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Abstract

A new approach is proposed for multi-view clas-
sification when sonar data is in the form of imagery
and each object has been viewed an arbitrary num-
ber of times. An image-fusion technique is employed
in conjunction with a deep learning algorithm (based
on Boltzmann machines) so that the sonar data from
multiple views can be combined and exploited at the
(earliest) image level. The method utilizes single-view
imagery and, whenever available, multi-view fused im-
agery, in the same unified classification framework. The
promise of the proposed approach is demonstrated in
the context of an object classification task with real syn-
thetic aperture sonar (SAS) imagery collected at sea.

1. Introduction

The aspect at which an object is imaged by a sonar
can have a profound effect on its ability to be detected
and classified. For example, cylindrical objects viewed
at endfire (where there are fewer pixels on target) are
significantly more challenging to detect than cylindri-
cal objects viewed at broadside. Similarly, the sonar
image of a rock may look nearly indistinguishable from
that of some man-made objects when imaged at certain
aspects, but not others. For reasons like these, it can
be valuable to collect multiple views, at different as-
pects, of an object. Doing so can provide a more com-
plete picture of the (unknown) object and also reduce
the likelihood of observing the object at only one unfa-
vorable aspect. In turn, this richer information should
allow more accurate and more confident predictions re-
garding an object’s identity.

Translating the additional information provided by
the multiple views into better predictions requires a
classification approach that can adeptly handle the extra
data. In this work, we address this challenge by propos-
ing a new approach for multi-view classification when
data is in the form of imagery and each object has been

viewed an arbitrary number of times. The topic is ad-
dressed in the context of mine countermeasures (MCM)
where the objective is to classify mine-like objects de-
tected in sonar imagery as either targets (i.e., mines)
or clutter (e.g., rocks). The promise of the approach is
demonstrated on real sonar imagery collected at sea by
CMRE’s autonomous underwater vehicle (AUV) called
MUSCLE.

The remainder of this paper is organized as follows.
Sec. 2 discusses the multi-view classification problem
and outlines the proposed approach. Sec. 3 describes
the sonar data used in the experiments. Experimental
results and a discussion are presented in Sec. 4, before
concluding remarks are made in Sec. 5.

2. Multi-view Classification

In binary classification, the objective is to learn a
classifier that will properly classify each data point (e.g.,
object) as belonging to one of two classes (e.g., tar-
get or clutter). The standard procedure is to extract a
set of features for each object, and then learn appropri-
ate classifier weights by making use of labeled training
data for which the true class of each object is known.
The features quantify characteristics of the objects that
are hopefully useful for discriminating between the two
classes. In our sonar classification task, each object is
initially represented by an image, from which features
can subsequently be extracted.

Suppose a set of sonar data was collected in which
each object in the data set was viewed a certain (pos-
sibly different) number of times, at different aspects.
For example, some objects may have been imaged only
once, others may have been imaged twice, and still oth-
ers may have been imaged some arbitrarily large num-
ber of times. When data from multiple aspects of (a
subset of) objects are available, a necessary task is to
determine how that multi-view information should be
combined. When the eventual goal is to perform binary
classification — declaring a new unknown object to be
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a target or clutter — there are three general possibilities,
the distinguishing element being the stage at which the
data is fused: (i) at the prediction level, (ii) at the feature
level, and (iii) at the image level.

The simplest approach is to combine the multi-
view data for an object at the prediction level. Under
this scenario, a standard single-view classifier can be
employed. More specifically, normal feature extraction
would be performed on each image (i.e., view) sepa-
rately, and each resulting feature vector (i.e., data point)
would be treated as if no relationship existed. Single-
view classifier training would ensue, and a prediction
(e.g., the probability of belonging to each class) would
be effected for each view. Only at this final stage would
the multiple predictions corresponding to the views of
the same object be combined, for example by simple av-
eraging. But this perspective fundamentally ignores, for
a significant portion of the classification stage, the ob-
vious dependence shared by the object’s views. More-
over, since each view is treated equally — both favorable
views that potentially contain valuable discriminating
information, and unfavorable views for which informa-
tion is lacking — the performance gains that can be ex-
pected from having multiple views are necessarily lim-
ited.

