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Online Estimation of Unknown Parameters

in Multisensor-Multitarget Tracking:

a Belief Propagation Approach

Giovanni Soldi and Paolo Braca

Centre for Maritime Research and Experimentation (CMRE),

La Spezia 19126, Italy ({giovanni.soldi, paolo.braca}@cmre.nato.int)

Abstract— We propose a Bayesian multisensor-multitarget
tracking framework, which adapts to randomly changing con-
ditions by continually estimating unknown model parameters
along with the target states. The time-evolution of the model
parameters is described by a Markov chain and the param-
eters are incorporated in a factor graph that represents the
statistical structure of the tracking problem. We then use the
belief propagation (BP) message passing scheme to calculate
the marginal posterior distributions of the targets and the
model parameters in an efficient way that exploits conditional
statistical independencies. As a concrete example, we develop
an adaptive BP-based multisensor-multitarget tracking algorithm
for maneuvering targets with multiple dynamic models and
sensors with unknown and time-varying detection probabilities.
The performance of the proposed algorithm is finally evaluated
in a simulated scenario.

Index Terms—Multitarget tracking, online self-tuning algo-
rithm, adaptive processing, probabilistic data association, belief
propagation, message passing, factor graph.

I. INTRODUCTION

Multisensor-multitarget tracking is a challenging task,

which aims at estimating the time-varying states—such as

positions and velocities—of multiple moving objects (targets)

[1]. This problem is crucial in many applications, which span

from air traffic control, remote sensing, robotics, oceanogra-

phy, to maritime surveillance. Measurements from multiple

sensors, provided by various remote sensing devices, such

as radar, sonar, and cameras are exploited in order to obtain

satisfactory performance in conditions of low signal-to-noise

ratio (SNR).

In the majority of real scenarios, the number of targets

and the association between measurements and targets are

unknown. Moreover, the sensor measurements are affected by

noise, missed detections, and false alarms. These phenomena

are usually modeled in a statistical fashion, and most tracking

algorithms assume that the relevant model parameters are

known in advance. However, in practice, these parameters are

in fact unknown and time-varying [2]–[8], such as probabilities

of observing (detecting) a target at the sensors, clutter intensity

profile and target motion parameters (maneuvering targets).

The work in this paper extends [9] and presents a

multisensor-multitarget tracking algorithm which is able to

adapt to randomly changing conditions by sequentially esti-

mating multiple unknown and time-varying model parameters,

which are related either to the dynamics of the targets, such

as interacting multiple models (IMM) parameters [10]–[13],

or to the measurement model, such as detection probabilities

and clutter intensity profiles. These parameters are modeled

as discrete random variables, which take values on specific

finite sets and whose time-evolutions are modeled by discrete

Markov chains. This statistical modeling allows to incorporate

the unknown parameters in the factor graph representing

the statistical structure of the multisensor-multitarget tracking

problem. The belief-propagation (BP) message passing scheme

is then employed on the resulting factor graph in order to

calculate the marginal posterior densities of both the target

states and the model parameters at each time step. These

marginal posterior densities are finally used for detection of the

targets and estimation of the target states and the model param-

eters. The proposed adaptive multisensor-multitarget tracking

algorithm extends also previous work [14] in the sense that

arbitrary model parameters are considered. As a concrete

example, we consider a maneuvering target scenario in which

the IMM parameters for the individual targets are adapted in

addition to the detection probabilities of the sensors.

This paper is organized as follows. In Section II, we describe

the system model and the related statistical formulation. In

Section III, we develop the proposed method. Finally, the

performance of the proposed adaptive algorithm is evaluated

in a simulated scenario in Section IV.

II. SYSTEM MODEL AND STATISTICAL FORMULATION

In this section, we describe the system model and statistical

formulation underlying the proposed algorithm.

A. Target States and Measurements

Following [9], we account for the fact that the number of

targets is unknown by considering K potential targets (PTs)

k ∈ K � {1, . . . ,K}. Thus, K is the maximum possible

number of actual targets1. The existence of PT k at time n ∈
{0, 1, . . .} is indicated by the binary indicator rn,k ∈ {0, 1},
i.e., PT k exists at time n if rn,k = 1. The state xn,k of PT

k at time n consists of the PT’s position and possibly further

1A scalable multisensor-multitarget algorithm based on the BP method
where the number of PTs is time-varying has been presented in [15].
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parameters. For mathematical convenience, a state xn,k is also

defined (formally) for a nonexistent PT k.

