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The K R A K E N  n o r m a l  m o d e  p r o g r a m  

M. Porter 

A b s t r a c t :  In the late 1970's several normal-mode models existed which were 
widely used for predicting acoustic transmission-loss in the ocean; however, 
each had i ts  own problems. Typical difficulties included numerical instabilities 
for certain types of sound-speed profiles and failures to  compute a complete 
set of ocean modes. In short, there was a need for a model that  was robust, 
accurate, and efficient. In order to  resolve these problems a new algorithm 
was developed forming the basis for the KRAKEN normal mode model. 

Over subsequent years, KRAKEN was greatly extended, with options for 
modeling ocean environments that  are range-independent, range-dependent 
or fully 3-dimensional. The current version offers the specialist a vast number 
of options for treating ocean-acoustics problems (or more generally acousto- 
elastic waveguides). On the other hand, it is easy for a less sophisticated 
user to learn the  small subset of tools needed for the common problem of 
transmission-loss moddeling in range-independent ocean environments. 

This memorandum addresses the need for a more complete user's guide to  
supplement the on-line help files. The first chapters give a fairly technical 
description of the mathematical and numerical basis of the model. Additional 
chapters give a simpler description of its use and installation in a manner tha t  
is accessible to less scientifically-oriented readers. 
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Chapter 1 

Introduction 

Normal mode methods have been used for many years in underwater acoustics. One 
of the earliest papers was published in 1948 by Pekeris [I] who developed the theory 
for a simple two-layer model (ocean and sediment) with constant sound speed in 
each layer. Progress in the development of normal-mode methods is represented in 
an excellent summary given by Williams[2] and published in 1970. Today, there 
are many models available that are based on normal modes [3-121. With respect to 
Pekeris's original work, these models allow for a more detailed description of both 
the ocean and sediment sound-speed profiles. 

Work on KRAKEN' was begun in 1980 as part of the author's dissertation with 
the objective of developing a normal mode model which was more robust, accu- 
rate and efficient[l3,14]. The basic algorithm was then extended to treat a more 
sophisticated ocean model in which the elastic properties of the ocean bottom are 
included[l5]. At the time, elastic normal mode codes were widely used by seismolo- 
gists but not very familiar to the ocean-acoustics community. Additional work was 
done to include the effects of shear flows (e.g. ocean currents) [16]. 

The KRAKEN model was initially developed as a research code to evaluate new 
algorithms. As such it required numerous modifications to be usable as a production 
code. This work was begun at the Naval Ocean Systems Center and continued at the 
Naval Research Laboratory in support of the research on matched-field processing. 

The extension to three-dimensional environments [17] was also done at NRL. 
That work led to the program FIELD3D which formed the nucleus of the Wide-Area 
Rapid Acoustic Prediction (WRAP) system. WRAP has been extended by a number 
of people and now includes options for noise modeling[l8] and can include this 
information to predict array performance in complex 3-D environments with different 
kinds of signal processing schemes. This report documents only the KRAKEN model, 
not the complete WRAP system. 

When the original KRAKEN work was done the algorithm was incorporated into 
the very popular SNAP model at SACLANTCEN and subsequently renamed to 
SUPERSNAP. Since 1984 SUPERSNAP has become the standard and is now simply 

'In answer to the most frequently asked question: KRAKEN krik-en n [Norw dial.] (1755): a 
fabulous Scandinavian sea monster. (Webster's Ninth New Collegiate Dictionary) 
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CHAPTER 1. INTRODUCTION 

Figure 1.1: Cachet engraving of a KRAKEN (from the Canadian Illustrated News, 
October 27, 1877). 

referred to as SNAP. As a result the current version of SNAP and KRAKEN provide 
identical results when run on the same problem. The execution time is also identical. 

In essence, the difference between the two models is that KRAKEN provides a 
large number of extensions and options, whose presence is an advantage to a sophis- 
ticated user and a disadvantage to the uninitiated. At SACLANTCEN, both models 
are being maintained: KRAKEN is recommended for more experienced modelers or 
for those requiring 3-D capability and SNAP recommended for those interested sim- 
ply in transmission loss calculations. Amongst the features of KRAKEN are: 

r efficient eigenvalue finding techniques guaranteed to converge 

r stable eigenfunction calculation even with multiple ducts 

r ability to handle rnultilayered environments 

inclusion of stratified elastic layers 

r inclusion of interfacial roughness 

tabulated surface and bottom reflection coefficients 

r choice of perturbational or exact treatment of loss 

r calculation of leaky modes 

r free, rigid, and homogenous half-space options for boundary conditions 

r adiabatic or coupled mode options for range-dependent problems 
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a tilted and displaced array calculations 

a high-accuracy via extrapolation 

a extension to 3-dimensionally varying problems 

This report is organized as follows. Chapter 2 provides a fairly technical de- 
scription of the mathematical basis for normal modes. This material is intended 
as a tutorial on normal modes and makes limited reference to the specifics of the 
K RAK EN model. Chapter 3 discusses the numerical treatment of the modal equation 
and Chap. 4 provides information on running the program. In Chap. 5 we present a 
number of test problems which exercise different parts of the code. These problems 
are not particularly physical but they do provide a means of verifying the model 
on a new installation. In addition, they illustrate the set-up of the input file for 
different types of environmental scenarios. 
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Chapter 

Mat hemat ical Formulation 

The normal mode solution involves solving a one-dimensional equation which is 
very similar to that of a vibrating string. In this analogy, the "frequencies" of 
vibration give the horizontal wavenumbers associated with the modal propagation 
and a varying string thickness corresponds to a change in sound speed with depth. 
The position where the string is plucked corresponds to the source depth and the 
relative excitation of the ocean modes depends on the source depth just as the 
harmonic balance of a note is affected by the position where the string is plucked. 

