manage continuous tasks
which do not terminate. This also handles other events such
as changes in the number of team members, creation of
new tasks or with required changes in the allocation due to
the changing tactical scene (some tasks may become more
important than others). PADA takes into account the need
to limit the task switching, which reallocation may imply. A
trade-off between the need to survey high reward areas and
reduce the task switching events is sought to improve the
team performance.

The same algorithm runs on each robot. We report in
Algorithm 1 the pseudocode running on ri. Every robot starts
its mission selecting a task to bid for. That task becomes the
task in execution and the robot starts to accomplish it. In our
case, it moves towards the relative racetrack. This facilitates
also the auction process: robots bidding for the same task
will head towards the same area. Getting closer increases
the probabilities of successful communications leading to the
resolution of the auction.

Acoustic messages are exchanged between the robots. We
assume that the messages contain the status of the AUVs
(e.g. the position, heading and speed) and information about
the task allocation. This includes the task tj for which the
robot k is bidding for, the bid value bjk and the urgency
factor at the time of message creation, Tc, of the task
tj as computed by rk, that is Ijk(Tc). The information is
kept minimal to make feasible the porting of the algorithm
to the underwater scenario. More complex communication
strategies (which would increase the bandwidth required) can
also be considered. For instance one robot could broadcast
information about the other robots previously received.

If messages from other robots are received, the Allocation
Table structure Ai

T is updated. Ai
T contains all the infor-

mation which ri has regarding the other vehicles and the
knowledge about their allocation to the tasks. The function
UpdateAllocationTable stores the allocation of a
certain robot to the task in execution (the task the robot is
bidding for), {rk, tj}.
UpdateUrgencyFactors updates the urgency factors
Iik(t) for each task ti present in the system with the minimum
of the received values from other assets bidding for task
ti, only if the minimum value is lower than the stored
one. A received Iij(t) lower than the current one means
that the remote asset has more information regarding the
execution of ti. The exchange of Ii(t) is a concise way
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Algorithm 1: PADA algorithm for ri.

1 if IsMsgPresent()=true then
2 UpdateAllocationTable() ;
3 UpdateUrgencyFactors() ;
4 StorePositionAssets() ;
5 end
6 if IsPingTime()=true then
7 ComputePositionAssets();
8 ComputeTaskUtilities();
9 end

10 if IsAuctionResolutionTime()=true then
11 [isWonAuction,isToCheckTaskReallocation]=ResolveAuction() ; // described in Algorithm 2
12 end
13 [tj]=SelectOneTaskToExecute(isWonAuction,isToCheckTaskReallocation);
14 ProduceMsg(tj);
15 UpdateWinnerTable();
16 UpdateAllocationTable();
17 with IsMsgPresent returns true if any message has been received from other assets;
18 IsPingTime returns true if it is time at which a ping has been performed;
19 IsAuctionResolutionTime returns true if it is time to resolve an auction;
20 isWonAuction being a flag stating the results of an auction;
21 isToCheckTaskReallocation being a flag commanding to check a possible task reallocation;
22 ProduceMsg(tj) function producing an acoustic message to be sent to collaborators;

to share information about the task execution state. Finally,
StorePositionAssets writes in Ai

T the information
about the positions of the assets.

At each ping time, the robot estimates the positions of
the other vehicles, based on the received information and
assuming constant velocity (ComputePositionAssets).
The utilities of all the tasks are then computed
(ComputeTaskUtilities) using the extrapolated
positions/heading of the vehicles (their measurement
locations).

