
Wavelet Analysis of Side Scan Sonar Imagery for Classification 

John Impagliazzo*, Walter Greene* and Quyen Huy nh'k''' 
*Naval Undersea Warfare Center, Division Newport 
Newport, Rhode Island, USA 
**Naval Surface Warfare Center, Dahlgren Division. Coastal System Station 
Panama City, Florida, USA 

Abstract 

Wavelet-based technrques are presented for compressing ~ i d e  scan ~onar rntcrgey tornnzutirtnted from UUV's through 
band limited communication channels Tesrrng wrth an automatrc cla~stfrer on retoristructed rtnrrgec demonstrates 
exceptional performance in preservrng features requrred to rdentrfy mrne-lrke ob~ec t\ Wuvelet domarri automatrc target 
recognrtron technrques are studled to further rmprove coeff~crent selectron r r i  tornprerrrorr Thew techrzrques serve to 
enhance rmagefidelrty m the vrcrnrty of mrnelrke ob~ects whrle marntarnrng u high (ornpre~norl rarro 

1 .  Introduction 
Discrete wavelet transform analys~s techniques are appl~ed to a d e  scan sonar Imagery to develop techn~ques which 

effic~ently characterize Images and features for communication over l~rn~ted bandwidth channels [I]. A block dlagram of 
the proposed Image compresslon algor~thm 1s shown In figure 1 It comb~nes choostng an opt~mal wavelet bas~s to 
preserve mme-l~ke features as well as a methodology and crlterla tor reduc~ng the coett~ctent matrlx to a sparse array 
Wavelet-based detect~on and classificat~on methods are mcorporated to ~dentlty coett~cients assoc~~lted w ~ t h  the local 
structure of mlne-like objects The surviving coeft~c~ent crlterla are then we~ghted to preserve these coettlc~ents when 
generatmg the sparse wavelet matr~x for compresslon 

The techniques described here involve two different methods of analyzing wavelet packet coefficients for the presence 
of mine-like objects. The first method involves the matching pursuit algorithm. A dictionary of functions consisting of 
the wavelet coefficients corresponding to various object types is created. The method determines which function or 
combination of functions in the dictionary are most like the object in question. The second method involves a statistical 
analysis of the coefficients. By calculating the probability density functions (pdfs) of the coefficients, a likelihood ratio 
test can be performed to indicate the presence of a mine-like object. The advantages of these methods are that they use 
the wavelet-based time-frequency atoms already computed during the compression process rather than heuristic features, 
and that they can be used for many different types of image data. All that is required is a set of known objects from the 
images to create the pdf s or the dictionary functions. 
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Figure I.  Block Diagram of Wavelet-Based Image Compression Algorithm 
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samples at a 6 Inch resolution, and port and starboard lmages were collected s~multaneously, two 1024 by 51 1 pixel 
(pwture element) Images would be generated every 25 seconds. Without data compresslon, ~t could take as long as 45 
minutes to transmit 25 seconds of data. To malntaln real-time processing requirements, compresslon ratlos of from 25: 1 
to 100:l are required for an acoustic communications link or band limited radlo frequency (RF) or satellite llnk 

When a side scan sonar pings, an underwater mine or similar object moored or sitting on the ocean bottom will 
prevent sound from the sonar system from reaching the sea floor for some distance beyond the object. This produces a 
characteristic highlight and adjacent shadow highly localized in the side scan sonar image. An automatic target 
recognition algorithm, therefore, might categorize the dimensions and relative intensity of the highlight and shadow to 
determine if the object should be classified as mine-like. This algorithm would, however, be susceptible to false alarms if 
the data compression techniques employed produced artifacts in the compressed image resembling the highlight-shadow 
characteristic. This is an issue with the conventional Joint Photographic Expert Group (JPEG) technique at high 
compression ratios. 