We will begin with a simple derivation of the normal mode equations based on 
separation of variables. This provides a quick means of introducing the gross features 
of the normal mode approach in Sect. 2.2. In Sect. 2.3, we present a generalized 
derivation which starts with the spectral representation of the acoustic field. This 
derivation is necessary for treating the more complex problems involving interfacial 
roughness, homogeneous halfspaces, or other more complicated boundary conditions 
which are treated in Sects. 2.5-2.7. Normal modes are normally thought of princi- 
pally in the context of range-independent problems, however, they can be extended 
in various ways to both range-dependent problems and fully three-dimensional prob- 
lems. These extensions are discussed in Sects. 2.8 and 2.9 respectively. 

2.1 Derivation 

The problem we consider is that of calculating the response to an isotropic point 
source in a stratified (i.e. range-independent) acoustic medium. The scenario is 
indicated schematically in Fig. 2.1. Within a layer the solution is governed by the 
acoustic wave equation: 

where P(T, z , t )  is the acoustic pressure as a function of depth z, range r ,  and time 
t .  In addition, s ( t )  is the isotropic point source, ~ ( z )  is the density and c(z) is 
the sound speed. For the moment we assume that the surface is a pressure release 
boundary and that at some sufficiently great depth D, the boundary can be treated 
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CHAPTER 2. MATHEMATICAL FORMULATION 

L. 

Figure 2.1 : Schematic of the range-independent environmental scenario. 

as perfectly rigid: 

(The perfectly rigid boundary is often used as a first approximation to  the ocean 
bottom, but in fact a pressure-release bottom is almost always a better approxima- 
tion: long range propagation is dominated by rays at grazing incidence where even 
a relatively fast bottom acts like a pressure release boundary.) Furthermore, we 
require 

P( r ,  z, t )  outgoing as r --+ oo. 

When discontinuous interfaces are present the wave equation applies within each 
smooth layer and interface conditions requiring continuity of pressure and normal 
displacement are imposed. 

The first simplification we make is to assume that we are only interested in a 
single frequency component, that is, the response of the ocean to a continuous hum. 
Thus, we assume that the source time series has the form 

which leads to a pressure field with the same harmonic time-dependence ': 

Making this substitution in the wave equation yields the so-called Helmholtz equa- 
tion or reduced wave-equation: 

'This choice of e-'" is probably the most common: KRAKEN is actually implemented using the 
opposite convention to be compatible with certain FFP models. You need to be alert to this point 
if you are using model output to do matched-field processing. 
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2.1. DERIVATION 

Using the technique of separation of variables, we seek a solution of the unforced 
equation (with the source removed) in the form p(r, z )  = Z(z)R(r). Thus we find, 

The two components in square brackets are functions of r and z respectively. Thus, 
the only way the equation can be satisfied is if each component is equal to constant. 
Denoting this separation constant by k2 we obtain the modal equation: 

The modal equation is a classical Sturm-Liouville eigenvalue problem whose 
properties are well-known[28]. (We assume for the moment that p(z) and c(z) are 
real functions.) A brief summary of these properties follows. The modal equation 
has an infinite number of solutions (modes) which are characterized by a mode shape 
function Z m ( z )  and a horizontal propagation constant km.  These horizontal prop- 
agation constants, are all distinct. The function Z m ( z )  is an eigenfunction and km 
or k& is an eigenvalue. The mth mode has m zeroes in the interval [0, Dl and the 
corresponding eigenvalues, k a  are all real and we choose to order them such that 
k;  > k: > - .. One can also show that all the eigenvalues are less than w/cmi ,  where 
cm;, is the lowest sound speed in the problem. 

In addition, the modes of such Sturm-Liouville problems are orthogonal. That 
is. 

for m # n. 

The solutions of the modal equation are arbitrary to a multiplicative constant as is 
easily seen from Eq. (2 .7) .  In order to simplify certain results, we shall assume that 
the modes are scaled (normalized) so that 

With this scaling, the modes form an orthonomal set. Furthermore, the set is 
complete which means we can represent an arbitrary function as a sum of the normal 
modes. Thus, we write the pressure as 

If we now substitute this into Eq. (2.5) we obtain: 
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CHAPTER 2. MATHEMATICAL FORMULATION 

This implies, 

Next we apply the operator: lD(.)E dz ,  

to this equation. Because of the orthogonality property (Eq. 2.8) only the nth term 
in the sum remains. This gives us: 

This is a standard equation whose solution is given in terms of a Hankel function[28] 
as 

i 
R[(T) = - Zr(z,) ~ ! "~ ' (k l r ) .  (2.14) 

4 ~ (  2s) 

The choice of HA') or HA') is determined by the radiation condition (that en- 
ergy should be radiating outward as T + m). Since we have suppressed a time- 
dependence of the form e-iwt with w positive and since the kl are chosen to lie in 
the right-half plane we shall take the Hankel function of the first kind. Putting this 
all together, one finds that, 

or, using the asymptotic approximation to the Hankel function, 

We normally plot not the complex pressure field but transmission loss. Trans- 
mission loss is defined by: 

TL(T, z) = -20 log lp4!f?l) 1 , 
where 

(2.18) 

is the pressure for the source in free space. Thus one may write: 
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2.2. THE ISOVELOCITY PROBLEM 

Figure 2.2:  Schematic of the isovelocity problem. 

