
~TNSTEIN: Language and operation system

SIGNAL PROCESSING LANGUAGE AND OPERATING SYSTEM

by

s. Weinstein
Naval Research Laboratory
Washington, D.C., U.S.A.

ABSTRACT Signal Processing Language/One (SPL/I) was developed
at the Naval Research Laboratory (NRL) as a high-level computer
programming language for signal processing. SPL/I is the first
high-level language to be designed for real-time signal pro~es­
sing applications and selected for production use in the U.S.
military.

Signal Processing Language/One (SPL/I) is a high level computer
language developed primarily for use in signal processing. The
language was developed at the Naval Research Laboratory (NRL)
and is the first high-level language to be selected for produc-
tion use in a real-time signal processing application by the
United States military. The language is a very flexible block
structured language. It contains a wide variety of flow-of-
control statements, a rich set of data declarations, and a
thorough set of multiprocessing creation and synchronization
primitives.

The multiprocessing, or more properly, the multiprogramming
features, include process syncrhonization in the runtime
environment through the use of counting semaphores and binary
semaphores (SPL/I resource variables). SPL/I also provides
the user with the ability to terminate and activate processes.

The flow-of-control statements in SPL/I include the definition and
invocation of valued and non-valued procedures, the WHILE,
UNTIL, and FOR looping statements, the conditional IF-ELSE
statement, and the alternative selection CASE statement. The
remaining executable statements include an assignment statement,
limited GOTO, structured loop termination statements, and an
empty statement

SACLANTCEN CP-25 23-1

WEINSTEIN: Language and operation system

The language enables the user to manipulat e standard primitive
data Lypes (c.g., integers and bit strings). The user can
define <lnd u se eXLended data types consisting of groups of like
data (ARRAYs) and groups of unlike data (STRUCTUREs) in a
simple manner. These arrays and structures can be referenced
by accessing single elements, or the entire structure or array.
Subsections of arrays can be referenced by a method called
array "slicing". The user can declare variabl es both of dynamic
(AUTOMATIC) and static storage classes , and , under complete
programmer control , can perform runtime allocation and
deallocation of storage for variables. This flexibility allows
the user to control and perhaps reduce storage requirements for
many problems.

The commenting construct within sPL/r is one of nested square
bracket pairs. This, a long with the free format structure of
the language, makes the flow-of control in sPL/r software easy
to understand and encourages self documentation.

To enhance reliability in detecting program errors and again
encourage self-documenting code, sPL/r requires explicit
definitions of data types and variables, the compatibility
of data types in operations, and explicit conversions between
data types. These ar~ all checked at compile time, thus elimi-
nating a large class of possible error conditions.

sPL/r requires runtime support for the multiprocessing and
dynamic storage features of the language. To prevent the
proliferation of different executives for different SPLII
target computers, the Common Real-Time Operating System (CROS)
was developed by NRL as the common SPLII executive. In order
to aid in the transportability, CROS is itself written 93% in
SPL/I.

CROS offers a variety of process scheduling and dispatching
facilities. The scheduling options include process creation
on a demand basis, on a periodic basis, and in response to
asynchronous events.

CROS is structured such that it is possible to select a sub-
set of its many features that is right for a particular
system; thereby eliminating storage and time penalties that
would otherwise be incurred by unused language support.

Other features of CROS include high-level 1/0 and error
handling capabilities. For system design evaluation, CROS
offers historical data gather on event occurrences and
timing information on sections of the application system.

SACLANTCEN CP-25 23-2

WEINSTEIN: Language and operation system

After the user has coded part or all of a system the code is
then run through the SPL/I Compiler where semantic and syntax
checks are made and object code generated. This object code
is then stored in a library by the SPL/I librarian. The user
then runs the SPL/I Linkage Editor where the application
system is built and a load image built. The user now has the
opportunity to specify various attributes of the system and
libraries to search to resolve external references. In
addition, the Linkage Editor will choose the smallest version
of CROS that will handle all the features the user has
specified for the system. The user now can either run the
system on a simulator or on the machine itself.

Production use of SPL/I with CROS began in 1977 involving two
platforms running with the AN/UYS-l Advanced Signal Processor;
additional platforms will be added later. Effort is now
complete for ·retargeting SPL/I and CROS for the Navy standard
minicomputers AN/UYK-20 and AN/AYK-14.