The Navy Imaglng Database at the Naval Surface Warfare Center, Dahlgren Dlvlslon (NSWCDD), Coastal System 
Statlon (CSS), was used In the research described here The Images In thls database were produced by a sldescan sonar 
towed by a hellcopter The database conslsts of 60 Images, 30 of whlch have been designated as tralnlng lmages and 30 
as testlng lmages Flfteen of the 30 tralnlng lmages contaln one mine slgnature each, 16 of the 30 testlng lmages contaln 
one mlne, and one testlng Image contalns two m~nes, for a total of 33 mlne signatures The mmes In thls database are 
cyllndrlcal bottom mines that typically have both a hlghllght and shadow slgnature For thls sonar, a typlcal mlne 
slgnature has around 36 plxels In the hlghllght reglon and about 120 p~xels over the shadow zone, but this vanes greatly 
The data for each Image conslst of a matrlx of 1024 by 51 1 8-b~t unslgned lntegera For processing purposes, the last 
column 1s duplicated to glve 5 12 columns 

1.2 Side Scan Sonar Images 
Figure2, image si000206 (sonar image number 206), is an example from the Navy Imaging Database, which is 

referred to here as sonar0. Near range is at the top of this figure, with far range at the bottom. Cross-range (the direction 
of travel) is horizontal across the image. The near range appears to be smooth while the far range is rough; abnormalities 
appear as striations in the last 5% of range. The apparent smoothness of the near range is due to the higher angle of 
sound incidence. In reality, the roughness and tracks are distributed uniformly over the image. The dark tracks, in many 
cases, are caused by fishermen dragging shrimp nets. The orientation of the tracks is also evenly distributed, but more 
horizontal tracks show up because of their acoustic shadow. The axes shown are in pixels. Resolution in the direction of 
travel, approximately 15 cm (6 inches), is a function of the speed of the tow vehicle and the round-trip time of the ping to 
the farthest range. Resolution in range, also approximately 15 cm, is a function of the number of beams and the 
maximum range. The minimum resolution in range is also determined by the size of objects which need to be detected. 
Two mines are found at coordinates (427, 370) and (864, 159) and are shown in the blow ups in figure 2. The first mine, 
at (427,370), has a modest horizontal highlight and a pronounced shadow. The second mine, at (864, 159), is difficult to 
see. It has a small strong highlight and a small shadow, which is somewhat disguised because it is located on the edge of 
a track 
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Figure 2. Original Image si000206 
with Blowups of Mines 

Flgure 3 ~1000206 after 100: 1 Compression 
wlth Blowups of Mlnes 



2. Orthogonal Wavelets 

2.1 Wavelet Transform Analysis 
Efficient characterization of images is possible with wavelet time-frequency analysis techniques because of the local 

support property. Features well-localized in space are well represented by the set of coefficients overlapping the features' 
location. Other advantages of the discrete fast wavelet transform is that their complexity is of O(n) and they are 
implemented through finite impulse response filters. All of the discrete fast wavelet transforms provide perfect 
reconstruction. The primary differences among various types are the length of the filter, the required precision of the filter 
coefficients, and the relationship between forward and inverse filters. Orthogonal wavelet transform filters implement the 
same filtering at the forward and inverse transforms. 

Evaluation of compression performance is based on the visual fidelity of the Image and on comparisons of automatic 
classifier performance on the original image with performance on a duplicate image reconstructed from the substantially 
compressed image file. Figure 3 shows image si000206 after 100:l compression. The automatic classifier used to 
evaluate the images was developed by Dr. Gerald Dobeck and his colleagues at the Naval Surface Warfare Center, 
Dahlgren Division, Coastal Systems Station, Panama City, Florida, USA (21. 

The impressive success of wavelets is due mainly to the discovery of multiresolution analysis by Mallat [3]. 
Multiresolution analysis constitutes a useful functional analysis tool in wavelet theory and leads to the development of the 
very fast pyramid scheme to compute the wavelet coefficients. Although the fleet side scan sonar image is processed in 
two dimensions with the orthogonal wavelet algorithm, a brief description of the theory is presented here for one 
dimension. In practice, the one dimensional algorithm is applied twice, first to each row of the input matrix and then to 
each column of the row processed matrix. 

In the continuous wavelet transform, for a given function x(r), the coefficients are defined as follows: 

The parameters a and b have the effects of dilation and translation respectively. To discretize the transform in the 
timelfrequency plane, we let a = 1 12' and b = k l 2 ' ,  where j ,  k E Z . The coefficients thus become 

Finally, discretizing in time gives 

where N is the length of the input vector x[n]. The function W E  L'(R) is called an orthogonal wavelet if the family 
{vJk) is an orthonormal basis of L'(R) : that is, (yl,,, yl,,,) = 6,,6,, , where 6 is the Kronecker delta function. Note that the 

wavelet function is in L'(R) so that it has finite support in time. This dlffers from the trigonometric functions in Fourler 
analysis and gives the wavelet its ability to produce time information as well as frequency. 