In some cases it is useful to calculate an incoherent transmission loss defined by: 

If one is comparing tc  .'# asured data which '1.9 been taken by averaging over 
frequency one can often sjriiulate the resulting smc Jthed result by an incoherent TL 
calculation. Incoherent transmission loss is also often appropriate for shallow water 
problems. In shallow water the modes are normally bottom-interacting and bottom 
properties are usually poorly known. This in turn means that the detailed interfer- 
ence pattern predicted by a coherent 'I'L calculatit~n is not physically meaningful. 

The Isovelocity Problem 

The principal numerical problem is to solve for the normal modes Z,,,(z) corre- 
sponding to Eq. (2.7).  The sound speed profile, c ( z )  assumes a fairly arbitrary form 
so simple analytical techniques are generally not useful. On the other hand, it is 
instructive to consider some simple profiles in order to understand the qualitative 
features of modal problems. The simplest such case is the isovelocity profile with 
unit density as shown in Fig. 2.2.  The general solution is 

where 
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10 CHAPTER 2. MATHEMATICAL FORMULATION 

The surface boundary condition implies that B = 0 while the bottom boundary 
condition leads to: 

Ay cos 7 D = 0. (2.23) 

where D is the depth of the bottom. Thus, either A = 0 (the trivial solution) or we 
must have 

n ,  m = 1 , 2  ,..., 

that is, k must assume particular values, 

The corresponding eigenfunctions are given by, 

where we have chosen the constant A so that the modes have unit norm as specified 
in Eq. (2.9). 

Equation (2.24), which relates the frequency w to the wavenumber k,, is known 
as the dispersion relation. Plots of w versus k, are in turn called the dispersion 
curves. The quantities u,(w) = w/k, and u,(w) = dwldk are respectively the phase 
velocity and the group velocity of the mth mode. The group velocity is associated 
with the radial speed of propagation for a pulse. 

The eigenvalues divide into two classes corresponding to propagating and evanes- 
cent modes depending on whether the argument of the square root in Eq. (2.24) is 
positive or negative. In either case, the square root admits two values k, and - k,. 
The positions of these eigenvalues are indicated schematically in Fig. 2.3 by circles. 
(Their precise positions depend on the frequency, depth and sound speed.) 

For the propagating modes we select the branch which gives an outgoing wave. 
Since we have suppressed a time dependence of the form e-i"t we should take the 
positive value for k,. These eigenvalues are indicated by the filled circles lying on 
the positive real axis in Fig. 2.3. 

For the evanescent modes we have to choose between roots of the form ia and 
-ia where a is a positive real number. These modes have the property of either 
growing or decaying in range. In order to have a bounded solution we take the 
branch for which 6, lies in the upper half-plane, i.e. k, = ia with a positive. These 
eigenvalues are indicated by the filled circles lying on the positive imaginary axis in 
Fig. 2.3. 

The real eigenvalues have an upper bound w / c .  As we reduce the frequency, the 
eigenvalues on the real axis slide to the left and up the imaginary axis. At a sufFi- 
ciently low frequency the first mode will make the transition leaving no propagating 
modes. The frequency at which this occurs is called the cut-off frequency for the 
waveguide. 

As a concrete example, consider the isovelocity problem with sound speed c = 
1500 m/s, depth D = 100 m, and source frequency f = 100 Hz. Selected modes are 
plotted in Fig. 2.4. Note that the mth mode has m zeros. 
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2.2. THE ISOVELOCITY PROBLEM 

Complex 
k-plane 

Figure 2.3: Location of eigenvalues for the isovelocity problem. 

KRAKEN- lsoveloclty problem 

Mode 1 Mode 2 Mod. 3 Yedm 4 
urnox - o . ! r I 4  - - 0.1414 - 0.1.84 - . &I.(4 

Figure 2.4: Selected modes of the isovelocity problem. 
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CHAPTER 2. MATHEMATICAL FORMULATION 

Substituting the formula for the isovelocity modes given in Eq. (2.25) into Eq. (2.15) 
we obtain a representation of the pressure field: 

Similarly, from Eq. (2.19) we obtain a representation for the transmission loss as 
-10 log I where I is an intensity defined by 

In Fig. 2.5 we display the transmission loss for this problem keeping 1, 2 and 
3 modes respectively in the modal sum. The source depth is z, = 25m and the 
receiver depth is z = 50m in these calculations. Note that as we increase the 
number of modes the detail in the TL curves also increases. This can be understood 
by writing the intensity as 

where, 

and 

With just one mode in the series, the complex pressure involves an oscillatory term of 
the form eik' , however, its envelope (the intensity) is smooth as indicated in Fig. 2.5. 
With two modes in the series the intensity is seen to include a term cos[(kl - k2)r] 
giving the two-mode interference pattern in Fig. 2.5(b). Note that the interference 
pattern occurs over a scale significantly larger than the wavelength. Finally, with 3 
modes the interference structure shows a further increase in complexity as shown in 
Fig. 2.5(c). 

Many of the properties we see for the isovelocity profile will carry through to 
more general profiles. On the other hand, while it may still be useful to speak of 
propagating and evanescent modes, the distinction is blurred when attenuation is 
included for then all of the modes are displaced into the first quadrant and so all 
the modes have both a propagating and an evanescent component. Similarly, the 
cut-off frequency is poorly defined iri such cases. These points will be made clearer 
as we consider more complicated cases. 
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2.2. THE ISOVELOCITY PROBLEM 

RAKEN- I sove l~c i ty  problem 
F = 100 H z 1  

J 
10 20 30 40 50 

Range (krn) 

!rn 1 I 
0 10 20 30 40 59 

Range (krn)  

Figure 2.5: Transmission loss for the isovelocity problem using (a) 1 mode, (b) 2 
modes and (c) 3 modes. 