The. 60Uowing pa.gu 06 v,uu.a.e. cUd te.m ~wnmcvUze. the. la.ngua.ge. a.nd ili
a.pplic.o.:Uon (Ed. J

DISCUSSION

J.E. Vernaglia Does SPL/I or CROS give the programmer any
assistance in setting up control blocks for the storage
transfer controller and arithmetic processor?

S. Weinstein Yes, and with the Modular Signal Processing
Software Development System currently under development,
the capabilities will be even further enhanced.

J.E. Vernaglia Did the conversion from assembly language
to SPLIT include all P-3 processing modes, 0r just LOFAR?

S. Weinstein No, but more than just LOFAR.

Y. Lundh You said SPL/I and CROS lend themselves to multi-
processing. How does SPL/I and/or CROS know what the multi-
processor looks like?

S. Weinstein Currently, CROS does not address the multi-
processor configuration.

SACLANTCEN CP-25 23-3

WEINSTEIN: Language and operation system

SPL/I

A HIGH LEVEL LANGUAGE
FOR DIGITAL SIGNAL PROCESSING

SPUI OVERVIEW

BLOCK STRUCTURED

STRONGLY TYPED

SCALAR AND ARRAY OPERATIONS

FACILITIES FOR INDEPENDENT PROCESS EXECUTION AND CONTROL

FEATURES NEEDED FOR DIGITAL SIGNAL PROCESSING, GRAPHICS, AND
SYSTEM PROGRAMMING

TARGET COMPUTER INDEPENDENT

DECLARATIONS DECLARATIONS

VARIABLE

MODE

PROCEDURE

Named memory location of a
particular data type

Programmer-declared data Iype

Block of code invoked as a val-
ued function or non-valued sub-
routine

PROGRAM Block of code activated as inde-
pendent process

SACLANTCEN CP-25 23-4

EXAMPLES

VAR A, B, C: INT;

MODE INT_ARRAY_3: INT ARRAY(·,',');
VAR M: INT_ARRAY_3 OF SIZE(3,4,5);

PROCEDURE SIN(X: FLOAT INPUT): FLOAT;
[sine computation I
•••

ENDPROCEDURE SIN;

VARIABLE
DECLARATION

NAME Name by which
programmer
refers to var iable

STORAGE CLASS Time of allocation of
variable

MODE

INITIALIZATION
PHRASE

Data type of variable

Optional initialization
value upon allocation
of variable

PRIMITIVE MODES

ARITHMETIC

INT

DINT

FLOAT

FRAC

CINT

CFLOAT

CFRAC

Integer

Double precision integer

Real

Fraction

Complex integer

Complex real

Complex fraction

MODE DECLARATION

ARRAY Homogenous data aggregate

STRUCTURE Non-homogeneous data aggregate

POINTER Pointers to data elements
allocated under programmer control

SACLANTCEN CP-25

\mINSTEIN: Language and ope r ation system

STORAGE CLASSES

AUTOMATIC

STATIC

GLOBAL/EXTERNAL

ALLOCATED
VARIABLES

Storage allocated at blocl< entry
and deallocated at block exit

Storage allocated before pro-
gram execution and deallocated
at program termination

Static Allocation but accessible
to multiple modules

St orage allocated dynamically
under programmer cont rol

PRIMITIVE MODES

LOGICAL

BOOl Logical (TRUE, FALSE)

STRING

BIT Bit string

STRING Character string

MUL TIPROCESSING

PROCESS Process identification

RESOURCE logical or physical resource

PROCEDURE AND PROGRAM
DECLARATIONS

NAME Name by which procedure is invoked
or program is activated as a process

FORMAL PARAMETER LIST List of names and modes of formal
parameters used by procedure or
program

RETURN MODE

BODY

23-5

Mode of return value on valued pro-
cedures only

Declarations and statements of pro-
cedure or program

VALUE

INOUT

INPUT

WEINSTEIN: Language and operation system

ASSOCIATIONS OF
ACTUAL AND FORMAL

PARAMETERS

+,"
'J
+,"

Formal parameter is copy of actual
parameter value at time of invocation.

Formal parameter refers to storage
location of actual parameter.

Formal parameter refers to storage
location of actual parameter. Cannot
be modified .

