DETERMINATION OF THE INTENSITY OF SOUND AT ARBITRARY POINTS
IN THE SOUND-FIELD OF A SOURCE IN A HORIZONTALLY LAYERED MEDIUM

by

M.J. van der Scheur
Physics Laboratory, T.N.O.,
The Hague, Netherlands

The following method is based on finding all the rays through a point P and to add the corresponding intensities.

Consider a layered medium with a linear depth-velocity profile. The ray-path and the corresponding intensity losses are calculated according to a number of well-known formulae (Fig. 1).

To determine the intensity at P, we add an extra layer through P to the velocity/depth profile. When two rays, leaving the source with starting-angles close to each other, intersect the level through P on both sides of P, there will be generally at least 1 ray with a starting angle between the two mentioned ones, which reach the level at P.

An iterative process will give us the value of θ_0.

Of course we need a set of good starting values for this iterative process. Therefore, we define the characteristic velocities of the depth-velocity profile. These are the greatest velocities of each layer, provided that this value is greater than the velocity at the source-depth, C_B, and greater than all values occurring between the source and the layer considered. The corresponding characteristic values of $K(\theta_0) = \frac{C_B}{\cos \theta_0}$ gives the start angles of the rays, which will turn back just at the limit of a layer.

The horizontal distance between the source and a point on the ray, S, is a function of $K(\theta_0) : S = S(K(\theta_0))$. We consider one specified
depth level. S consists of a number of pieces of the type ΔS_1, ΔS_2, ΔS_3 (see Fig. 1). We can write in general

$$
S = \sum_{i=1}^{A_1} (\Delta S_1)_i + \sum_{i=1}^{A_2} (\Delta S_2)_i + \sum_{i=1}^{A_3} (\Delta S_3)_i
$$

Consider the derivatives of S [Fig. 2]. We see that $\frac{dS}{dK(\theta_0)}$ can be written as the sum of two monotonic functions, one increasing and the other decreasing. From this we can conclude that in the interval between two characteristic values of $K(\theta)$, $\frac{dS}{dK}$ has two zero points: $K(\theta*)$.

Now we add all the values $K(\theta*)$ for which $\frac{dS}{dK} = 0$ to the array of characteristic values $K(\theta)$. This means that in the interval between two successive values of array K, the function of the horizontal distance S at a certain level is monotonic. When two rays with successive values $K[i]$ and $K[i+1]$ intersect the considered level on both sides of P, there will be exactly 1 ray with a starting angle θ between $K[i]$ and $K[i+1]$, intersecting the level in P.

In our computer model the ray path will be symmetric, fixed by three values a, b, c [see Fig. 3].

As you can see, we make a difference between the direct and indirect rays. The n^{th} intersection with the level through P of the ray with value $K[i]$ lies at

$$
\text{DISTANCE} (K[i],n) = a + \left[\frac{n}{2} \right] * b + \left[\frac{n-1}{2} \right] * c
$$

for the indirect rays:

$$
\text{INDIST} (K[i],n) = d + \left[\frac{n}{2} \right] * b + \left[\frac{n-1}{2} \right] * c
$$

$K[i]$: the array of characteristic starting values.

For every value of n we decide if array $K[i]$ must be completed with values for which $\frac{dS}{dK} = 0$.

346
Define: \(\text{MAX}(n) = \max_i \text{DISTANCE}(K(i), n) \) \(\text{MIN}(n) = \min_i \text{DISTANCE}(K(i), n) \)

When for the horizontal distance between the source and the point \(P \), range \(P \), the following relation holds:

\[\text{MIN}(n) \leq \text{range } P \leq \text{MAX}(n), \]

then there will be rays intersecting the level considered for the \(K \)th time in \(P \).

When we repeat this process for \(n=1, \ldots, N \) both for direct as well as indirect rays, then we will find \(M \) rays going through \(P \). For each of these rays we determine the intensity and finally we find for the total transmission loss at \(P \)

\[N_{spr} = 10 \log_{10} \left[\sum_{i=1}^{N} \left(\frac{I}{I_P} \right) \right] \]

Of course there are some restrictions in the present computer model. Except for the restriction of a linear depth-velocity profile the most important assumption is that the sea surface is a flat plate in order to obtain a symmetric ray path. However, there is the possibility of giving an attenuation factor for each surface reflection. For the bottom similar assumptions are made.

When we introduce a waving surface, the simplicity of the computation disappears since the function \(S \) becomes much more complicated.

DISCUSSION

The author said that no comparisons had yet been made with measurements.
Transmission loss

\[R = R(e_0, k) : \text{horizontal distance between transmitter and receiver} \]

\[\frac{1}{R} = \frac{\cos \theta}{\sin \theta} + \frac{\sin \theta}{\cos \theta} \]

Transmission loss in dB

\[H = 10 \log \left(-\frac{k}{\cos \theta} \right) \text{ dB} \]

\[k = \frac{c}{\cos \theta} \quad \text{constant for 1 ray} \]

\[g = \text{velocity gradient} \]

\[k = k_0 \]

\[S_l = S_0 \left[\sin \theta - \sin \theta_0 \right] \]

\[= \frac{1}{2} \left[\sqrt{k^2 + c_n^2} - \sqrt{k^2 + c_m^2} \right] \quad \text{ray down} \]

\[S_h = S_0 \left[\sin \theta - \sin \theta_0 \right] \quad \text{ray up} \]

\[S_h = S_0 \left[\sin \theta - \sin \theta_0 \right] \quad \text{ray up} \]

\[S = \sum_{i=1}^{n} (S_{l1})_i + \sum_{i=1}^{n} (S_{l2})_i + \sum_{i=1}^{n} (S_{h1})_i \]

\[dS_i = \frac{1}{2} \left[\sqrt{k^2 + c_m^2} - \sqrt{k^2 + c_n^2} \right] \]

\[d(S_i) \]

furthermore:

- SECOND derivative always POSITIVE
- THIRD derivative always NEGATIVE

\[d(S_i) \]

is a monotonically increasing function

\[d(S_i) \]

is a function with two zero-points

Horizontal distance \(S \) as a function of \(k(\theta) \) on a certain depth-level

FIG. 1

FIG. 2

Direct Ray

--- Indirect Ray

FIG. 3