The discrete orthogonal wavelet algorithm is actually implemented as a series of convolution and decimation 
operations with discrete-time wavelet filter banks, such as those developed by Daubechies [4]. We adopt the compactly- 
supported wavelet, Daubechies 6. The length of the wavelet was chosen fairly arbitrarily. However, some of our 
classification work has suggested that longer wavelet filters (e.g., Daubechies 20) tend to miss some mines, while shorter 
wavelet filters (e.g., Daubechies 2) have many false alarms. 

The discrete wavelet transform is implemented by a series of convolution and decimation operations with a pair of 
filters. Let x = {x[k]}f~~ be the discrete version of input signal At) of length K = 2 " .  This can be either a row of the 
image or a column of the coefficients after the rows have been processed. In the fast discrete wavelet transform, the 
signal x is first decomposed into low and high frequency bands by the convolution-decimation (subsampling by two) 
operations of x with the pair of a low-pass filter G = {g,}:z:, and a high-pass filter H = {hk}ILl,:, where L is the length of 
the filter. In orthogonal wavelets, the length of the two filters is the same. The filters G and H satisfy the orthogonality 
conditions: 

GH' = HG* = 0, and G'G + H*H = I .  
G and H are Quadrature Mirror Filters (QMFs), which allow perfect reconstruction. The decomposition process 
continues iteratively on the resulting low frequency bands and each time the high frequency bands are left intact. The 
iteration stops when there is one low frequency coefficient and one high frequency coefficient. As a result, the frequency 
axis is partitioned smoothly and dyadically in an octave-band fashion, ;IS shown in figure 4. Figure 4 shows the phase 
plane produced by the wavelet transform. The wavelet transform converts one-dilnensional data into two-dimensional 
data. The horizontal, or t ,  axis can be labeled by time or position, depending on the nature of the data, and increases to 
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the r~ght  The vert~cal, or f, axls IS usually labeled frequency, or scale, and Increases upward Different spat~al 
resolutions are given to d~fferent frequency bands Low frequency wlth low spat~al resolut~on 1s at the bottom, whlle, 
toward the top of the figure, the frequency resolut~on 1s decreased and the spatla1 resolution 1s Increased The entlre phase 
plane 1s covered by dlsjolnt cells of equal area wh~ch are called Hesenberg cells [5] The uncertalnty pr~nc~ple can be 
Interpreted as a rectangular cell located around a posltlon In the phase plane, (t,f ), that represents an uncertalnty reglon 
associated with ( r f )  The total number of cells IS equal to the d~mens~on ot the ~nput vector 

Time 

Figure 4. The TimeIFrequency Phase Plane 
for the Standard Wavelet Bases 
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Figure 5. The Complete Wavelet Packet Decomposit~on Tree 

2.2 Wavelet Packet 
For the wavelet packet transform [6], the high frequency band, which is left intact during each iteration of the wavelet 

transform, is also decomposed into finer frequency bands. Figure 5 depicts the entire wavelet packet decomposition tree. 
Level 0 represents the original signal x. The level I decomposition generates Hx , labeled x,, , and G.r, labeled X, . Gx 
represents the low frequency band and Hx represents the high frequency band. Applying the low-pass filter G and the 
high-pass filter H to both low and high frequency bands, we obtain four frequency bands H ' I ,  GH.x, HG.x and G2x 
ordered in decreasing frequency. This is the level 2 decomposition. The decomposition process continues to the 
maximum depth of J ,  where J = log , (n) ,  and finer frequency resolutions are obtained toward lower levels. Since each 
decomposition level generates equal boxes corresponding to a uniform partition of the frequency axis. the time axis is 
also windowed uniformly. Hence, the extent of the support of each bas~s function is essentially constant for a 
decomposition level. Note that each level forms an orthonormal basis on which to project the side scan sonar image. 