There are S sensors s ∈ S � {1, . . . , S} which pro-

vide “thresholded” measurements out of a detection pro-

cess. At time n, sensor s produces M
(s)
n measurements

z
(s)
n,m , m ∈ M

(s)
n �

{
1, . . . ,M

(s)
n

}
. We define z

(s)
n �[

z
(s)T
n,1 · · · z

(s)T

n,M
(s)
n

]T
, zn �

[
z
(1)T
n · · · z

(S)T
n

]T
, and z �

[zT
1 · · · z

T
n]

T as well as mn �
[
M

(1)
n · · ·M

(S)
n

]T
and m �

[mT
1 · · ·m

T
n]

T. There is a data association (measurement ori-

gin) uncertainty: it is not known which measurement z
(s)
n,m

originated from which PT k, and it is possible that z
(s)
n,m did

not originate from any PT (false alarm, clutter) or that a PT

did not lead to any measurement at sensor s (missed detection)

[1], [16]. We assume that an existing PT can generate at most

one measurement at sensor s, and a measurement at sensor s
can be generated by at most one existing PT [1], [16]. The

measurement-PT associations at sensor s and time n can then

be described by the random vector a
(s)
n =

[
a
(s)
n,1 · · · a

(s)
n,K

]T

with entries

a
(s)
n,k �

⎧⎪⎪⎨
⎪⎪⎩
m∈M

(s)
n , if at time n, PT k generates

measurement m at sensor s

0 , if at time n, PT k is not detected
by sensor s.

Following [9], [17], we will use alongside with the “PT-

oriented” association vector a
(s)
n the “measurement-oriented”

association vector b
(s)
n =

[
b
(s)
n,1 · · · b

(s)

n,M
(s)
n

]T
, whose entries are

defined as

b(s)n,m �

⎧⎪⎪⎨
⎪⎪⎩
k ∈K , if at time n, measurement m at sensor s

is generated by PT k

0 , if at time n, measurement m at sensor s
is not generated by a PT.

We also define an �
[
a
(1)T
n · · · a

(S)T
n

]T
and a � [aT

1 · · · a
T
n]

T

and bn �
[
b
(1)T
n · · · b

(S)T
n

]T
and b �

[
bT
1 · · · b

T
n

]T
. Note that

b is redundant since it can be derived from a and vice versa.

An existing PT k is detected by sensor s (in the sense that

the PT generates a measurement z
(s)
n,m at sensor s) with an

unknown probability q
(s)
n,k . We define q

(s)
n �

[
q
(s)
n,1 · · · q

(s)
n,K

]T
,

qn �
[
q
(1)T
n · · · q

(S)T
n

]T
, and q � [qT

1 · · · q
T
n]

T. The number of

false alarms at sensor s is modeled by a Poisson probability

mass function (pmf) with mean value μ(s), and the distribution

of each false alarm measurement at sensor s is described by

the probability density function (pdf) fFA

(
z
(s)
n,m

)
.

B. Markov Chain Modeling of Unknown Parameters

In addition to the “primary” quantities tracked by the

proposed multisensor-multitarget tracking algorithm—i.e., the

target states xn,k , target existence indicators rn,k , and as-

sociation variables a
(s)
n,k —there are typically certain other

parameters, that are also unknown and time-varying. These

parameters might either characterize the dynamics of each

single PT k, i.e. the driving noise variance in a nearly-constant

velocity model, the turn rate in a coordinated turn model, IMM

parameters, the birth intensity rate, or be strictly related to the

measurements at each sensor s and the measurement model,

i.e. the detection probabilities q
(s)
n,k at each sensor s, the clutter

intensity profile and the mean number of false alarms μ(s). In

order to obtain an adaptive tracking algorithm, that is able

to cope with changing environmental conditions, we propose

to track also unknown and time-varying parameters, within

our BP-based sequential inference framework. To achieve this,

each parameter is discretized for computational efficiency

(unless it is already discrete-valued) and its time-evolution is

modeled as a first-order Markov random process.