Report no. changed (Mar 2006): SM-245-UU



CHAPTER 2. MATHEMATICAL FORMULATION 

Figure 2.6: Schematic of the Pekeris problem. 

2.3 A Generalized Derivation 

The derivation of the modal equation which was followed in Sect. 2.2 is inapplicable 
in many ocean acoustic problems. The key assumption was that after applying 
the separation of variables we obtained a Sturm-Liouville problem which was non- 
singular and therefore possessed a complete set of normal modes. As we shall see, 
even fairly simple scenarios can lead to singular problems for which the normal 
modes do not form a complete set. More generally, one obtains a mixed spectrum 
composed of a discrete and a continuous part. The discrete spectrum in such cases 
leads to a representation involving a sum of modes while the continuous spectrum 
involves an integral over a continuum of points in k-space. 

A simple example of such a problem is provided by the Pekeris waveguide which 
consists of an isovelocity layer over an isovelocity halfspace. We shall consider the 
particular problem shown schematically in Fig. 2.6. 

Applying the separation of variables technique to this problem we obtain the 
modal equation (2.7) but with the bottom depth D going to infinity: the modal 
equation is singular. We can make the domain finite by constructing a boundary 
condition to be applied at the interface between the two layers. To construct the 
equivalent boundary condition, we observe that the general solution in the halfspace 
is given by, 

Z H S ( z )  = Be-7bz + CeYbz, (2.31) 

where, 
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2.3. A GENERALIZED DEWATION 

and cb denotes the sound speed in the bottom. Let us assume for the moment that 
yb is positive. Then, in order to have a bounded solution at infinity, we require C 
to vanish. At the interface, we require continuity of pressure and normal velocity: 

where p and pb denote the density in the water and bottom respectively. Dividing 
these two equations we find that Z ( z )  must satisfy the boundary condition 

Our modal problem then reads: 

where, 

Now we have a modal problem defined on a finite domain, but the boundary condi- 
tion involves the eigenvalue k2. Furthermore, the eigenvalue enters through a square 
root function which introduces a branch cut in the k-plane. Thus, we can convert a 
modal problem from an infinite domain to a finite domain but the problem remains 
singular and we are not assured of the completeness of the eigenfunctions. 

We shall take another tack which, briefly stated, is to take the spectral integral 
representation of the solution; close the contour; and calculate the integral as a sum 
of residues. The terms due to the residues will turn out to correspond to the modes 
of the problem. Thus, we start with the spectral integral representation[50] 

where, G(z, z,; k )  satisfies: 
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16 CHAPTER 2. MATHEMATICAL FORMULATION 

and primes denote differentiation with respect to z. The top and bottom boundary 
conditions involve functions f T I B ,  representing an angle-dependent impedance. 
Incidentally, this form allows for fairly complicated bottom types. For instance, 
Ref. [15] shows how to construct an impedance condition equivalent to an elastic 
subbottom. 

We shall write this problem symbolically as, 

The solution of this boundary value problem is given in standard texts (e.g. Ref. 
[41]) as: 

G(z, z,; k) = -pl(z<; k)p2(z,; k) 
W(z,; k )  

where z< = rnin(z, z,) and z, = max(z, 2,). Furthermore, W(z; k )  is the Wronskian: 

where pl,p2 are any non-trivial solutions satisfying the top and bottom boundary 
conditions respectively. That is, 

Let us consider a problem such as the Pekeris waveguide which, has a single 
branch cut from a lower halfspace boundary condition. We next close the contour 
in the spectral integral representation by adding the semicircle C, and the branch 
cut integral CEJP as shown in Fig. 2.7. (This particular choice of the branch cut 
which follows the axes is called the EJP cut after Ewing, Jardetsky and Press[42]). 
Then from Cauchy's integral formula we can write the integral as a sum of residues: 

where res(k,) denotes the residue of the mth pole which is enclosed by the contour. 
These poles are indicated schematically by the Wed circles in Fig. 2.7. (Their precise 
positions depend on the frequency and parameters of the waveguide.) Additional 
poles, which are not enclosed, will also occur as indicated by the hollow circles. 
Furthermore, depending on the particular problem and the choice of the branch cut, 
the number of such residues may be zero, finite or i h t e .  

As the radius of the semicircle C, goes to infinity, the contribution of that 
contour goes to zero because the Hankel function decays exponentially as the radius 
increases. Substituting the representation of the Green's function given in Eq. (2.40) 
into Eq. (2.38) we then obtain a representation of the field as a sum of residues plus 
a branch-cut integral, viz.: 
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2.3. A GENERALIZED DERlKATION 

Figure 2.7: Location of eigenvalues for the Pekeris problem (EJP branch cut). 

where, k ,  is the mth zero of the Wroriskian. We arbitrarily order these zeros so that 
R e { k l )  > R e { k 2 )  > . . .. The equation defining the eigenvalues ( W ( z , ;  k,) = 0) is 
known as the characteristzc equation or secular equation. (In general, any equation 
whose roots are the eigenvaiues will :,r: called a characteristic equation.) 

NOW if W ( k m )  = 0 then P ~ , ~ ( I :  k,j are linearly dependent and we can simply 
scale them so that they arc equal. We shall therefore define Z,(z) = p l ( z ;  k,) = 
p z ( z ;  k,) which satisfies, 

T h s  is, of course, the standard modal equation. if'k, and Z m ( t )  form a non-trivial 
solution of this modal equation, then k, IS a zero of the Wronskian and vice versa. 
In terms of 2, we can write 

This representation of the pressure field is somewhat inconvenient since it re- 
quires the evaluation of d W / d k  which is defined in terms of functions plnz(z ;  k )  that 
may not be readly available in a particular numerical scheme. In order to simplify 
this expression, we seek an alternate form for a W / d k .  The following result is derived 
in the next subsection: 
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By properly scaling Z,(z) we can make aW(z,; k ) / d k l k = k ,  = 1. Thus we obtain 
our final representation for the pressure field as 

2 

E J P  

where the modes are normalized such that 

(An alternate derivation of this result is given by Bucker[43] for the constant density 
problem.) 