OPERATORS

ARITHMETIC

EXPONENTIATION
UNARY PLUS, MINUS
MULTIPLICATION, DIVISION
ADDITION, SUBTRACTION

.oPERATORS

RELATIONAL

STRING =,/=,<,>,< =,> =

CONCATENATION

LOGICAL

NOT LOGICAL NOT

AND LOGICAL AND

OR, XOR LOGICAL OR, EXCLUSIVE OR

VARIABLE REFERENCE

ALLOCATED VARIABLE REFERENCE

STRUCTURE COMPONENT REFERENCE

() ARRA Y ELEMENT REFERENCE

EXPLICIT MODE CONVERSIONS

VARA,B: STATICINT:
VAR C: AUTOMATIC FLOAT:

• • •
A : = B + INT(C);

SACLANTCEN CP-25 23-6

ARRAY AND SCALAR
ARITHMETIC

[SCALAR:(

[ARRAY:(

VAR I. J. K: AUTOMATIC INT;

1 := J + K;

MODE lIlT_ ARRAY ---2: INT ARRA y(o. 0) ;
VAR A. B. C:

INT --..ARRA Y ---2 OF SIZE(6.0) ;

•
A := B + C ;

ARRAY SLICING

MODE INT_ ARRAY_ 3: INT ARRAYr ... ·);
MODE INT_ ARRAY_ 2: INT ARRAY(·,,);

VAR AR1 : INT_ ARRAY_ 3 OF SIZE(l O. 10. 10);
VAR AR2: INT_ ARRII,Y_ 3 OF SIZE(lO. 10. 5);
VAR AR3: INT_ ARRAY!...-. 2 OF SIZE(lO. 5);

•
•
•

AR2 := ARl 1':.3 THRU 7) ;
AR1(·.1. 5 THRU 8) := AR2(·.3. 2 THR'J 5);
AR2(9) : = AR3;

•
•
•

SACLANTCEN CP-25

WEJNSTEIN: Language and operation system

23-7

EXECUTABLE
STATEMENTS

DATA MOVEMENT AND COMPUTATIONAL
ASSIGNMENT

PROCEDURE/CONTROL
PROCEDURE INVOCATION
RETURN

BLOCK/CONTROL
BEGIN
EX"

CONDITIONAL
IF-THEN-ELSE
CASE

EXECUTABLE
STATEMENTS

LOOP/CONTROL

WHILE
UNTIL
FOR

EXIT/TERA TlON
EXITLOOP

OTHER

EMPTY
GO TO

SACLANTCEN CP-25

WE,INSTEIN: Language and operation system

EXECUTABLE STATEMENTS

PROCESS MANIPULATION

ACTIVATE
TERMINATE

PROCESS SYNCHRONIZATION

REQUEST
RELEASE

CROS

COMMON REAL-TIME OPERATING SYSTEM

FOR

SPLII

CROS MOTIVATION

• NEED FOR EFFICIENT SUPPORT OF SPLII
"MULTIPROCESSING" STATEMENTS AND
FACILITIES

• POTENTIAL FOR PROLIFERATION OF SPLII
EXECUTIVE ENVIRONMENTS FOR DIFFERENT
TARGET COMPUTERS AND TARGET COMPUTER
CONFIGURATIONS

23-8

WEINSTEIN: Language and operation system

EVOLUTION OF SPLII EXECUTIVES
PROTEUS

SPLII
DEMO GP EXEC.

(NADC)
I

I
SPLII

UYK-20
SPLII

RUNTIME OS SUPPORT
(NRL)

I

COMMON REAL-TIME OPERATING SYSTEM (CROS)
(NRLlNADC)

I
MACHINE

INDEPENDENT
SPLII (90%)

MACHINE DEPENDENT
ASSEMBLER CODE

(10%)

COMM6N SPLII
EXECUTIVES

FOR
I

ANJUJO- 76
I

ANJUYK-20
I

ANJAYK-14

CROS(l) CROS(M)

eROS FEATURES

I
ETC.