The full wavelet packet transform produces a wavelet packet tree structure containing many more coefficients than are 
needed to reconstruct the image. A basis vector of coefficients should be selected. The basis vector of transform 
coefficients can be constructed by selecting all the coefficients in a level, referred to as a level basis, or by selecting 
coefficients from different levels to obtain a "best" basis for the input data vector x. Here "best" can be in whatever 
measure desired. Certain rules apply which constrain the selection of coefficient sets to those having parent-child 
relationships within the wavelet packet decomposition tree [6]. For the fleet side scan sonar application, a level basis was 
selected which best characterized the spatial and spectral characteristics of the targets. The transform vector contains the 
same number of coefficients as the dimension of the input vectors from the original image, so this does not lead to 
compression. However, the forward transform increases the amount of energy contained in some individual coefficients 
and decreases others. Increasing the magnitude of individual coefficients increases the data requirements of the 
transform, but because the energy is conserved in the transform, most of the remaining coefficients are very small, 
approaching zero. Since deleting small coefficients does not significantly affect the total energy in the image, it will not 
cause significant distortion in the reconstructed image. The surviving coefficients now comprise the transform vector and 
can be encoded for compression using a zero run-length encoding technique. 

2.3 Orthogonal Transform Algorithm 
The algorithm for the orthogonal wavelet case is as follows: the one dimensional wavelet packet algorithm is applied 

twice, first to each row of the input matrix and then to each column of the row processed matrix. Only the level 3 basis 
coefficients for the lower half of the frequency spectrum are retained. This provides some filtering of high frequency 
noise. Next, the coefficients are sorted by magnitude for the spectrum of interest. Processing time is substantially 
reduced by only processing the pyramid algorithm to level 3 and by limiting the spectrum of interest to the lower half of 
the image bandwidth. The number of coefficients required to give the desired coinpression ratio is calculated; only this 
number of the largest coefficients, along with their locations in the coefficient matrix, are retained in the compressed 
image file. Zero run length encoding is currently used to encode coefficient locations. For reconstruction, the surviving 
coefficients are placed into their proper locations in the coefficient matrix while the rest of the coefficients are set to zero. 
The inverse wavelet packet transform is performed on each column, replacing the data that was there, and then on each 
row to produce the reconstructed image. This is the reconstructed image which is processed by the classification 
algorithm. 



2.4 Overall Performance 
The fleet side scan sonar images were compressed 25: 1, 50: 1, and 100: I using the orthogonal wavelet technique. The 

original image si000206 and si000206 after 100: 1 compression are shown in figures 2 and 3. The regions containing 
each of the two mines are shown in enlargements. At a compression ratio of 25: 1 ,  the most noticeable difference from 
the original image is the reduction of high frequency texture information from the background. This effect increases at 
50:l and, as can be seen at 100:1, the texture information has been mostly removed from the near range region. A 
significant weakening of the highlight or shadow contrast is not observed in either of the mines as the compression ratio 
is increased to 100: 1 .  

Comparison of the automatic classifier on the original and wavelet cotnprcssed data sets demonstrated that only 
minimal degradation was realized in the compression process. On the originill data set, the classifier demonstrated a 
probability of detection and classification (PdPc) of 91% and 0.28 false alarms per image (FAIimage). For the data set 
compressed by the orthogonal transform algorithm, PdPc = 83% and FAlimage = 1.1. 

3. Matching Pursuit 

3.1 Description 
Mallat and Zhang [7] Introduced a matchlng pursult algor~thm wh~ch allows a venal tunct~on to be decomposed Into a 

h e a r  expansion of funct~ons belonging to a redundant dlct~onary of wavetorrns Here, these wavetorm\ are tlme- 
frequency atoms computed from sample mlne and non-mlne Images The assumptron la  that the t~me-frequency atoms 
conslst of a pattern of wavelet coefficlents related to the local structure of the target The 5tructure Lan be d~ftlcult to 
detect from ~nd~vrdual coeffic~ents because the forward transtorm d~ffuses the rntormat~on acro\s the  bas^^ The 
advantage of the wavelet doma~n IS that the slgnal waveform and d~ct~onary waveform can be compressed uslng wavelet 
Image compression techn~ques, preserving ~nformat~on about the local target structure wrthout mak~ng as\umptlons about 
the nature of the target T h ~ s  compressron, In turn, mlnlmlzes the computatronal requrrements on the rnatch~ng pursult 
algorrthm 