Periodically, every robot resolves an auction by the
ResolveAuction function. The period with which the
auctions are resolved is set large enough to guarantee the
possibility for each robot to receive a bid from neighbours
on the current task in execution. The ResolveAuction
algorithm is described in detail in Algorithm 2. The bid of
ri for tj , bji is computed as −cji , with cji being the scaled
distance from the position of ri to the closest point of the
racetrack associated to tj . We consider −cji since the rewards
of the tasks have the same value from a group objective
perspective (that is if we have knowledge of all the team’s
measurements), even if they may have different values if
computed locally on-board each robot. The only part that
changes in the bids is therefore the cost. The robot evaluates
all the bids received during the current auction time window
for the task tj in execution on ri. If no bids are present
(only ri is bidding on the task), ri assumes to be the winner
of the auction, but returns isToCheckTaskReallocation=1, to
command a possible task reallocation. In the case there are
some bids received from other nodes, all the bids placed by
the past winners on auctions on tj are removed from this

set. ri then assumes to be the winner of the auction if:
• no other bids are present;
• ri has bidden equal to the highest received bid and i is

a value larger than the id of the highest bidder robot;
• ri has bidden higher than the highest received bid.

Otherwise it assumes to have lost the negotiation and stores
the id of the winner of the auction in W j

i . The winners will
not be considered as participant in future auctions by ri for
a certain time. This is to handle with imperfect (intermittent)
communication and avoid contrasting results in the auction.
An asset that wins the auction once, will be assumed as the
winner in the near future.

The robot then selects one task to execute, considering the
results of the auction by the SelectOneTaskToExecute
function which works as follows. Let us define the set of
available tasks as computed by ri at time t as T a

i (t) = {tk ∈
T |χk(t) > 0} with χk(t) being the number of robots which
can still be assigned to tk at time t, given the maximum
number of allocatable robots lk and the current known
assigned agents. If no task is currently under execution on
the robot, the highest utility task tj ∈ T a

i (t) is selected.
If an auction is won on tj , tj continues to be the task
in execution, unless the bid of ri was the only one on tj
(isToCheckTaskReallocation=1) (no other bids are received
from other agents). In this case, we select the task tk ∈ T a

i (t)
with the highest utility uki (which may be different from
tj). If the highest utility task tk is different from the task
currently in execution tj , we select it only if its utility
uki > uji + ηr, with ηr being a reallocation threshold. This
mechanism gives the opportunity to a robot which is the only
one assigned to a certain tj to evaluate a possible reallocation
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Algorithm 2: PADA auction resolution for ri. This algorithm is executed by ResolveAuction function in Algorithm 1.

Input: a task tj selected to bid for and a bid for it bij ; current time TC
Output: isWonAuction, isToCheckTaskReallocation

1 Set isWonAuction = 0, isToCheckTaskReallocation = 0;
2 Retrieve the received bids of the robots bidding for tj in the last auction time window. That is the set

Bj = {bjk|tb(rk) = j}, with tb(rj) being a function which returns for rj the task which is bidding for;
3 Retrieve the previous robots winners in auctions for tj as known to ri, that is the set W j

i = {rk‖rk has been awarded
as winner of an auction on tj by the current vehicle};

4 if Bj = ∅ then // only ri is bidding for tj; we consider possible task reallocation
5

6 isWonAuction = 1;
7 isToCheckTaskReallocation = 1;
8 end
9 Remove from the set Bj the bids of the robots which are previous winners on auctions on the task tj , that is
{rk‖rk ∈W j

i };
10 if Bj = ∅ then
11 isWonAuction = 1;
12 else
13 if bji =MaxBid(Bj) then // ri’s bid has the same value as the highest value of the

received bids: the robot with the highest id value wins the auction
14

15 if i >MaxBidId(Bj) then
16 isWonAuction = 1;
17 else
18 isWonAuction = 0;
19 AddWinner(MaxBidId(Bj),tj , TC);
20 end
21 end
22 if bji >MaxBid(Bj) then // ri has won an auction with other participants
23

24 isWonAuction = 1;
25 end
26 if bji <MaxBid(Bj) then // ri has lost an auction with other participants
27

28 isWonAuction = 0;
29 AddWinner(MaxBidId(Bj),tj , TC);
30 end
31 end
32 return isWonAuction;
33 return isToCheckTaskReallocation;
34 with MaxBid(Bj) returns the maximum bid bjm of Bj or 0 if Bj = ∅;
35 MaxBidId(Bj) returns the id of the robot which made the maximum bid;
36 AddWinner(k,tj ,TC) adds to the set of winners for tj , W j

i , the robot of id k at time TC ;

strategy and to switch to other tasks. In the case an auction
is lost, the robot selects another task following the same
procedure as in the previous case. The robot excludes for
the selection of a new task to bid for those tasks tk which
it knows being already in execution on a number of robots
≥ lk.