For concreteness, in our system model and tracking method,

we will consider two specific types of tracked parameters, the

IMM parameters, which are related to the dynamic motion of

the targets and the detection probabilities, instead related to

the modeling of the measurements. The detection probabilities,

q
(s)
n,k , are assumed independent across k and s and to take their

values from a finite set Q= {ω1, . . . , ωQ}, where ωi∈ (0, 1].
Furthermore, their temporal evolution conforms to the Markov

chain model with a transition matrix Q(s) ∈ (0, 1]Q×Q that

is time-invariant and equal for all PTs k ∈ K but generally

sensor-dependent. Accordingly, the transition probability of

q
(s)
n,k is given by p

(
q
(s)
n,k = ωj |q

(s)
n−1,k = ωi

)
= [Q(s)]i,j , for

ωi, ωj∈Q. Note that
∑Q

j=1 [Q
(s)]i,j=1 for all i∈ {1, . . . , Q}.

The initial distribution of q
(s)
n,k is given by the pmf p(q

(s)
0,k). It

follows that the prior pmf of q factorizes as

p(q) =
S∏

s=1

K∏
k=1

p
(
q
(s)
0,k

) n∏
n′=1

p
(
q
(s)
n′,k|q

(s)
n′−1,k

)
(1)

The IMM parameters will be considered in the next subsection.

C. Target Dynamics

We follow the IMM approach [10]–[13], i.e., each PT can

switch among different dynamic models (“modes”) at any time

n. Therefore, the temporal evolution of the state of a PT k that

exists at times n−1 and n (i.e., for which rn−1,k = rn,k = 1)

is modeled as

xn,k = f�n,k
(xn−1,k,un,k). (2)

Here, f�n,k
(· , ·) is the state-transition function of PT k that

is in force at time n, and which is selected from a set{
fj(· , ·)

}J

j=1
of J different state-transition functions by the

IMM parameter �n,k ∈ J � {1, . . . , J}. Furthermore, as it is

usually assumed [1], [10], un,k represents a driving process

independent and identically distributed (iid) across n and k.

We note that fj(· , ·) and the statistics of un,k determine the

state-transition pdf fj(xn,k|xn−1,k).
The IMM parameters �n,k are modeled as random variables

that are independent across k and evolve temporally according

to the Markov chain model with transition matrix L∈ [0, 1]J×J

that is time-invariant and equal for all PTs k ∈K. Thus, the

transition pmf of �n,k, p(�n,k = j|�n−1,k = i), is given by

pi,j � [L]i,j , for i, j ∈ J . Note that
∑J

j=1 [L]i,j = 1 for all

i∈ {1, . . . , J}.
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We define the augmented state of PT k as yn,k �

[xT
n,k rn,k �n,k]

T and also yn � [yT
n,1 · · · y

T
n,K ]T. The aug-

mented target states yn,k are assumed to evolve indepen-

dently according to Markovian dynamic models, and at time

n = 0, they are assumed statistically independent across k
with prior pdfs f(y0,k) = f(x0,k, r0,k, �0,k). Then, the pdf of

y � [yT
1 · · · y

T
n]

T factorizes as

f(y) =

K∏
k=1

f(y0,k)

n∏
n′=1

f(yn′,k|yn′−1,k). (3)

Assuming that the state xn,k and the existence variable rn,k
depends only on the mode parameter �n,k of each PT k at

time n and due to the Markovian properties of the mode

parameter �n,k, the single-target augmented state-transition pdf

f(yn,k|yn−1,k) factorizes as

f(yn,k|yn−1,k) = f(xn,k, rn,k, �n,k|xn−1,k, rn−1,k, �n−1,k)

= f(xn,k, rn,k|xn−1,k, rn−1,k, �n,k, �n−1,k)

× p(�n,k|xn−1,k, rn−1,k, �n−1,k)

= f(xn,k, rn,k|xn−1,k, rn−1,k, �n,k)

× p�n,k,�n−1,k
. (4)

An expression for f(xn,k, rn,k|xn−1,k, rn−1,k, �n,k) in terms

of the birth probability pbn,k, the survival probability psn,k,

the mode-dependent state transition pdf f�n,k
(xn,k|xn−1,k)

and the mode-dependent birth density f b
�n,k

, is obtained by

following the approach in [9, Sec. II-A].

D. Measurement Model and Likelihood Function

If measurement z
(s)
n,m is generated by target k, i.e. a

(s)
n,k =

m ∈M
(s)
n , then its distribution conditional on the target state

xn,k is described by the pdf f(z
(s)
n,m|xn,k). Under commonly

used assumptions [1], [9], [17], that given y, a and m, the

measurements z
(s)
n are conditionally independent across time

n and sensor index s, that the different measurements z
(s)
n,m ,

m∈M
(s)
n at any given sensor s are conditionally independent

given yn, a
(s)
n , and M

(s)
n and since in accordance with standard

measurement models, the IMM parameters �n,k for each target

k at time n influence only the modeling of the target dynamics,

the total likelihood function f(z|y, a,m) can be written as

f(z|y, a,m) = C(z)

n∏
n′=1

S∏
s=1

K∏
k=1

w
(
xn′,k, rn′,k, a

(s)
n′,k; z

(s)
n′

)
.