Mallat and Zhang define a family, D = (g,)yer, of vectors in H, H = L'(R),  such that lg,l= I .  Letting f H . a linear 

expansion off is computed over a set of vectors selected from D to best match the local target structure. This 1s done by 
successive approximations o f f  with orthogonal projections on elements of L). Let g,,, E D .  The vector f can be 
decomposed into 

( 5 )  

where Rf is the residual vector after approximating f in the direction of 8 ,  . The vector R,,, is orthogonal to Rf, hence 

To minimize IRf 1 , g,,, E D , is selected such that K f ,  g,,, )I is maximized 

Cons~der~ng the lteratlve approach, let R" f = f To compute the resrdue R"  j at the nth ~terat~on, tor ,z >_ 0 ,  a vector 
g," E D IS chosen whlch best matches the resrdue Rt' f The res~due R" f 1s decomposed Into 

which defines the residue at the order n + l .  Since R"" f is orthogonal to g,,, , 

Extending this decomposition up to order m, equation (7) yields 
m-1 

f  = C ( ~ " f  , g ,  )g,,, + ~ " ' f ,  
n =O 

and equation (8) yields the energy conservation equation 

The original vector f is decomposed into a sum of dictionary elements that are chosen to best match its residues. 
Although the decomposition is nonlinear, it maintains an energy composition as rf ~t were a linear orthogonal 
decomposition. 

In the matching pursuit algorithm for target classification, the inner product of the signal function with each of the 
dictionary waveforms is computed. The waveform which best matches the signal function is selected for the iteration and 
a residue is computed from the signal function. The residue is formed by subtracting the selected waveform. scaled by 
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the correlation coefficient, from the signal function to produce a new signal function for the next iteration. After the last 
iteration the signal function is represented as a linear expansion of the scaled dictionary waveforms. Target-like objects 
are discriminated from non-target signal functions by comparing the energy in the dictionary's target waveforms to that 
of the non-target waveforms. The class associated with the greater energy is assigned to the signal waveform. 

3.2 Neural Network 
The classification of the target-like signal functions can be further refined by a back-propagation neural network. In 

order to implement the matching pursuit/neural network classifier, it was necessary to divide the training set of data into 
two subsets, A and B. Half of the training set, subset A, was used as target waveforms for the matching pursuit 
dictionary. Non-target waveforms were also in the dictionary and were selected from areas away from the target from the 
same target file. The remaining half of the training set, subset B, was processed using the matching pursuit algorithm 
having subset A in the target dictionary. These results were then scored to form two lists for training the neural network, 
a list of the functions for correctly classified targets and a list for the false alarms. The list of functions for correctly 
classified targets was augmented by an additional set generated from targets in training subset B with offset centers. 
Offsetting the target center in a 3 by 3 pattern increased the number of target waveforms by a factor of nine. Each 
displaced center was located four pixels horizontally and vertically from its neighbor. The target and false alarm lists 
were used to train a neural network to discriminate targets from false alarms for the limited set of target-like signal 
functions classified by the matching pursuit algorithm. 

3.3 Libraries 
The sonar0 training set consisted of 30 image files, 15 containing bottom targets. In order to decide how to group the 

targets into subsets A and B, each target in the training set was processed by a matching pursuit algorithm having a 
dictionary containing the other 14 targets. This test was conducted to identify target images having unique features and 
those have features redundant with other target images in the dictionary. Two of the targets were found to have unique 
characteristics based on the results of the matching pursuit processing. A minimum set of 5 targets, including the unique 
targets, was selected for the matching pursuit dictionary. This approach maximized the number of target samples 
available to train the neural network stage of the classifier. The dictionary therefore consisted of the 5 target samples and 
5 non-target samples randomly selected from the same image file. To scan an image file, a 32 by 32 pixel subimage was 
selected. Therefore each of the images in the dictionary also corresponded to a 32 by 32 subimage. The number of entries 
in the dictionary was increased nine fold by duplicating each of the target entries in a 3 by 3 offset pattern, where each 
displaced center was located four pixels horizontally and vertically from its neighbor. This improved the efficiency of 
scanning an image file by stepping the subimage processed as the signal function in 8 pixel increments. The sonar0 side 
scan sonar images contain 512 by 1024 pixels. Scanning a 32 by 32 subimage through a complete side scan sonar image 
required 8,196 increments. 