It appears we have only made the problem more complicated since we have 
converted the original spectral integral form to one involving a sum of modes plus 
another integral term. In practice, however, the branch cut integral can generally 
be neglected if we are sufficiently far from the source. 

The particular nature of the boundary conditions is important in determining 
the representation. As we have seen, if the upper boundary is a pressure release 
boundary and the lower boundary is perfectly rigid, then there are no branch-cut 
contributions: the solution is represented entirely as an infinite sum of modes. In 
problems with an elastic halfspace, there will be branch-cut terms associated with 
both S- and P-wave velocities in the halfspace. 

Furthermore, the number of terms in the residue series depends on the particular 
branch cut taken. For instance, if we take the Pekeris branch-cut shown in Fig. 2.8 
then it turns out that an additional (typically infinite) set of poles is exposed. These 
poles are represented by the filled circles numbers 4-6 in the figure. The poles in this 
second set lie off the real axis in the first quadrant and as a result decay exponentially 
in range. For this reason the corresponding modes are referred to as leaky modes. 
Thus, we can obtain an infinite variety of representations of the field depending on 
the choice of branch cut. 

In principle, the Pekeris cut offers an advantage in exposing the leaky modes for, 
as we shall see in the next section, by including the leaky modes we can obtain a 
solution which is more accurate in the near field. In practice, it is somewhat difficult 
to reliably locate the leaky modes so the potential gain may come at the expense of 
robustness in the model. In addition, the leaky modes grow exponentially in depth 
and at some ranges and depths yield a diverging series. Alternatively, it is also 
possible to calculate the branch cut term numerically as discussed by Stickler [ll]. 

In order to clarify some of these points, let us return to the Pekeris waveguide 
problem. The solution in the ocean layer which satisfies the pressure release surface 
condition is given by 

Z ( t )  = Asinyz, (2.50) 

where, 
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Figure 2.8: Location of eigenvalues for the Pekeris problem (Pekeris branch cut). 

In order to obtain a non-trivial solution that satisfies the bottom boundary condi- 
tions we must have 

This is a transcendental equation for the eigenvalues k m ( w ) .  
In Fig. 2.9 we have plotted selected modes of the Pekeris problem. We see that 

modes 1 and 4 are qualitatively similar to the previous isovelocity problem: the 
solution in the water column is again a sinusoid however the vertical wavenumber is 
different due to the change in phase associated with the bottom reflection coefficient. 
Also plotted in Fig. 2.9 are modes 10 and 12  which are leaky modes and therefore 
manifest a non-zero imaginary part as shown by the dashed line. 

Neglecting the cylindrical spreading term, the contribution of an individual mode 
to the pressure field is proportional to 

Thus, the modes can be thought of as consisting of an up and downgoing plane-wave 
with an angle of propagation 9 defined by tan0 = k m / y m .  The branch point occurs 
at k = w / c b  which in the angle domain corresponds precisely to the critical angle. 
Thus, the modes whose angles are less than the critical angle are trapped, that is, 
radiate no energy into the halfspace. The leaky modes however have angles above 
the critical angle and lose energy into the lower halfspace. 
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KRAKENC-Pekerls problem 

Mode 1 Mode 4 Mode 10 Mode 12 
u l m m  - 0 . 1  u n r x  - 0.137 - - 0.1- mr - - 

Figure 2.9: Selected modes of the Pekeris problem. 

2.3.1 Derivation of the Normalization Formula 
In the previous section we used an expression for aW/ak necessary for normalizing 
the modes whch for completeness we shall now derive. We consider the problem: 

( z )  [ G Z ]  + ( - k2) G(z) = - zs), 
P(Z)  

where primes denote differentiation with respect to 2 .  We shall write this problem 
symbolically as, 

C(k,)g = 6(z - z , ) ,  Blg = B2g = 0. 
The Wronskian is defined by: 

where pl,p2 are any non-trivial solutions that satisfy the top and bottom boundary 
conditions respectively. That is, 

Let 2, be a solution of the unforced boundary value problem, 
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Then, 

or, equivalently, 

This can also be written: 

Taking the integral then gives: 

We shall need two intermediate results giving the value of the term in square brackets 
at z = 0 and z = D. To obtain the value at z = 0 we note that W(z)/p(z) is constant 
since, (7) ' - - ( P I P :  - p i p 2 ) /  - - 5 Cp2 - P ~ L P *  = 0 .  

P P 
Thus, we can write: 

and solving for p',(O) one obtains, 

This enables us to write, 

We can eliminate the derivatives from this equation using the upper boundary con- 
dition: 

Thus Eq. (2.63) becomes: 
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This gives us the value of the term in square brackets in Eq. (2.59) evaluated at 
z = 0. The value at z = D is can be written down directly as: 

where we have used the bottom boundary condition, 

Using the results of Eqs. (2.65) and (2.66) in Eq. (2.59) we obtain, 

W(z,; k) - W(z,; k,) 
+ + (k2 - k a )  ID p2%z = 0 (2.68) 

P ( 4  0 P 

where we have added in the term W(z,;  k,). This is permissible since W(z;  km) = 0, 
that is, the Wronskian vanishes when k is an eigenvalue. 