(5)

where C(z) is a normalization factor that depends only on z

and w
(
xn,k, rn,k, a

(s)
n,k; z

(s)
n

)
is defined as

w
(
xn,k, 1, a

(s)
n,k; z

(s)
n

)
=

⎧⎪⎪⎨
⎪⎪⎩
f
(
z
(s)
n,m

∣∣xn,k

)
fFA

(
z
(s)
n,m

) , a
(s)
n,k = m∈M

(s)
n

1 , a
(s)
n,k = 0

w
(
xn,k, 0, a

(s)
n,k; z

(s)
n

)
= 1.

E. Joint Prior Distribution of Association Variables and Num-

bers of Measurements

Let 1(a) denote the indicator function of the event a = 0,

i.e., 1(a) = 1 if a = 0 and 0 otherwise. Under commonly

used independence assumptions [1], [9], [17], that given y,

the a
(s)
n and the M

(s)
n are conditionally independent across

n and s, that the measurement z
(s)
n,m, m ∈ M

(s)
n at sensor s

are randomly ordered, with each possible order equally likely,

and since for each PT k and sensor s, the association variables

a
(s)
n,k are independent from �n,k given xn,k and rn,k, the joint

prior pmf of a and m given y and q can be expressed as

p(a,b,m|y,q)

= C(m)

n∏
n′=1

S∏
s=1

K∏
k=1

h
(
xn,k, rn,k, a

(s)
n,k, q

(s)
n,k;M

(s)
n

)

×

M(s)
n∏

m=1

Ψ
(
a
(s)
n,k , b

(s)
n,m

)
. (6)

where C(m) is a normalization factor that depends only on

m, h
(
xn,k, rn,k, a

(s)
n,k, q

(s)
n,k;M

(s)
n

)
is defined as

h
(
xn,k, 1, a

(s)
n,k, q

(s)
n,k;M

(s)
n

)
=

⎧⎪⎨
⎪⎩
q
(s)
n,k

μ(s)
, a

(s)
n,k ∈M

(s)
n

1− q
(s)
n,k , a

(s)
n,k = 0

h
(
xn,k, 0, a

(s)
n,k, q

(s)
n,k;M

(s)
n

)
= 1

(
a
(s)
n,k

)
.

and Ψ
(
a
(s)
n,k , b

(s)
n,m

)
∈ {0, 1} is an indicator function defined

as

Ψ
(
a
(s)
n,k , b

(s)
n,m

)
�

⎧⎪⎨
⎪⎩
0 , a

(s)
n,k=m, b

(s)
n,m �= k

or b
(s)
n,m= k, a

(s)
n,k �=m

1 , otherwise.

As already reported in [9], [17] Ψ
(
a
(s)
n,k , b

(s)
n,m

)
enforces the

data association assumption, i.e., a target can generate at most

one measurement at sensor s, and a measurement at sensor s
can be generated by at most one target. Moreover, the resulting

association is a key to obtaining an algorithm that scales well

in the number of targets and in the number of measurements

per sensor [9].

III. THE PROPOSED METHOD

In this section, we describe the adaptive BP-based multi-

sensor-multitarget tracking algorithm.

A. Target Detection and State Estimation

The ultimate objective of the proposed multisensor-

multitarget tracking algorithm is to determine the existence

of a PT k ∈ K (i.e., to detect the binary target existence

variables rn,k) and to estimate the states xn,k of the detected

PTs. This detection-estimation step is based on the past and

present measurements of all the sensors, i.e., on the total

CMRE Reprint Series CMRE-PR-2019-040

3



measurement vector z. In the Bayesian setting, target detection

and state estimation essentially amount to calculating the

marginal posterior existence probabilities p(rn,k=1|z) and the

marginal posterior state pdfs f(xn,k|rn,k=1, z), respectively.