3.4 Results 
The slgnal functions and dlct~onary waveforms for the match~ng pursult algor~thm were compressed wavelet 

transformed sublmages The Daubechles 6 wavelet packet was used wlth filtering at levels I and 2 T h ~ s  reduced the 32 
by 32 coefficient matrlx to a 16 by 16 and 8 by 8 whlch were reformatted to a column vector Thls allowed the projection 
of the s~gnal funct~on onto the d~ct~onary waveforms to be computed as an Inner product w~th  the dictionary vectors 

Because of the limited number of target samples in the training set, only modest results were realized after preliminary 
testing of matching pursuit on the sonar0 test set. With filtering at level 1, PdPc = 89% and at level 2, PdPc = 78%. The 
neural network further reduced the FAlimage by 50%. but dividing the training set into subset A and B degraded the 
performance of both classifiers. To implement both a matching pursuit dictionary and a neural net training set, unique 
targets existing in the training set therefore could only be assigned to one or the other subset. The subset that did not have 
information on the unique feature did not detect targets which would have otherwise been found. 

4. Wavelet Coefficient Baysian Classifier 

4.1 Generating Probability Density Functions for Coeff~cients 
There are many more coefficients in the wavelet tree structure, shown in figure 5, than are needed for reconstruction 

of the image or for classification. The question is which coefficients should be used for classification. The matching 
pursuit algorithm answers this by using a subset of the coefficients in a basis based on compression. The selection of the 
basis was fairly arbitrary. The statistical classifier described here is an attempt to determine the ability of individual 
coefficients in the wavelet packet transform to discriminate between two classes of objects. There are a total of nlog(n) 
coefficients plus the n original data values themselves to choose from. In general, the number of inputs to a classifier will 
be less than or equal to the number of data points in the original signal. In order to determine which coefficients are best 
for classification, the probability density function (pdf) for each coefficient can be estimated. By generating the 
conditional pdfs for each coefficient, one can develop the optimal, or Baysian, classifier. The problem here is to 
determine the presence or absence of a mine-like object. Thus two conditional pdfs correspond to each coefficient. 
Transforming the image when there is a mine present, one obtains the values of each coefficient for the mine-present 
case. By transforming enough images with mines, one can use the distribution of the magnitude of each coefficient as an 
estimate of its pdf when a mine is present. Transforming an image with no mine produces the values for each coefficient 



for the no-mine case. With images where no mine is present, the distribution of the coeffic~ent magnitudes is an estimate 
of the pdf for the no-mine case. 

There are two problems which come up immediately with this procedure. Flrst, the number of images available with 
and without mines is very limited. To get a good estimate of the pdfs, a large number of examples is needed in each 
cpe .  Second, not every coefficient is affected by the presence of a mine in the image. Because of the resolution in 
position of the wavelet transform, the extent of the coefficient may not be on the mine in the image. In fact. if the entire 
image is transformed, there are very few coefficients which are actually affected by the presence of a mine. The others 
should all be considered examples of non-mine coefficients. 

The first problem is handled by not relying on an accurate pdf for each coefficient. Since there are a large number of 
coefficients, one can compensate for the inaccuracies of any one pdf by using many of them. There are two methods of 
handling the second problem. First, one can take the transform of only a small window of the image, approximately the 
size of a mine. Then, most, if not all, of the coefficients are affected by a mine in the window. The window can be slid 
through the image and a classification made for each location of the window. This method works well, but is very costly 
in the number of calculations needed. A second method involves only a single transform of the image. In this method, 
one transform is done on the entire image producing a large set of coefficients. Instead of scanning through the image in 
position, the coefficients from a location in the image are determined and only those are fed to the classifier. In effect, 
the image is scanned by selecting the proper set of coefficients in the right order. 

4.2 Discrimination Threshold 
In the binary classification case there are the following two hypothesis: 

1) Ho- no mine present, and 
2) HI - at least one mine present. 