The second approach for combining multi-view in-
formation would fuse data at the feature level. In this
scenario, the same set of features would be extracted
from each image independently. Therefore, if an ob-
ject had been imaged three times (at different aspects),
there would be three unique feature vectors associated
with the object. An object imaged only once would be
represented by only a single feature vector. Fusing data
at the feature level would mean either combining the
multiple feature vectors of an object in some way, or
preserving the multiple feature vectors and expanding
the feature space of the eventual classifier. The former
is not sound because it does not make sense to aver-
age the values of a given feature — say, the length of
the object highlight — obtained from different aspects,
since the geometry and physics can be fundamentally
different in each view. The latter is untenable because
not every object is guaranteed to have the same num-
ber of views. In this case, an expanded feature space
to accommodate the object with the highest number of
views would result in substantial amounts of “missing
data” [1], thereby complicating classifier learning. (In
particular, it would be likely that insufficient training
data was available for the feature dimensions associated
with the highest numbers of views.)

The third possible approach for combining multi-
view information is unique to tasks for which “raw”
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data! is in the form of imagery. Combining data at
the image level would mean fusing the multiple views
of a given object into a single composite image. By
combining data at this highest, earliest level — the im-
age level — the dependence shared among an object’s
multiple views can be exploited fully. The idea behind
multi-view image fusion is that the joint, composite im-
age will contain more information than the individual
views, in the sense that classification will be easier.
Results obtained from circular synthetic aperture sonar
processing [2], which attempts to reconstruct a compos-
ite image from full 360° surveys around an object, sup-
port such a hypothesis.

Once multi-view fused imagery is obtained, the
matter of classifier learning must still be resolved. A
standard approach in which a set of features are ex-
tracted (from the multi-view imagery) is plausible, but
would require the development of new features, since
the set of features developed for single-view imagery is
likely to be inappropriate for the new data format. For
example, a feature based on shadow length is meaning-
ful for single-view sonar imagery, but not multi-view
imagery where shadow information may be destroyed
in the fusion process. (Additionally, missing data cor-
responding to the “multi-view features” can result if
not every object is viewed multiple times.) So rather
than attempting to develop a new set of features to be
extracted from fused multi-view images, we adopt a
fundamentally different approach that relies on image-
based classification without resorting to intermediate
feature extraction. That is, the pixels of the (fused) im-
ages are themselves used as the data on which classifier
learning is conducted.

In this work, we adopt a “deep learning” [3] ap-
proach to classification that operates directly on the im-
agery. In our case, the imagery is the output of a multi-
view fusion algorithm [4] when multiple views of an ob-
ject are available. However, when only a single view of
an object is available, the single-view image can be used
in the same model with no modifications. This flexibil-
ity to use a single, unified framework for both multi-
view fusion imagery and single-view imagery makes
the method particularly attractive.

The specific classification approach employed here
is based on a deep Boltzmann machine, developed in
[5], featuring an architecture with two hidden layers
of weights. One key to this particular approach is
the greedy pre-training of each layer, with this effec-
tively initializing the classifier weights to reasonable

ISignificant processing is required to transform the receiver-
element-level sonar ping-return data into imagery, but from the per-
spective of classifier learning the sonar imagery can be viewed as raw
data.
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Figure 1. Example SAS images of a truncated cone from the AMiCa data set, displayed in a common
reference frame, viewed at aspects of (a) 359° (with the port sonar) and (b) 23° (with the starboard
sonar), and (c) the resulting fused image. The bounding box of each image contains an area of

approximately 10 m x 10 m.

regions of the very high-dimensional parameter search
space. Learning is performed by maximizing the log-
likelihood of the model via gradient descent. The ex-
ploration of more sophisticated deep classifiers will be
a topic of future work, but this relatively simple algo-
rithm is sufficient for our multi-view proof-of-concept
purposes.