The acoustic message with the new bid can then be created
(ProduceMsg). The structure containing the winners for all
the tasks, Wi, is then updated, removing, for each task, the
robots which have not resulted winners in auctions on that

task for a certain amount of time (UpdateWinnerTable).
A robot is also removed as assigned to a task from the alloca-
tion table Ai

T if no information has been received about that
assignment for some time (UpdateAllocationTable).
This allows to negotiate again a task after some time to better
adapt the general team allocation as the tactical scenario
evolves.

Given n robots, each implementing the PADA algorithm,
the team is always guaranteed to reach a feasible assignment
which respects the availability of the tasks. Assuming perfect
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Fig. 2. PD of the sensor used in the simulation. In the figure the array
towed by the vehicle is oriented west-east and located at (0,0) location. PD

is highest at broadside and decreases with the increase of distance from the
array.

communication, the algorithm reaches a feasible assignment
after n auctions, in the worst case scenario. Assume n tasks
with each one having li = 1. Without loss of generality, we
consider that the n robots start bidding for the first task. The
PADA algorithm assumes that one of the robot is recognised
by the team as the winner at each auction. The remaining
n − 1 robots bid for the second task and a new winner is
declared. Proceeding in this way, after n auctions each robot
is assigned to one task.

B. Results

Simulations have been carried out to evaluate the al-
gorithm’s performance and to study how changes to its
parameters can influence the robots behaviours. In particular,
we were interested in studying the effects of how a decrease
in the quality of communication impacts on the performance.
We report results from three different scenarios. In each of
them 3 robots are used and start their mission from the same
location.

Two tasks are provided to the team: t1 related to an area
to patrol, A1, located in the north part of the operative
area and t2 related to the area A2 positioned at west. Both
tasks have the same parameters regarding the coverage index
and the urgency factor, but A1 is larger than A2. This
implies more observations of A1 are needed to achieve the
survey objective. Each area is associated with a racetrack (a
rectangular path composed of 4 waypoints). The racetracks
associated to A1 and A2 can be seen in Fig. 4. The robot,
after deciding to execute a task, moves towards the associated
racetrack and then covers the path repeatedly until the task in
execution is changed. Each task tk, is characterised by lk =
2: a maximum of 2 vehicles can be simultaneously allocated.
To model the real underwater scenario, communication is
managed through a Time Division Multiple Access (TDMA)
[18] scheme (as used in CMRE ASW network). At teach
TDMA slot, a robot transmits one message for negotiating
the task allocation.

In Tab. I we report the most important parameters used in
the presented simulations.

Each robot uses the sensor model shown in Fig. 2, where
the probability of detection PD is shown as function of
the bearing angle and range. The used model captures the
features of monostatic measurements with the towed array:

Time(s)
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s
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 i
d
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Allocation of the assets to the tasks

Robot 1

Robot 2

Robot 3

Fig. 3. Scenario 1 (perfect communication) - task allocation of the robots.

the highest PD is at array’s broadside and decreases with
the increase of distance from the array. We also assume that
one robot senses only the area related to the task to which
is currently allocated.

Each scenario is characterised by different communication
performance:

• Scenario 1 - perfect communications.
• Scenario 2 - 40% of message transmission success rate

up to 2 km of range between the communicating assets.
Then the success rate decreases linearly up to 10% at a
4 km range.