The functions P ~ , ~ ( Z ;  k) and Z,(z) may all be scaled freely and still satisfy 
their respective governing equations. Therefore, without loss of generality, we take 
p2(D;  k )  = Zm(D). Now, dividing both sides of the equation by k - km and taking 
the limit as k 4 km we obtain the final result: 

2.4 A Deep Water Problem: the Munk Profile 

The Munk ~rofile[47] is an idealized sound speed profile; however, i t  allows us to 
illustrate many features that are t,ypical of deep-water SSP'S. In its general form, 
the profile is given by 

The quantity E is taken to  be 
r = 0.00737 

while the scaled depth t is given by 
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Figure 2.10: Schematic of the deep-water problem. 

The resulting profile is plotted in Fig. 2.10. The bottom is taken to lie at a depth 
of 5000m. In addition, the bottom sound speed is 160Om/s and the bottom density 
is 1 g/cm3. Taking a source frequency of 50 Hz, we then obtain the modes shown 
in Fig. 2.11. (An analytic solution for the modes is not available in this case so we 
use a numerical technique as described in Chap. 3.)  Notice that the mode shapes 
are no longer perfect sinusoids, however the mth mode still has m zero crossings. In 
addition, the modes are oscillatory near the sound channel axis and exponentially 
decaying in a layer near the surface and near the bottom. The size of the oscillatory 
region is larger for the higher order modes. 

Some insight into the behavior of the modes can be obtained from the WKB 
approximation[48]. The WKB approximation to the e i g e h c t i o n s  is given by 

where 

Thus, locally the solution assumes the oscillating form of sines and cosines near 
the sound channel axis (where y is real) and transitions to a solution involving 
exponentially growing and decaying functions near the surface and bottom (where 
y is imaginary). The depths where this transition occurs are the turning points and 
are precisely defined by depths where y2(z) = 0. In addition, the amplitude term is 
seen to be governed by l /y (z)  so that as we move away from the sound channel axis 
(where y is large) towards the turning point (where y is small) the amplitude tends 
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KRAKENC-Munk profile 

Mode 1 Mode 30 
u r n  - ROY una. - 0 . m  

Mode 90 Mode 150 - - O.OU8 "nu, - 0 . m  

Figure 2.11: Selected modes for the deep-water problem. 

to increase. At the turning point the WKB approximation is actually singular. The 
correct solution, however, has a smooth behavior in the transition layer as may be 
seen in Fig. 2.1 1. 

In Fig. 2.12 we illustrate the effect of using different numbers of modes to cal- 
culate transmission loss. The source depth is chosen to be 100 m. Figure 2.12(a) 
includes only the waterborne modes, that is modes which have their lowest turning 
point above the ocean bottom. These modes (modes 1 to 63) are exponentially de- 
caying below this turning point and in this sense are not bottom interacting. In ray 
terms these modes correspond to paths which are refracted away from the bottom. 

The transmission loss shows a convergence zone type of pattern involving a beam 
of energy that emerges from the source and refracts under the influence of the ocean 
sound speed profile. Since we are using a restricted number of modes, we in effect 
are producing an angle-limited source. We observe that the transmission loss shows 
large shadow zones where the acoustic field is negligible. These quiet zones result 
not from the depth-dependence of the eigenfunctions but from the phasing in range 
which causes the modes to add up destructively. 

In Fig. 2.12(b) we have added in the bottom bounce modes (modes 64 to 102). 
These modes have no turning point and correspond to ray paths which strike the 
bottom at a subcritical angle. Including these modes effectively widens the source 
beam-width. A second beam is now visible emanating from the source and reflecting 
off the bottom. 

In Fig. 2.12(c) we have added in a large number of leaky modes (modes 103 to 
400). As discussed earlier these modes are leaky in the sense that they are displaced 
from the real axis and therefore lose energy as a function of range. In ray terms, they 
corresponds to paths which strike the bottom above the critical angle and therefore 
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are very weakly reflected. In the transmission loss plot we can see that the source 
angle has now been opened up to 90' revealing the full Lloyd mirror pattern of 
beams. (The Lloyd mirror results from constructive and destructive interference 
between the source and its image reflected in the ocean surface.) 

Elastic Media 
As discussed in Ref. [15] the elastic quantities (stresses and displacements) satisfy a 
fourth-order system of ordinary differential equations. We first introduce the stress- 
displacement vector, r defined by 

where u is the horizontal displacement, w is the vertical displacement, T,, is the 
tangential stress and T,, is the normal stress. The purpose of introducing the scaling 
of u and T,, given in Eq. (2.72) is to eliminate complex quantities from the governing 
equations and to obtain a form where the eigenvalue k occurs only in squared form. 
The stress-displacement vector then satisfies 

where, 

L 0 -p2 
where the quantities 7 7 ( z )  and ( ( 2 )  are defined by 

,I [c; - (c; - 2e: )2]  
( (2 )  = 

c; 

and cp, C, denote the P and S wave velocities respectively. In this form certain prop- 
erties of elastic waves are immediately obvious. For instance, since the eigenvalue 
occurs only as a squared quantity the the eigenvalues will come in pairs. That is, if 
(kj, rj) is an eigensolution then (-kj, rj) is also an eigensolution. 