3. Multi-view Data

To assess the feasibility of the deep learning ap-
proach for object classification with multi-view sonar
imagery, we utilize data collected by CMRE’s MUS-
CLE AUV. This experimental, state-of-the-art AUV is a
21-inch diameter vehicle from Bluefin that is equipped
with a synthetic aperture sonar (SAS) system developed
by Thales. The center frequency of the SAS is 300 kHz,
and the bandwidth is 60 kHz. The system enables the
formation of high-resolution sonar imagery with a the-
oretical along-track resolution of 2.5 cm, and a theoret-
ical across-track resolution of 1.25 cm, usually out to a
range of 150 m.

To compile a data set for classification, suspicious
mine-like objects of interest were automatically de-
tected in scene-level imagery by applying an integral-
image-based detection algorithm [6]. The resulting
“mugshots” of each detected object were then passed on
to the classification stage. For this work, the mugshot
imagery of objects that have been viewed multiple times
were combined using an active contour-based image-
fusion algorithm [4] that fuses the multiple views into
a single composite image. It is this multi-view fusion
imagery — as well as the single-view imagery — that was

used in the subsequent classification experiments.
Multi-view fusion imagery was available from two
previous sea trials, AMiCa and CATHARSIS 2, but
only for deployed objects (target shapes and calibrated
rocks), not clutter. Therefore, the limited-scope binary
classification task considered here was to discriminate
truncated cones from calibrated rocks of a similar size.

The AMiCa trial was conducted in May-June 2010
near Tellaro, Italy; the CATHARSIS 2 trial was con-
ducted in October 2009 near Elba, Italy. Example
(mugshot-level) imagery from the AMiCa trial of a
truncated cone, along with the fusion result from [4], is
shown in Fig. 1. (In this work, the term “aspect” is taken
to mean the direction of AUV travel when the object is
viewed, which is orthogonal to the sonar’s imaging di-
rection. The convention used here is that an aspect of
0° points up the page and increases clockwise.)

It should be noted that the fusion process de-
stroys the well-defined coordinate system of the single-
view images (i.e., axes corresponding to along-track
and across-track dimensions), so it is important that
the pixel dimensions are made equal in each direc-
tion prior to the fusion. For the data considered, each
pixel of the multi-view fusion images spans an area
of 1.5cm x 1.5 cm. The single-view images are up-
sampled via interpolation so that their pixel dimensions
match those of the multi-view fusion images, making
all data uniform in this sense.

For the deep classifier, the size of the imagery is
reduced to an area of approximately 1.25m x 1.25 m
(corresponding to 83 pixels by 83 pixels), centered
around the object highlight. (The peak correlation with
a simple binary template was used to automatically lo-
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Figure 2. Example (cropped) images, of a
truncated cone, at different rotations from the
AMiCa data set used for the deep-classifier
training for the approach employing (a)-(b) ro-
tated single-view images, and (¢) multi-view fu-
sion images. Each series is derived from rotat-
ing an original unrotated image (the initial im-
age in each series). Each image spans an area
of approximately 1.25 m x 1.25 m.

cate the highlight center of each image.) This choice
is made so that the resulting classifier focuses only on
the highlight information — essentially, the object shape
— and not the seabed background. However, the useful
shadow information has still been exploited in the pre-
vious detection stage.

Because the multi-view fusion images are not in a
standard viewing or reference frame, each cropped im-
age — both single-view and multi-view — is also rotated
at a series of angles (in increments of A = 45° here).
This procedure, which is performed to support classi-
fier robustness vis-a-vis aspect invariance, serves to also
augment the amount of training data available.

Examples of the unrotated images used in the clas-
sification phase, as well as the derived series of rotated
single-view images and rotated multi-view images, for
a truncated cone are shown in Fig. 2. The object shape
information provided by the multi-view fusion result is
particularly striking.

4. Experimental Results

4.1. Experimental Set-Up

To assess the utility of the multi-view fusion, a se-
ries of classification experiments was conducted. Four
approaches were evaluated, two that employed only
single-view data and two that exploited multi-view data
in different ways. The first approach used the unrotated
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Table 1. Number of images in the AMiCa data
set.