• Scenario 3 - 10% of success rate on every sent message.
The perfect communication case allows us to study the

behaviour of the algorithm without the influence of not
received messages. The robot-to-task allocations during one
typical mission of scenario 1 are shown in Fig. 3.

The three robots select t1 as the task to execute at the
beginning of the mission since no communication has oc-
curred yet between the assets. The decision on t1 is dictated
by the combined effect of the larger reward relative to the
larger area of A1 and to the proximity of the nodes to it
(lower penalty cik). They start heading towards A1 and begin
transmitting bids for t1. The first auction is resolved with r1
as the winner (the closest robot to A1). In the next one RX3

is recognised as winner, so r2 selects t2 and starts moving
towards A2 (see Fig. 4).

The mission proceeds with two assets (r1 and r3) allocated
to t1 and one (r2) to t2. While the urgency factor for t1
remains equal to 1 since the two robots succeed in achieving
the mission objectives in terms of area coverage, the urgency
factor for t2 increases. r2 alone, in fact, is not able to
accomplish the mission requirements set for the coverage
of A2.

This leads to the decision of r1 to switch tasks and move
towards A2. As can be seen in Fig. 3, this happens twice
during the overall mission. The group objective function to
minimise is reported in Fig. 5 while the reward and urgency
factors for the two tasks are shown in Fig. 6. The decision of
r1 to survey A2 is driven by the increase of the urgency factor
(which results also in an increase of the group objective
function). r1 covers A2 and then comes back to help r2 in
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TABLE I
PARAMETERS USED FOR THE SIMULATIONS.

Parameter Value Notes
Parameters related to the assets

Number of assets 3
Robot speed [m/s] 1
PRI [s] 24 Pulse Repetition Interval

Parameters related to the acoustic communications
Time-slot for each asset [s] 13 7 s to send messages
TDMA frame length [s] 39

Parameters related to the auction
Auction resolution period [s] 312 period with which auctions are

solved. 8 TDMA frames
Parameters related to the tasks

Number of tasks 2
lk 2 Maximum number of vehicles

which can be assigned to tk
(the same for every task)

H(i, j) 0.9 Objective value of the cumula-
tive probability over each cell

length of the moving window to compute α[s] 144 6 PRIs
δ 10 δ value for the urgency factor

(reached after 1.3 hours)
percentageReset 0.35 percentage of the initial reward

of the task causing the decre-
ment of the urgency factor

Fig. 4. Scenario 1 - situation of the assets at mission time 672 s. The robots are indicated as RX1, RX2 and RX3. The colours on each patrolled area
are the computed cumulative PD by considering all the measurements of the sensors assigned to that specific area. The text in blue shows the successfully
received acoustic messages, with the id of the transmitting asset shown. The two racetracks are also indicated by circles (the waypoints constituting the
racetrack) nearby A1 and A2. Robot 2 is moving to A2 after Robot 1 and Robot 2 have won auctions to survey the highest reward area, A1.
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Fig. 5. Scenario 1 (perfect communication) - team utility, team reward and
team penalty.
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Fig. 6. Scenario 1 - reward and urgency factors for t1 and t2 computed
by considering all the measurements of the robots assigned to the tasks.

guaranteeing an adequate coverage of the largest area A1.
In Scenario 2, the communication quality decreases. Nev-

ertheless, the algorithm behaves in a quite similar way,
showing robustness to intermittent communication. Evaluat-
ing the bids over a temporal length gives the robots more
possibilities to receive information from collaborators to
resolve auctions in an appropriate way.

Finally, scenario 3 is the most difficult since the suc-
cess rate for receiving messages is low (10%). The low
transmission success rate impacts on the task allocation
algorithm (see Fig. 7 causing more task switches which lead
to undesired transits from one area to the other. The group
objective function in this case is reported in Fig. 8.

