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Abstract 
A wavenumber integration approach to modeling of the full multistatic reverberant field produced by small-scale 
bottom roughness in stratified shallow water waveguides has been developed. A perturbation approach to rough elastic 
interface scattering has been combined with the OASES seismo-acoustic propagation model for stratified waveguides, 
yielding the capability of producing realizations and spatial statistics of bottom reverberation for multistatic sonar 
configurations in shallow water with a rough, stratified, elastic bottom. The formulation handles roughness with 
arbitrary anisotropic power spectra, and incorporates scattering into both the water column and the various seismic 
waves in the bottom. 

1. Introduction 
A numerically efficient wave-theory model of the full multistatic reverberant field produced by small-scale rough- 
ness patches in stratified shallow water waveguides has been developed. A perturbation approach to rough elastic 
interface scattering [l, 21 has been combined with the OASES seismo-acoustic propagation model for stratified 
waveguides. The original perturbation theory was based on a 2-D Fourier transform formulation, allowing only 
short range reverberation modeling for computational reasons. However, coordinate transformations have been 
developed, translating the representation for the scattered field into an azimuthal Fourier series expansion of 
wavenumber integrals. This representation is directly compatible with the 3-D version of the OASESJSAFARI code 
[3], which has consequently been modified to provide extremely efficient numerical simulation of high-frequency 
seismo-acoustic reverberation in shallow water waveguides. The model's efficiency allows for Monte-Carlo estima- 
tion of the statistical properties of the reverberation from patches with anisotropic roughness statistics, including 
mean reverberation intensity and spatial correlation. 

2. Rough Interface Reverberation Theory 
2.1. Pe r tu rba t ion  Theory  
The perturbation theory for scattering from rough elastic interfaces decomposes the wavefield into coherent and 
scattered components of the field potentials in layer number e, 

i d t  = ( d l )  + p t  
X.! = (xe) + s t  = *[ = (*[) +@ 

At = (At) + rl 
where X L  is a generic potential representing the compressional potential q5e and the two scalar shear potentials Qr 
and At, representing SH and SV waves, respectively [3]. 

Away from physical sources and the rough interfaces, both the coherent and scattered potentials satisfy homo- 
geneous Helmholtz equations 
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Figure 1: Rough interface patch in stratified waveguide, insonified by a seismo-acoustic field. 

where k represents the appropriate medium wavenumbers. 
In addition, the fields must satisfy the boundary conditions a t  all interfaces zl in the stratification, as well as 

the source conditions. Assuming the physical sources are limited to a single depth, z, ,  a dummy interface is added 
a t  this depth, and the interface conditions may be written in the operator form 

where N is the total number of physical and dummy interfaces in the stratification. The differential matrix operator 
Be represents the derivatives relating the physical parameters involved in the boundary conditions to the potentials 
[I]. Thus, Eq. 4 represents continuity conditions a t  all physical interfaces and discontinuity conditions imposed by 
the physical source distribution f,(x'). 

Similarly, the perturbation theory leads to a set of boundary conditions to be satisfied by the scattered field 
s (2 )  a t  all interfaces in the stratification [2], including a rough inte~face at  depth z,,, 

where the distribution function f,(?) is given by [I, 4, 51 

r elevation . l  

Here, ~(17) is the interface roughness elevation. Be is the same boundary operator as above, while br represents 
the rotation of the boundary conditions due to the roughness slope. 

Obviously, Eq. 5 is totally equivalent to Eq. 4, with the physical source distribution f,(l?) replaced by the dis- 
tribution function fv(x') a t  the depth of of the rough interface. Thus, fV(Z) represents a virtual source distrebution, 
the amplitude and phase distributions of which are determined by the coherent field and the roughness through 
Eq. 6. 

2.2. Wavenumber Representation 
For interfaces corresponding to separable cartesian geometry, the boundary equations 4 and 5 are conveniently 
transformed into the wavenumber domain, yielding for the scattered field [2] 

For random, spatially homogeneous interface roughness, the roughness statistics is given by the spatial correla- 
tion function NL(AF) or its Fourier transform, the normalized roughness power spectrum P@) ,  and the roughness 
variance (7;) 



Figure 2: Graphical representation of the scattering wavenumber kernel. The scattered field is a convolution in 
the wavenumber plane of the incident field by the anisotropic roughness wavenumber spectrum. 

Then, the following expression is achieved for the spatial correlation function for the scattered field [2] 

where A, (I, g) is the scattering kernel 

Here ec(z, Q) contains the exponentials representing the up- and downgoing scattered wavefield in layer e, and Tf,, 
is a generalized T-mat+ for the field in layer m produced by scattering from rough interface number e, 

The scattering integrals of both Eq. (7) and (10) are of a form convolving a medium dependent boundary 
operator term by the roughness spectrum at the difference wavenumber. This Brngg scattering condition is ilbs- 
trated graphically in Fig. 2. An incident field with a wavenumber spectrum centered around the wave vector k is 
convolved with an anisotropic roughness spectrum with skewness 8 ,  creating a scattered field composed of wave 
vectors Q within the lightly shaded envelope in Fig. 2, representing the roughness spectrum The medium depen- 
dent part of the kernel represents the modal structure of the waveguide, as indicated by the circles in Fig. 2. Thus, 
the resulting scattered field will have a modal structure in all directions, but shaded by the roughness spectrum 
centered a t  the incident wavenumber. As will be evident from the examples following below, the reverberation 
from finite size patches will qualitatively exhibit the same spectral behavior. 