PT k is detected if p(rn,k=1|z) is larger than a suitably chosen

threshold Pth [18, Chapter 2]. Furthermore, for each detected

PT k, an estimate of xn,k is provided by the minimum mean

square error estimator (MMSE) given by [18, Chapter 4]

x̂MMSE
n,k �

∫
xn,k f(xn,k|rn,k=1, z)dxn,k . (7)

The marginal statistics p(rn,k=1|z) and f(xn,k|rn,k=1, z)
used for target detection and state estimation can be obtained

from the marginal posterior pdf of the augmented target state,

f(yn,k|z) = f(xn,k, rn,k, �n,k|z), according to

p(rn,k=1|z) =
∑

�n,k∈J

∫
f(xn,k, rn,k=1, �n,k|z)dxn,k (8)

and

f(xn,k|rn,k=1, z) =

∑
�n,k∈J

f(xn,k, rn,k=1, �n,k|z)

p(rn,k=1|z)
,

(9)

respectively. The marginal posterior pdf f(yn,k|z) is a

marginal of the joint posterior of f(y, a,b,q|z). This cal-

culation can be performed in an efficient manner by means of

the BP algorithm described in what follows.

B. Joint Posterior Distribution and Factor Graph

In the conditional pdf f(y, a,b,q|z), the measurements z

are observed and thus fixed. As a consequence, the numbers

of measurements M
(s)
n and the corresponding vector m are

fixed as well. We then have

f(y, a,b,q|z) = f(y, a,b,q,m|z)

∝ f(z|y, a,b,q,m)f(y, a,b,q,m)

= f(z|y, a,m)f(y, a,b,m,q)

= f(z|y, a,m) p(a,b,m|y,q)f(y) p(q).

Inserting (1) for p(q), (3) for f(y), (6) for p(a,b,m|y,q)
and (5) for f(z|y, a,m) and omitting the constants C(m)
and C(z), we obtain the final factorization

f(y, a,b,q|z)

∝
K∏

k=1

f(y0,k)
n∏

n′=1

f(yn′,k|yn′−1,k)

×
S∏

s=1

p
(
q
(s)
n′,k

∣∣q(s)n′−1,k

)
v
(
xn′,k, rn′,k, a

(s)
n′,k, q

(s)
n′,k; z

(s)
n′

)

×

M
(s)

n′∏
m=1

ψ
(
a
(s)
n′,k, b

(s)
n′,m

)
, (10)

with

v
(
xn,k, rn,k, a

(s)
n,k, q

(s)
n,k; z

(s)
n

)
� w

(
xn,k, rn,k, a

(s)
n,k; z

(s)
n

)
h
(
xn,k, rn,k, a

(s)
n,k, q

(s)
n,k;M

(s)
n

)
.

β1β1

βKβK

η1

ηK

a1a1

aKaK

q1

qK

χ1

χ1

χK

χK

ε1

εK

p̃1

p̃1

p̃K

p̃K

b1b1

bMbM

f1

fK

f̃1

f̃K

s = 1

s = S

α1

αK

υ1

υK

υ1

υKυK

p1

pK

p1

pK

y1

yK

α1

αK

α1

αK

γ1

γK

Ψ1,1

ΨK,MΨK,M

Ψ1,M

ΨK,1

ν1,1 ζ1,1

νM,1 ζK,1

ν1,K ζ1,M

Fig. 1. Factor graph describing the factorization of f(y, a,b,q|z)
in (10), shown for one time step. For simplicity, the time index n
and sensor index s are omitted, and the following short notations

are used: fk � f(yn,k |yn−1,k), pk � p
(
q
(s)
n,k

∣
∣q(s)

n−1,k

)
, υk �

υ
(
xn,k, rn,k , a

(s)
n,k

, q
(s)
n,k

; z
(s)
n

)
, f̃k � f̃(yn,k), p̃k � p̃

(
q
(s)
n,k

)
, Ψk,m �

Ψ
(
a
(s)
n,k

, b
(s)
n,m

)
, αk � α(yn,k), βk � β

(
a
(s)
n,k

)
, ηk � η

(
a
(s)
n,k

)
, γk �

γ(s)(yn,k), χk � χ
(
q
(s)
n,k

)
, εk � ε

(
q
(s)
n,k

)
, νm,k � ν

(p)
m→k

(
a
(s)
n,k

)
, and

ζk,m � ζ
(p)
k→m

(
b
(s)
n,m

)
.

The factor graph describing the factorization (10) is shown for

one time step in Fig. 1.