To quantify the performance in the three cases we compute
the maximum and mean value of two fundamental quantities:
the group objective function J and its reward part, that is∑m

i=1 wi, being the sum over all the tasks. The quantities are
reported in Tab. II, as the average values over 10 simulation
runs for each scenarios. It is evident from the results that,
from a group objective function perspective, the results are
very similar in scenario 1 and scenario 2. This demon-
strates the robustness of the algorithm to the deterioration
of communication performance. In scenario 3, instead, the
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Fig. 7. Scenario 3 - task allocation of the robots.
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Fig. 8. Scenario 3 - team utility, team reward and team penalty.

allocation performance decreases due to the increase of task
reallocations. The higher number of robot transits between
the two areas reduces the quality of the coverage (higher
reward part of J) and increases the penalties. These two
combined factors cause an increase in the J function.

IV. CONCLUSION

We have investigated the task allocation problem for a
team of underwater robots, focusing on a robotic network
for an ASW application. Task allocation becomes central
to improve the team overall performance.In our scenario
the severe limitations of acoustic communication make task
allocation challenging.

We proposed a market-based approach as a viable solution
for task allocation. The method works in a completely
distributed fashion and, through periodic auctions, solves the
dynamic assignment of robots to tasks. The algorithm relies
on negotiations among neighbouring nodes and requires only
local communication, with no need for a central auctioneer.
The algorithm can work with several types of tasks once
their utility is defined. In our work continuous tasks (i.e.
they never terminate) are considered. They consist in the
surveillance of areas of interest, which must be periodically
surveyed. More than one robot can be allocated to each
task, to enable cooperative survey of the region. However
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TABLE II
RESULTS OF THE ALGORITHM IN THE THREE SCENARIOS. AVERAGE

VALUES ON 10 SIMULATION RUNS PER SCENARIO.

Parameter Value
Scenario 1

max(J) 3.59
mean(J) 2.15
max(

∑m
i=1 wi) 3.01

mean(
∑m

i=1 wi) 1.9
Scenario 2

max(J) 3.81
mean(J) 2.2536
max(

∑m
i=1 wi) 3.23

mean(
∑m

i=1 wi) 1.99
Scenario 3

max(J) 4.26
mean(J) 3.40
max(

∑m
i=1 wi) 2.39

mean(
∑m

i=1 wi) 2.81

this possibility increases the mathematical difficulty of the
assignment problem making it a coalition formation prob-
lem [9]. Particular attention is paid to make the auction
scheme robust to intermittent communication. The algorithm
waits for messages for several communication frames before
making a decision. Furthermore, the task allocation policy
explicitly takes into account task reallocations to better adapt
to the evolving conditions. A trade-off is sought between the
reduction of the the team rewards (assigning more robots to
survey not adequately patrolled areas) and avoiding frequent
task reallocations, which cause transits of robots from one
area to another.

The proposed algorithm were tested in simulation in a
Matlab framework. Three scenarios with different communi-
cation performance were presented. Results show that the al-
gorithm is able to coordinate the robots to optimise the team
objective function of interest. The algorithm proves robust
to the communication degradation and maintains acceptable
performance even as the number of switches between the
tasks increases. The periodic auctions policy allows the
robots to renegotiate the tasks through the mission. This
handles possible lost messages, giving more opportunities
to the nodes to participate in the auction.

In future work we will continue the analysis of the
algorithm’s performance in poor communication conditions.
Additional tasks will also be added into the pool of possible
tasks to expand the network capabilities and better represent
a real ASW mission.
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[5] G. Ferri, A. Munafò, R. Goldhahn, and K. LePage, “A non-myopic,
receding horizon control strategy for an AUV to track an underwater
target in a bistatic sonar scenario,” in in Proceedings of CDC2014,
Los Angeles, December 15-17, 2014, 2014.

[6] G. Ferri and A. M. and, “On data-driven control strategies for AUVs
to track targets in sonar surveillance scenarios,” Journal of Oceanic
Engineering, under review, 2017.

[7] K. LePage, R. Goldhahn, J. Alves, C. Strode, P. Braca, G. Ferri,
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