The Bayesian test can be written as 

where P , I , - ( R I H , )  and pj, ,  (AH,) are the conditional probability densities and q is the threshold [8]. The ratio on the 
right is the likelihood ratio and is a random variable. The threshold is a number based on the a priori probabilities and the 
cost of each course of action. If the likelihood ratio is greater than q , the HI hypothesis is chosen and if the likelihood 
ratio is less than 7, the Ho hypothesis is chosen. Because it is difficult to assign costs and a priori probabilities in this 
problem, the Neyman-Pearson test is used. In this test, the conditional probabilities, 4: , probability of false alarm, and 
Po . probability of detection, are used. A value of 4: is specified and this determines the value of q . 

4.3 Selection of Coefficients for Classifier 
Given a desired probability of false alarm, the pdfs of the coefficients and the threshold determine a probability of 

detection. This could be done for individual coefficients, although that was not done here. At a particular level in the 
wavelet packet transform, and at a specific frequency (a frequency bin), there is a set of coefficients which depend only 
on position. Each coefficient corresponds to the same waveform which only differs by a shift in position. Since the 
probability of the mine being at any particular location is the same, it doesn't make sense to pick one coefficient out of the 
set as being better than the others for classification. Instead, all of the coefficients in the set which only differ by a shift 
are grouped into one pdf. This produces more examples for each pdf and so helps to improve the estimate. The pdfs 
now provide information about which frequency bins are best for classification. 

4.4 Classification 
Because the pdfs for the mine and non-mine cases overlap and are not perfect, there would be considerable 

missclassification using any one pdf. To improve the classification, many pdt's are used. To classify an area of the 
image, the magnitude of all of the coefficients which overlap that area are checked via the Bayesian test. If a majority 
indicate the presence of a mine, the area is classified as mine-like. To reduce the calculations required, only coefficients 
with the best pdfs, those with the highest P,, can be used for the voting. The overall classification procedure is as 
follows. The entire image is transformed producing a matrix of coefficients the same size as the image. The bases used 
for this transform should contain the coefficient bins which were determined to be best for classification. Each 
coefficient in the transform is compared to the threshold as shown in equation (I I) for its particular frequency bin, and a 
classification is made. All the coefficients which detected a mine are compared to see if they fall on the same location in 
the image. If enough mine classifications are at the same location, that location is classified as mine-like. 

4.5 Results 
Preliminary results produced uslng the stat~st~cal class~fier have been encouraging The method descr~bed us~ng the 

transform of only a small w~ndow of the Image, approximately the s ~ z e  of a mlne, was run on each mlne In the tralnlng set 
to generate the pdfs for the coefficients Because of the small slze of the wlndow, the pdf for every coeffic~ent at every 
level was estimated The best pdfs were then used to class~ty the lmages In the test set The recelver operating 
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characterlst~c (ROC) curve tor the results 1s st111 belng generated Work has started on the transtorm coefflclents from the 
whcle Image. Observations of the mlne and non-mlne cases show that pdfs for each case appear to be very sim~lar The 
best pdfs for class~ficat~on have yet to be determined 

5. Conclusions 
It has been shown that wavelet packet based transforms are an effective compression scheme. A high level of 

automatic classifier performance on reconstructed side scan sonar images, compressed by as much as 100: 1, demonstrates 
that these schemes effectively preserve the classification features of underwater mines. Promising results have also been 
presented for detection and classification techniques in the wavelet domain as a guide to the selection of coefficients in 
the compression process. The matching pursuit algorithm, which attempts to find a best match in a library of coefficient 
sets, and the statistical analysis, which attempts an optimal discrimination based on individual coefficients, both have 
shown good results in detecting mine-like areas. Correctly identifying coefficients related to the local structure of mine- 
like objects provides the ability to enhance the fidelity of the associated areas in the reconstructed image, while 
maintaining the required compression ratio. 

Further analysis will be conducted uslng a larger slde scan sonar data set to lesolve problems reallzed when there are 
only a small number of mtne signatures available, some of whlch are untque Redundant dlctlonarles ot tlme-frequency 
atoms over multtple bases will also be explored Even wlth Improvements made, operator lnterventlon w~ll  contlnue to be 
needed to reconctle false alarms from detected mlnes The volum~nous amount5 of data ~ollected by a 6 knot UUV will 
stdl generate a number ot false alarms per hour The enhanced fidelity provlded by the methods exanllned ~n this paper 
furnishes operators wlth a hlgher qualtty Image wlth wh~ch to reconcile targets and talse 'tlarms 
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