C. BP Message Passing Algorithm

Following the approach in [9], approximations of the

marginal posterior pdfs f(yn,k|z) = f(xn,k, rn,k, �n,k|z),
known as beliefs and denoted as f̃(xn,k, rn,k, �n,k), can be

calculated at each time n for all PTs k in an efficient way

by running iterative BP message passing on the factor graph

in Fig. 1. In addition, the beliefs p̃
(
q
(s)
n,k

)
, the mode beliefs

g̃(�n,k) and the beliefs f̃(xn,k, rn,k|�n,k), approximating re-

spectively, the posterior pmfs of the detection probabilities,

p
(
q
(s)
n,k|z

)
, the posterior pmfs of the modes, p(�n,k|z), and

the posterior distributions of xn,k and rn,k conditional on the

the modes �n,k, f(xn,k, rn,k|�n,k, z), are also calculated for

all PTs k ∈ K and all sensors s ∈ S. Since the obtained

factor graph contains loops, there is no unique order of

calculating the individual messages, and different orders may

result in different sets of beliefs. In our algorithm, the order

is defined by the following two rules: first, messages are not

sent backward in time, and second, iterative message passing

is only performed for data association, and separately at each

time step and at each sensor. The second rule implies that

for loops involving different sensors, only a single message

passing iteration is performed. Combining these rules with

the generic BP rules for calculating messages and beliefs [19],

[20], one obtains the BP message passing operations at time

n, which are reported in Algorithm 1.

First, a prediction step is performed for all PTs k ∈ K.

This comprises the calculation of the messages α(yn,k) =

α(xn,k, rn,k, �n,k) and the messages χ
(
q
(s)
n,k

)
for all sensors

s ∈ S. Next, the following steps are performed for all PTs

k ∈ K and for all sensors s ∈ S in parallel: a measurement

evaluation step, where the messages β
(
a
(s)
n,k

)
are calculated; a
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Input (from previous time n− 1):

f̃(xn−1,k, rn−1,k|�n−1,k), g̃n−1,k(�n−1,k), p̃
(
q
(s)
n−1,k

)
Prediction:
for k ∈ K, s ∈ S do

α(xn,k, rn,k, �n,k)

=
∑

rn−1,k,

�n−1,k

∫
f(xn,k, rn,k, �n,k|xn−1,k, rn−1,k, �n−1,k)

× f̃(xn−1,k, rn−1,k|�n−1,k)g̃n−1,k(�n−1,k)dxn−1,k

χ
(
q
(s)
n,k

)
=

∑
q
(s)
n−1,k

∈Q

p
(
q
(s)
n,k

∣∣q(s)n−1,k

)
p̃
(
q
(s)
n−1,k

)

end

for all k ∈ K, all s ∈ S (in parallel) do

Measurement evaluation:

β
(
a
(s)
n,k

)
=

∑
q
(s)
n,k
∈Q

χ
(
q
(s)
n,k

)∫
v
(
xn,k, 1, a

(s)
n,k, q

(s)
n,k; z

(s)
n

)

× A(xn,k, 1)dxn,k + 1
(
a
(s)
n,k

)
αn,k

with A(xn,k, 1) �
∑

�n,k
α(xn,k, 1, �n,k) and

αn,k �
∑

�n,k
α(xn,k, 0, �n,k)dxn,k

Data association (same as in [9]):

β
(
a
(s)
n,k

)
−→ η

(
a
(s)
n,k

)
Measurement update:

γ
(s)(xn,k, rn,k) =

∑
a
(s)
n,k

,

q
(s)
n,k
∈Q

v
(
xn,k, rn,k, a

(s)
n,k, q

(s)
n,k; z

(s)
n

)

× χ
(
q
(s)
n,k

)
η
(
a
(s)
n,k

)
Detection probability update:

ε
(
q
(s)
n,k

)
=

∑
a
(s)
n,k

∫
v
(
xn,k, 1, a

(s)
n,k, q

(s)
n,k; z

(s)
n

)
η(a

(s)
n,k)

×A(xn,k, 1)dxn,k + η(0)αn,k

p̃
(
q
(s)
n,k

)
= χ

(
q
(s)
n,k

)
ε
(
q
(s)
n,k

)
(11)

end

Belief calculation:
for k ∈ K do

f̃(xn,k, rn,k, �n,k) =
1

Cn,k

α(xn,k, rn,k, �n,k)