The above equations for r are combined with interfacial and boundary condi- 
tions to completely specify the acousto-elastic modal problem. At an elastic-elastic 
interface, one requires continuity of r (i.e., continuity of displacements and stresses). 
At an acousto-elas ti c interface the condition of continuity of horizontal displacement 
is relaxed. Noting that 1) pressure is the negative of the normal stress, T,,, 2) T,, 
vanishes in an acoustic medium, and 3) the gradient of the pressure gives the time 
derivative of the velocity field, one obtains, 
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Figure 2.12: Transmission loss for the deep- water problem including (a) waterborne 
modes only, (b) bottom bounce modes and (c) leaky modes. 
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2.6. BOUNDARY AND INTERFACE CONDITIONS 

KRAKEN and KRAKENC use the reduced delta-matrix formulation. This is obtained 
by introducing a new set of dependent variables defmed by, 

where r and s denote two linearly independent solutions in the elastic medium. Note 
that y involves all permutations of r ; ,  s, with an ordering chosen to obtain a simple 
form for the y equations. By differentiating the above equations and substituting 
into Eq. (2.74) we find that y satisfies a system of differential equations: 

where, 

The differential equation for y6 reduces to y6 = - k2y5 and has been eliminated from 
the system. Ln terms of the y-functions the interface conditions between the acoustic 
medium and a stratified elastic bottom can be written as, 

with, 

2.6 Boundary and Interface Conditions 
In the simplest ocean models the ocean surface is modeled as a pressure release sur- 
face and the ocean bottom is assumed perfectly rigid. This leads to Dirichlet and 
Neumann boundary conditions2 respectively and the modal problem is a conven- 
tional Sturm-Liouville eigenvalue problem. Considering the bottom boundary we 
note that there really is no well-defined bottom depth- below sediment lies basalt 
and one may continue from mantle to core, ... The truncation of the interval is 

2~ Robin condition on a function p ( t )  has the form f p ( z )  + g p f ( z )  = 0. A Dirichlet condition 
has the form ~ ( z )  = 0 and a Neumann condition has the form ~'(2) = 0. 
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justified when including additional depth no longer results in a significant change 
in the result. This somewhat nebulous transition occurs when the ocean subbottom 
is thick enough that material absorption eliminates significant energy return from 
deeper depths by refraction or reflection. 

Mitigating against a conservative policy in carrying depth varying properties to 
great depths is the increased cost of solving the modal equation on a large domain. 
Thus it is desirable to truncate the problem at the shallowest possible depth. The 
rigid bottom model makes sense at a sediment/basalt interface where there is a 
strong impedance contrast. Basalts, however, are typically characterized by a strong 
elastic wave speed gradient which refracts ray paths back into the ocean. At mid- to 
high-frequencies, say above 50 Hz, this refracted energy will be severely attenuated 
and may be safely ignored. A more realistic bottom boundary condition is obtained 
with an acoustic half-space. 

The boundary conditions corresponding to these various cases are provided be- 
low. The results are presented in three forms: 1) as a Robin condition on the 
pressure, 2) as boundary conditions on the stress-displacement vector r and 3) as 
boundary conditions on the solvability vector y. The f is t  form is used for problems 
where all internal media are acoustic; the second form is used for problems where 
some internal media are elastic; the third form is used when elastic displacements 
are required (KRAKEL). 

2.6.1 Perfectly Free Boundary (Dirichlet BC) 
The free surface condition is an approximation fur the surface boundary condi- 
tion. (A more sophisticated boundary conhtion is obtained by using a homogeneous 
acoustic half-space to model the atmosphere above the ocean. The impedance con- 
trast is, however, so large that there is no practical need for modeling the atmo- 
sphere.) For an acoustic medium this yields, 

~(0) = 0 (2.82) 

while for an elastic medium both stresses must vanish: 

Thus, two linearly independent solutions can be obtained using, 

From the definitions of y in Eq. (2.77) we obtain the following boundary conditions, 

2.6.2 Perfectly Rigid Boundary (Neumann BC) 

The perfectly rigid assumption enjoys some popularity for a bottom boundary. For 
a purely acoustic problem, this becomes, 

P ' ( D )  = 0 (2.86) 
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For an elastic medium, this implies that both displacements must vanish, 

Thus, two linearly independent solutions can be obtained using, 

From the definitions of y in Eq. (2.77) we obtain the following boundary conditions, 

2.6.3 Acoustic Half-space Conditions (Robin BC) 

We consider first an acoustic bottom half-space characterized by a single wave speed, 
cpb and a density, pb. The general solution in the half-space is given by, 

where, 

and the Pekeris branch of the square root is used to expose the leaky modes. In order 
to have a bounded solution at infinity, we require B to vanish. At the interface, we 
require continuity of pressure and normal displacement which implies, 

Thus, we obtain the bottom impedance condition, 

A similar procedure yields the result for a top homogeneous half-space, 

which differs by a sign change. Note that by letting p -+ 0 we obtain the free-surface 
boundary condition and p -+ oo gives the perfectly rigid boundary condition. 
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2.6.4 Elastic Half-space Conditions 
The solution for a homogeneous elastic medium is given in terms of P- and S-wave 
potentials, d, and $ respectivkly. For a bounded solution these potentials take the 
form: 

d(t) = A e - 7 ~ z ,  $(t) = Be-?'" (2.96) 

where, 

In terms of these potentials, the elastic displacements are given by, 

So in terms of u and w we can write the most general form of the half-space solution 
as : 

Recall, 

and from Eq. (2.74) we obtain, 

so that the most general solution in the lower half-space is 

Taking the columns of the above matrix as two linearly independent solutions and 
substituting into the the definitions of y in Eq. (2.77) we obtain the following 
boundary conditions, 

Note that the classical dispersion relation for Rayleigh waves is obtained by taking 
the free surface condition yz = 0. 
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2.6.5 Tabulated Reflection Coefficients 

In some cases, it may be preferred to characterize the ocean surface or bottom by 
a complex reflection coefficient as a function of grazing angle. Such a reflection 
coefficient may be specified by tabulating the magnitude and phase at a discrete set 
of 8-values. To completely define the norrnal mode problem, R(8) must be defined 
continuously for some range of 8-values. A routine (REFCO) accomplishes this 
by linearly interpolating the magnitude and phase of the reflection coefficient. In 
addition, the reflection coefficient must be converted to an equivalent Robin style 
boundary condition with coefficients which are a function of horizontal propagation 
number, k .  