AMiCa
Method Class 1 | Class 2
Single-View Unrotated Images 2526 4424
Single-View Rotated Images 20208 35392
Multi-View Fusion Images 10104 17694

Table 2. Number of images in the CATHARSIS 2
data set.

CATHARSIS 2

Method Class 1 | Class 2
Single-View Unrotated Images 34 170
Single-View Rotated Images 272 1360
Multi-View Fusion Images 136 679

single-view imagery to learn a deep classifier. The sec-
ond approach used the rotated single-view imagery to
learn a deep classifier. The third approach, the proposed
method, used the (rotated) multi-view fusion imagery
to learn a deep classifier. The fourth approach exploited
the dependence between an object’s multiple views only
at the prediction stage. Specifically, this approach used
the deep classifier learned from the rotated single-view
imagery, but then averaged the classifier’s predictions of
the multiple views that were associated with the same
object. This last case corresponds to performing multi-
view fusion at the prediction level, whereas the third
case performs multi-view fusion at the earlier image
level.

The number of images available in each data set for
each approach, broken down by class, is summarized in
Tables 1-2. Class 1 corresponds to the calibrated rocks,
while class 2 corresponds to the truncated cones. Be-
cause more data was available from the AMiCa trial,
that imagery was treated as labeled training data, while
the CATHARSIS 2 imagery was treated as test data
upon which classification was to be performed.

The deep learning method noted in Sec. 2 was used
as the classification approach in all experiments. All
deep-classifier parameter settings were kept fixed and
identical for all approaches. A two-hidden-layer archi-
tecture was employed, with 100 units in layer 1 and 196
units in layer 2. The number of epochs used to greed-
ily pre-train each of the two layers was set to 1000, the
number of epochs used to subsequently train the two-
layer Boltzmann machine was 500, and the number of
epochs used to fine-tune the learned machine via back-
propagation was 20. The training data was augmented



CMRE Reprint Series

o
3

o
)

Probability of Detection
=) o
> o

o
©

o
)

Single-View U.Images [AUC=0.756]

Single-View R.Images [AUC=0.791]

= Multi-View Fused Images [AUC=0.887]
Multi-View Fused Predictions [AUC=0.827]

0 I I . T T T T T

T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability of False Alarm

o
-

Figure 3. Classification performance on
CATHARSIS 2 data after learning the deep
classifiers by training on AMiCa data. For
the single-view cases, the legend indicates
whether the images were unrotated (“U”) or ro-
tated (“R”).

by “mirroring” each image about the vertical axis, ef-
fectively doubling the size of the data sets. To ensure
that the training set was balanced (in terms of the num-
ber of data points from each class), a subset of data
points from the class with more examples was randomly
selected and used during each training epoch. To ac-
celerate the learning phase, training was conducted in
batches, with 100 data points per batch (50 from each
class).

4.2. Results

For the approaches that rotated a given image at a
series of 8 angles (i.e., in A = 45° increments), the final
prediction for a test image was taken to be the mean
of the 8 predictions. The classification performance for
the four approaches considered is presented in terms of
receiver operating characteristic (ROC) curves in Fig. 3.
The area under the ROC curve (AUC) [7], which is a
scalar summary measure of an ROC curve, is shown for
each approach in Table 3. It can be observed that the
proposed multi-view fusion approach achieves the best
performance on this limited experiment.

For the deep classifier trained using unrotated
single-view images, the learned weights for layers 1 and
2, as well as the corresponding “basis images” for the
entire deep classifier — constructed as a linear combi-
nation of the two layers of weights [8] — are shown in
Fig. 4. The analogous results for when the deep clas-
sifier was trained using rotated single-view images are
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Table 3. Classification performance on
CATHARSIS 2 data after training on AMiCa
data.

Method AUC
Single-View Unrotated Images | 0.756
Single-View Rotated Images 0.791
Multi-View Fused Images 0.887
Multi-View Fused Predictions | 0.827

shown in Fig. 5. The analogous results for when the
deep classifier was trained using multi-view fusion im-
ages are shown in Fig. 6.