3. Finite Roughness Patch 
Unfortunately, for realistic two-dimensionally rough interfaces, the convolution integrals in the correlation function, 
Eq. 10, become four-dimensional. Even though a normal-mode expansion of Eq. 10 has recently been developed, 
yielding orders of magnitude in computational savings [5], the full numerical evaluation of the three-dimensional 
field statistics through Eq. 10 has sofar been impossible. Consequently, numerical implementations have been 
limited to plane or axisymmetric problems with one-dimensional roughness [2, 51. 

To allow modeling of the fully three-dimensional reverberant field important to multistatic sonar concepts, an 
alternative approach has therefore been developed. Instead of directly evaluating the spatial statistics through 
Eq. 10, a deterministic form of the perturbation theory has been developed, based on spatial integration over finite 
roughness patches. As described in the following, this formulation leads to field expressions which are evaluated 
using modified versions of existing seismo-acoustic propagation models. It yields extremely efficient computation 
of specific realizations of the reverberant field from rough interface patches, such that estimates of the 3-D spatial 
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field statistics can be readily achieved through Monte-Carlo simulation with random realizations of the roughness 
statistics. 

For a finite size roughness patch or sonar footprint, the scattered field is more efficiently represented by spatial 
integral over the patch P, 

s(Z) = L G,(?, &)d2?, (12) 

where G,(x', t) is a Generalized Green's Function satisfying the standard Helmholtz equation, and the boundary 
conditions, 

Bt(x')GV(x',x',) = - 6 ( i  - ZV) fu(1)6(zl - z,,) . (13) 
where the virtual source distribution fv (x ' )  is given by Eq. 6. In a horizontal stratification, Eq. 13 is most conve- 
niently solved in the wavenumber domain, 

where the spectrum L(6 , iv )  is the Fourier transform of the virtual 'point source' term 6 ( 1  - 2, )  f,(Z). It is a 
vector containing coherent displacement and stress discontinuities on the patch, 

The wavenumber spectrum of the total scattered field is then obtained by integrating the solutions to Eq. 14 over 
the patch, 

~ ( 4 )  = B,(B, x',)d2%, (16) 

with the spatial distribution following by a two-dimensional Fourier synthesis, 

When numerically evaluating the inverse Fourier transform, the wavenumber increments must satisfy the 
Nyquist criteria, Aq,,y 5 n/Rmax [6]. Unfortunately, this condition severely limits the maximum range Rmax 
that is numerically feasible, to a few times the horizontal extent of the roughness patch [4]. 

However, it is possible to transform Eq. 14 to cylindrical coordinates, [7]. The associated spatial distribution 
of the field is then given by a Fourier series of Hankel transforms, 

cos m6 
s ( r , @ )  = Ern ( } / dq q~rn(rq)  [L ~ " q ,  r., ~.)rvdrud&] 

Here, the generalized Green's function G y ( q ,  r , ,  6,) can be directly computed using the three-d~mensional verslon of 
OASES [3] with the virtual source distribution being the discontinuities of the displacement and stress components 
of m-th Fourier order on the patch, 

The details of the coordinate transformation relating the components of the cylindrical source terms fp in Eq. 19 
with the cartesian components fv(i, x',,) in Eq. 15 involves a significant amount of algebra, the details of which 
are described in Ref.[7]. 

The Fourier series in Eq. 18 converges very fast for orders larger than the dimensionless size ka of the patch, 
due to the asymptotic behavior of the virtual source terms 

f,?(q, T O ,  6,) Jrn(qrv) + 0,  for m > qr, , (20) 

and the truncation is therefore easily determined a priori. Thus, the number of significant terms in the series 
depends only on the patch size with the typical number being equal to a few times the patch szze in wavelengths. In 
contrast the number of terms in the numerical evaluation of each of the two dimensions of the Fourier transform in 
Eq. 17 is determined by the receiver range. This difference is the key to the numerical superiority of the cylindrical 
form. 



Figure 3: Bottom patch with anisotropic roughness, insonified from the left at  40 kHz. The roughness has a 
Goff-Jordan power spectrum with correlation lengths 1, = 1.04 m and I ,  = 0.13 m, and RMS elevation of 4.7 mm. 
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Figure 4: Multistatic reverberation from the roughness patch in Fig. 3. Left frame shows contours of the two- 
dimensional wavenumber spectrum of the scattered field 5.2 m above the seabed. The wavenumber of the incident 
field is (k,, k,) = (168,O) corresponding to incidence onto the patch from the left. The right frame shows contours 
of the scattered field in a horizontal plane at  the same depth. Directions to the right represent forward scattering, 
while directions to the left represent backscattering. 