• VARIETY OF SCHEDULING AND DISPATCHING FACILITIES

• ACCESSIBILITY OF FACILITIES FROM BOTH SPLII AND
ASSEMBLY LANGUAGE APPLICATIONS PROGRAMS

• EXTENSIVE SET OF OPTIONS FOR SUPPORT TRADEOFFS
AND REQUIREMENTS

• PRE-RUNTIME SPECIFICATION AND GENERATION OF
PROCESS ATTRIBUTES FOR RUNTIME EXECUTION
SAVINGS

• AUTOMATIC SELECTION OF SMALLEST VERSION WITH
REQUIRED FACILITIES

SACLANTCEN CP-25 23-9

WEINSTEIN: Language and operation system

eROS DESIGN GOALS

• OPERATING SYSTEM ENVIRONMENT FOR ALL SPLII
TARGET COMPUTERS-INITIALLY AN/UYS-1, AN/USQ-7S,
AN/UYK-20, AN/AYK-14

• SUPPORT FOR A WIDE RANGE OF OPERATING SYSTEM
FACILITIES FOR TACTICAL SIGNAL PROCESSING AND
" REAL-TIME" APPLICATIONS

• TARGET MACHINE-INDEPENDENT USER INTERFACE

• TARGET MACHINE-INDEPENDENT IMPLEMENTATION

• EXTENSIBILITY OF I/O FACILITIES

CROS PROCESSES

• SCHEDULING:
- ON DEMAND BY ANOTHER PROCESS
- PERIODICALL V
- ON EVENT OCCURRENCE

• DISPATCHING:
- PRIORITY-DRIVEN, 255 LEV~LS
- USER-SELECTED POLICY:

"NORMAL" - RUN TO COMPLETION OR BLOCKAGE
"ROUND-ROBIN" - PROCESSOR ALLOCATED EaUALLY

• COORDINATION:

SACLANTCEN CP-25

- VIA SPLII LANGUAGE FACILITIES

CROS SERVICE ROUTINES

• PROCESSES:
ACTIVATE, TERMINATE, ENABLE,
DISABLE, SUSPEND, UNSUSPEND

• RESOURCES:
REaUEST, RELEASE

• COUNTING SEMAPHORES:
INITIALIZE, P, V

• FREE STORAGE:
ALLOCATE,DEALLOCATE

23-10

WE,INSTEIN: Language and operation system

CROS EXECUTIVE SERVICE ROUTINES
(CONTINUED)

• HIGH LEVEL INPUT/OUTPUT

• ERROR HANDLING

• PERFORMANCE MONITORING

• EVENT RECORDING/TIMING

eROS 1/0

• FIRM INTERFACE SPECIFICATION FOR 1/0
DEVICE DRIVERS:

- REQUEST I/O ROUTINE
- WAIT ONI/O ROUTINE
- HALT I/O ROUTINE
- I/O INTERRUPT ROUTINE

• HIGH LEVEL (SPLIt) USER I/O PRIMITIVES

- OPEN/CLOSE
- READ/WRITE
- CONTROL

eROS LINK EDIT TIME

OBJECT CODE FROM:

APPLICATION LIBRARIES ,-

D LANGUAGE AN
PROGRAMMER
SUPPORT LIBRA RIES

CROS LlBR ARIES-

SACLANTCEN CP-25

SPLII
LlNI<AGE
EDITOR

DIRECTIVES FILE:
LINKAGE EDITOR

PROCESS DEFINITION
DIRECTIVES

23-11

RELOCATABLE
ODJECT
ELEMENTS

SACLANTCEN CP-25

WEINSTEIN: Language and operation system

CROS RUN TIME ORGANIZATION

FREE STORAGE

APPLICATIONS
SYSTEM

CROS TABLES

FREE STORAGI:

CROS

LINKAGE EDITOR PROCESS
DEFINITION DIRECTIVES

• DEFINE CROS FACILITIES
REQUIRED BY SYSTEM

• DEFINE NAMES AND CHARACTERISTICS
OF SYSTEM

• DEFINE SPECIAL PROCESSING
REQUIREMENTS OF SYSTEM

CROS CONFIGURATION OPTIONS

• MULTIPROCESSING/NONE
• PERIODIC PROGRAMS/NONE
• SELECTED EVENT PROGRAMS/NONE
• TERMINATIONS/NONE
• RESOURCE VARIABLES/NONE
• SEMAPHORES/NONE
• SYNCHRONIZATION VARIABLE

IMPLEMENTATION OPTIONS
• HISTORY OPTIONS
• ERROR HANDLING OPTIONS

23-12