×
∏
s∈S

γ
(s)(xn,k, rn,k)

g̃n,k(�n,k) =
∑
rn,k

∫
f̃(xn,k, rn,k, �n,k)dxn,k (12)

f̃(xn,k, rn,k|�n,k) =
f̃(xn,k, rn,k, �n,k)

g̃n,k(�n,k)

Cn,k: normalization constant
end

Algorithm 1: Adaptive BP algorithm for a single iter-

ation at time n.

data association step, that closely follows [17] and is the same

as in [9], in which the messages β
(
a
(s)
n,k

)
are converted into

messages η
(
a
(s)
n,k

)
; a measurement update step, in which the

messages γ(s)(xn,k, rn,k) are computed; a detection probabil-

ity update step, in which the updated detection probabilities

beliefs p̃
(
q
(s)
n,k

)
are obtained. Finally, in the belief calculation

step, the beliefs f̃(xn,k, rn,k, �n,k), g̃(�n,k), f̃(xn,k, rn,k|�n,k)
are computed for all PTs k ∈ K and used as input to the next

time n+ 12.

The detection of each PT k and state estimation of the

detected PTs is carried out by using f̃(xn,k, 1, �n,k) instead

of f(xn,k, rn,k = 1, �n,k|z) in Eqs. (8) and (9), respectively.

A particle-based implementation of this BP message passing

algorithm that avoids an explicit evaluation of integrals and

message products can be obtained by extending the imple-

mentation presented in [9].

IV. SIMULATION RESULTS

The performance of the proposed adaptive multisensor-

multitarget tracking method has been validated in a simulated

scenario and compared with the performance of the original

nonadaptive BP algorithm from [9].

A. Basic simulation setup

In the simulated scenario, the number of PTs K is

set to 8, and the state of each PT k consists of two-

dimensional (2D) position and velocity, i.e., xn,k =
[x1,n,k x2,n,k ẋ1,n,k ẋ2,n,k]

T. We consider dynamic models

(DMs) fj of the nearly-constant velocity type, i.e. (cf. (2))

xn,k = fj(xn−1,k,un,k)

=

[
1 ΔT
0 1

]
⊗ I2 xn−1,k +

[
ΔT 2/2
ΔT

]
⊗ I2 u

(j)
n,k (13)

where I2 denotes the 2D identity matrix and ΔT = 20 s is

the sampling period, i.e., the duration of one time step n;

furthermore, the driving process u
(j)
n,k ∼ N

(
0, σ2

j I2
)

is a

sequence of 2D Gaussian random vectors that is iid across n
and k. We note that the DMs fj(·) differ solely in the driving

process variance σ2
j . Higher values of σ2

j are typically used

to model maneuvering targets. In the simulated scenario, the

number of different DMs is chosen as J = 2.

We simulate two targets which move inside a surveillance

square region given by [−80 km, 80 km]× [−80 km, 80 km].
The nominal DM of both targets is f1 with driving process

variance σ2
1 = 0.012, and this DM is used by the nonadaptive

algorithm. However, the true target trajectories conform to DM

f1 only in the time intervals [1, 190] and [230, 400], whereas in

the intermediate time interval [191, 229], the targets perform

a coordinated turn with nearly constant speed and constant

angular rate. The proposed adaptive algorithm switches adap-

tively between DM f1 and a second nearly-constant velocity

DM f2 with driving process variance σ2
2 = 0.12. It uses the

2A deeper description and derivation of all calculated messages at each
time n will be provided in future work.
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Fig. 2. Target trajectories and sensor positions for the simulated scenario.

DM transition probabilities [L]1,1 = [L]2,2 = 0.9975 and

[L]1,2 = [L]2,1 = 0.0025.

There are S=3 monostatic sensors (i.e., source and receiver

are colocated). The three sensors are located at North, South

and East and measure the target position in polar coordinates,

i.e., range and bearing, with a maximum range of 160 km.

The range and bearing standard deviations are σr = 150 m

and σb= 1.5◦, respectively. The target trajectories and sensor

positions are depicted in Fig. 2. The false-alarm pdf fFA

(
z
(s)
n,m

)
is linearly increasing on [0 km, 160 km] and zero outside that

interval with respect to the range component, and uniform

on [0◦, 360◦) with respect to the bearing component. The

simulated detection probabilities depend on the distances of

the targets from the sensors and thus are time-varying. They

are estimated by the proposed adaptive algorithm with set of

detection probabilities Q = {0.01, 0.1, 0.2, . . . , 0.9, 1}. The

transition matrix Q(s) =Q is as follows: for 2 ≤ i ≤ Q − 1,

[Q]i,i−1 = 0.03, [Q]i,i = 0.92 and [Q]i,i+1 = 0.05; further-

more, [Q]1,1 = 0.95, [Q]1,2 = 0.05, [Q]Q,Q−1 = 0.03 and

[Q]Q,Q = 0.97, and [Q]i,j = 0, otherwise. The nonadaptive

algorithm uses instead for all q
(s)
n,k the fixed value of 0.8.