4. Numerical Results 
To illustrate the performance of the theoretical formulation in predicting the full multistatic reverberant field at  
high frequency, the Panama City bottom scattering experiment performed by Tang et al. is applied [a]. 

The experiment was carried out in a water depth of 30 m. An isovelocity water sound speed -of 1495 m/s is 
assumed, and the bottom is assumed to be a homogeneous, elastic halfspace with compressional speed 1711 m/s, 
shear speed 118 m/s, and density 2.01 g/cm3. The compression and shear attenuations were estimated to 0.09 
dB/X and 0.2 dB/& respectively. 

The bottom was insonified at  low grazing angles by a 40 kHz projector mounted on a tower, 5.2 m above the 
bottom. The insonifying beam had a vertical and horizontai beamwidths of 6" and 14", respectively. With a 
nominal grazing angle of 12.6" the sonar footprint was centered at  a distance of 23 m from the tower, and had a 
size of approximately 10 x 5 m. 

Figure 3 shows the sonar footprint with seabed roughness, for a case where the large main axis of the roughness 
power spectrum is aligned with the incident beam, i.e. the insonificition is 'broadside' to the roughness striation. 
The roughness has a Goff-Jordan [9] power spectrum with correlation lengths 1, = 1.04 m and 1, = 0.13 m, and 
RMS elevation of 4.7 mm. 

Figure4 shows the computed multistatic reverberation from the roughness patch in Fig. 3. Left frame shows 
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Figure 5: Bottom patch with anisotropic roughness, insonified from the left at 40 kHz. The roughness has a 
Goff-Jordan power spectrum with correlation lengths 1.04 m and 0.13 m, and RMS elevation of 4 7 mm. The skew 
angle of the roughness anisotropy is 45' 
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Figure 6: Multistatic reverberation from the roughness patch in Fig. 5. Left frame shows contours of the two- 
dimensional wavenumber spectrum of the scattered field 5.2 m above the seabed The wavenumber of the incident 
field is (k,, k,) = (168,O) corresponding to incidence onto the patch from the left. The right frame shows contours 
of the scattered field in a horizontal plane at  the same depth. Directions to the right represent forward scattering, 
while directions to the left represent backscattering. 

contours of the two-dimensional wavenumber spectrum of the scattered field 5 2 m above the seabed The wavenum- 
ber of the incident field is (k,, k,) = (168,O) corresponding to incidence onto the patch from the left The right 
frame shows contours of the scattered field in the same horizontal plane, i.e. the same level as the projector. The 
square area shown is 200 x 200 m, centered over the sonar footprint. Directions to the right represent forward 
scattering, while directions to the left represent backscattering. In this 'broadside' configuration, even though the 
forward scattering is dominant, the backscattering is significant. On the other hand, the out-of-plane, i.e. f 90°, 
bistatic angles show very low reverberation levels. 

Figure5 shows the same sonar footprint, but with the main axes of the roughness anisotropy rotated counter- 
clockwise by 45" . The roughness statistics is the same as in the previous case, i.e. the power spectrum corresponds 
to correlation lengths 1.04 m and 0.13 m, and RMS elevation of 4.7 mm. 

Figure6 shows the computed multistatic reverberation from the roughness patch in Fig. 5. The left frame shows 
contours of the two-dimensional wavenumber spectrum of the scattered field 5.2 m above the seabed. Again the 
wavenumber of the incident field is (k., k,) = (168,O) corresponding to incidence onto the patch from the left. The 
shading controlled by the Bragg scattering condition illustrated in Fig. 2 is evident, wlth the dominant scattering 
being into wave vectors in the lower right quadrant. This translates to out-of-plane-scattering towards the right 
relative to the incident direction, as is also evident in the right frame in Fig. 6 showing contours of the scattered 
field in the same horizontal plane. The square area shown is 200 x 200 m, centered over the sonar footprint. Again, 



directions to the right represent forward scattering, while directions to the left represent backscattering. In this 
configuration the forward scattering is still dominant, but the monostatic backscatter is reduced substantially, 
replaced by a significant out-of-plane component. Consistent with Fig. 2, the dominant scattering spans angles 
up to  90' from the forward direction, corresponding to bistatic angles up to twice the roughness skew angle (45') 
from the direction of the incident field. 

5. Conclusion 
A numerically efficient formulation for wave theory modeling of the full multistatic, reverberant field in stratified 
waveguides has been developed. A previously developed perturbation approach to scattering from rough interface 
patches has been transformed into a cylindrical coordinate formulation and implemented in the three-dimensional 
version of OASES/SAFARI. The new modeling capability has been applied to investigate the high-frequency 
reverberation from anisotropic roughness in a shallow water environment with a stratified, elast~c bottom 
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