4.3. Discussion

Based on the limited study conducted, the use of
a deep classifier in conjunction with multi-view fusion
imagery is promising. Because explicit feature extrac-
tion is avoided, the various negative issues that arise
with multi-view data are elided. However, the image
fusion process can introduce other challenges. The clas-
sification approach implicitly assumes that the image
fusion is robust and accurate. But if an image-fusion
result is poor — say, due to one view being characterized
by inferior data quality — the classification stage will be
adversely affected. Poor fusion imagery in the train-
ing phase will contaminate the learning process, while
poor fusion imagery in the test phase can undermine the
multi-view prediction.

The single-view SAS imagery is well-structured
in the sense that there is a consistent, physical target-
sensor relationship that results in along-track and
across-track image axes. The image fusion process de-
stroys this structure. Potentially valuable shadow infor-
mation is also usually lost in the fusion process. For the
multi-view fusion to be worthwhile, the performance
gains due to more complete (highlight) imagery must
outweigh these drawbacks.

The experiments here addressed a binary classifi-
cation task of limited scope, attempting to distinguish
truncated cones from calibrated rocks. The true prob-
lem of interest for MCM is discriminating targets (i.e.,
mines) from clutter of all types. Unfortunately, imagery
of only purposely deployed objects — target shapes
and calibrated rocks — has been associated (via manual
ground truth) so far. An automatic clustering algorithm
to properly link multiple views of a given clutter object
is still needed, but AUV navigation errors complicate
this task. Nevertheless, a complete study of the bene-
fits of multi-view fusion imagery will eventually need
to address the general classification goal.
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Figure 4. For the deep classifier trained using unrotated single-view images from the AMiCa data
set, (a) the learned weights for layer 1, (b) the learned weights for layer 2, and (c) the learned basis

images for the entire classifier.
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Figure 5. For the deep classifier trained using rotated single-view images from the AMiCa data set,
(a) the learned weights for layer 1, (b) the learned weights for layer 2, and (c) the learned basis

images for the entire classifier.
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Figure 6. For the deep classifier trained using multi-view fusion images from the AMiCa data set, (a)
the learned weights for layer 1, (b) the learned weights for layer 2, and (c) the learned basis images

for the entire classifier.
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Attempting this more complex classification task
would require more data to be available for training.
With more data, more sophisticated deep classifiers can
be employed, such as deep convolutional neural net-
works [9] with many more layers of hidden units; we
have already begun exploring this approach for single-
view classification, for which promising initial results
have been obtained [10]. However, even with more
advanced classification methods, it is likely that envi-
ronmentally adaptive methods [11] developed for tradi-
tional “shallow” architectures can still be useful.

Future research will investigate the use of meta-
features extracted from the image background [12] —to
characterize the seabed or environment — as a way to
encourage the deep classifiers to favor certain subsets
of data during training. This would be necessary be-
cause it is unlikely that the diverse clutter class would
be fully represented in all environments of interest.

Finally, it is also of interest to generate multi-view
image fusion data sets from additional sea trials so that
more extensive experiments can be conducted. For ex-
ample, it would make sense to train the deep classifiers
using multi-view imagery collected during sea trials at
different geographical locations to increase the variabil-
ity within the data set and to improve the robustness of
the subsequent learned classifier. The great diversity of
the clutter class is again the driving factor for needing
to augment the available training data.

5. Conclusion

A preliminary investigation into the use of multi-
view fusion imagery for object classification tasks was
undertaken. The promise of the proposed framework,
which exploits multiple views of a given object at the
image level, rather than later feature or prediction lev-
els, was demonstrated on real SAS data collected by
the MUSCLE AUV. Importantly, the approach offers a
way to utilize both single-view and multi-view imagery
in a single consistent framework. The fusion imagery
used in the study was generated by an active contour-
based method, while a deep classifier based on Boltz-
mann machines was employed for learning. The study
provides one potential starting point from which the
value of adaptive surveys [13] — wherein multiple views
of an object are obtained — can be assessed. Future
research will focus on addressing classification tasks
with wider scope, and doing so with more sophisticated
(deep) classifier architectures.
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