The mean number of false alarms μ(s) is set equal to 10.

The birth and survival probability are psn,k = ps = 0.999 and

pbn,k = pb = 0.001, respectively. The detection threshold is

Pth = 0.5. We used particle-based implementations of the

adaptive and nonadaptive methods with a number of particles

Mp = 5000. We performed 200 simulation runs, which differ

in the initialization of the random seed used to simulate the

sensor measurements and generate the random particles.

B. Results

Fig. 3 shows the Euclidean distance based mean optimal

sub-pattern assignment (MOSPA) error with order p = 1 and

cutoff parameter c = 1000 [21], for the two methods, averaged

over the 200 simulations. The MOSPA error takes into account

both the estimation errors for correctly detected targets and the

errors due to incorrect target detections. One can see that the

MOSPA error of the proposed adaptive method is typically

lower than that of the nonadaptive method during the turn

interval [191, 229]. Indeed here, the time-averaged MOSPA

error is 252 m for the adaptive method versus 561 m for the

0 50 100 150 200 250 300 350 400
n (steps)

0

200

400

600

800

1000

M
O
S
P
A

(m
)

Adaptive
Non-adaptive

Fig. 3. MOSPA error for the simulated scenario. The dashed line indicates
the times when the DM changes.
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Fig. 4. Averaged mode beliefs g̃n,k(�n,k) of the proposed method for the
DMs f1 and f2. The dashed line indicates the times when the DM changes.

nonadaptive method. In general, the time-averaged MOSPA

error is 181 m for the adaptive method versus 221 m for the

nonadaptive method.

Fig. 4 shows the mode beliefs g̃n,k(�n,k) (cf. (12) in

Algorithm 1) for the DMs f1 and f2 calculated by the proposed

method, averaged over the 200 simulations and the two targets.

It is seen that the mode beliefs correctly picture the DM ac-

tually in force, albeit with a transition delay of approximately

20 time steps in switching between the DMs. This delay is

probably caused by the high values of the range and bearing

standard deviations (σr=150m, σb=1.5◦).
Finally, Fig. 5 shows the detection probabilities q

(s)
n,2 esti-

mated by the proposed method of target k=2 for each of the

three sensors s, along with the true detection probabilities and

for a single simulation run. Approximate MMSE estimates of

the q
(s)
n,k were obtained as q̂

(s)
n,k =

∑Q

i=1 ωi p̃(q
(s)
n,k = ωi), with

p̃
(
q
(s)
n,k

)
calculated as in (11) in Algorithm 1. It is seen that the

estimates roughly approximate the true detection probabilities,

which depend on the distance between the target and the

respective sensor.

V. CONCLUSIONS

This paper extends previous work [9] by showing how

the belief propagation (BP) message passing scheme can

be exploited to develop an adaptive Bayesian multisensor-
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Fig. 5. Estimated detection probabilities for target 2 at the three sensors,
for the simulated scenario. The dotted lines indicate the true detection
probabilities.

multitarget tracking algorithm. The proposed adaptive algo-

rithm is able to cope with time-varying changing conditions,

i.e. maneuvering targets, varying detection probabilities and

clutter profiles, by estimating online multiple unknown model

parameters. The evolution of the unknown parameters is de-

scribed by a Markov chain and the parameters are tracked to-

gether with the target states using a BP-based tracking method-

ology. The BP approach provides a principled way to reduce

complexity by exploiting conditional statistical independen-

cies, which leads to quasi-optimum Bayesian multisensor-

multitarget tracking algorithms with excellent scalability.

As a concrete example, we addressed the case of motion

model indices (IMM parameters) and unknown detection prob-

abilities. Simulation results showed that our algorithm is able

to track multiple targets during coordinated turns and for time-

varying detection probabilities, and that it achieves a signif-

icant reduction of the time-averaged MOSPA error relative

to the nonadaptive BP-based algorithm (e.g., a time-averaged

MOSPA error of 181 m versus 221 m for the nonadaptive

algorithm).
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