Note that a surface reflection coefficient asserts a relationship between an upgoing 
and downgoing wave of the following form. 

where 

is the vertical wavenumber. Then, 

which implies that. 

Thus, the reflection coefficient implies an i~npedance or Robin style boundary con- 
dition of the form, 

For bottom reflection we u s e  the fbrrrl 

which leads to. 

In general, the reflection coefficient is a function of the grazing angle 0 which is 
related to  7 by 

Y tan0 = - .  (2.112) 
k 
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2.7 Loss Mechanisms 

2.7.1 Material Absorption 

Equations for material absorption in the water column are summarized by Urick[53]. 
A somewhat standard form due to Thorpe is: 

where f is the frequency in kilohertz and aThO'pe is in units of dB/m. Attenuation 
in sediments is somewhat more complicated and must be specified directly. 

Material absorption is included by adding an imaginary part to the sound speed 
so that C ( Z )  = c , ( z )  + i c , ( z ) .  Typically, the attenuation is specifled in more physical 
units so it is necessary to perform a conversion. In the following subsections we 
present the results for various cases. 

If a is specified in neperslm then we expect a plane wave to decay in the form 

In free space, the solution takes the form, 

Thus, 
f f Ic l2  c ; =  -. (2.116) 

W 

All other attenuation units will be represented in terms of a in nepersjm. 

We require that the ratio of the intensity in dB between points one meter apart be 
given by a(") .  That is, 

which implies 

The attenuation in dB/m is given by a(") = CY(")/X. Therefore, 
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Table 2.1: Approximate conversion factors between attenuation units. 

a( f )  in dB/(km Hz) 

The attenuation in dB/m is given by a(") = (f/1000)c(f). Thus, 

Q 
The term 'Q' is defined in different and inconsistent ways. (See the discussion in 
Aki and Richards [50] .) We take, 

These results are summarized in Table 1 

2.7.2 Twersky Scatter Theory 

The Twersky scatter model is used primarily for modeling under-ice scatter effects 
as suggested by Diachok [51]. In effect the ice is modeled as a free surface with a 
uniform distribution of cylindrical bosses with elliptical cross-sections which crudely 
represent ice keels. A reflection coefficient for this rough surface is constructed by 
combining the effects of the scattering function for each individual cylindrical boss. 
The scattering function is in turn computed analytically by a modal sum involving 
Mathieu functions. The program for computing this specular reflection coefficient 
was developed by Wales[52] for a spectral integral code. 

The cylindrical bosses are described in terms of the principal radii of the ellip- 
tical cross-section, the linear density, i.e. the number of bosses per kilometer, and 
whether the bosses are perfectly free or rigid objects. This leads to a reflection 
coefficient, R(B), which is a complex number incorporating both phase and ampli- 
tude information. The reflection coefficient is formally valid in the far-field but is 
applied in an ad hoc fashion at the icelwater interface. This analytical formula for 
the surface reflection coefficient is then converted to an equivalent Robin boundary 
condition using Eq. (2.109). 
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2.7.3 Kirchhoff Scatter Theory 

For open ocean surface roughness a simple scatter model based on Kirchhoff theory 
is implemented. The reflection coefficient is simply, 

where o is the RMS roughness and 7 is the vertical wavenumber given by, 

When -yo = I/& this formula predicts a vanishing reflection coefficient. It 
should not be used for larger values of 70. 

2.7.4 Interfacial Roughness 

Kuperman and Ingenito [49] obtained the following interface condition for an inter- 
face with RMS roughness o: 

where the elements of A are given by: 

with, 

The subscripts 1 and 2 denote properties in the upper and lower media, respec- 
tively. For a free surface the appropriate result is obtained by letting p and y go to 
zero. Note that this formula also breaks down in a catastrophic fashion if yu is too 
large. 
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2.7.5 Perturbational Treatment of Loss Mechanisms 

Loss may be caused by scatter at boundaries or interfaces or by material absorption. 
In the former case the loss is manifest as a co~nplex sound speed while in the latter 
case the interfacial condition is modified. Both of these mechanisms can be handled 
by straightforward modifications of the numerical algorithm; however, the eigenvd- 
ues become complex, requiring the use of complex arithmetic. More importantly, 
the root-finder must be modified to perform not just a line search on the r ed  axis 
but a 2-D search in the complex k-plane. While robust and efficient root-finders can 
be constructed for the real problem, the complex root-finders are failure-prone. 

An attractive alternative to complex eigenvalue searches is to compute the r e d  
eigenvdues and then obtain an approxinlation to the imaginary parts using per- 
turbation theory. To illustrate the technique we consider the modal problem with 
simple pressure-release and rigid-bottom boundary conditions. That is, 

where, K 2 ( z )  = u 2 / c 2 ( z ) .  We next write 

where K ~ ( z )  corresponds to the unperturbed sourld speed 2rof l le whch for lossy 
problems is simply the real part of E i - 2 ( z j .  I n  the follc~vicg t h e  siibscript indicating 
mode number will be suppressed. The next step is t,o seek a solution of the form: 

and 
2 X: - p(7) 0, -  +e.k,2+ . . .  

Substituting into Eq. ( 2 . 1 2 8 )  and collecting terms of like order we obtain: 

This is the lossless eigenvalue problem and can be solved on the real axis. The next 
higher-order equation is, 
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From the Fredholm Alternative Theorem, the inhomogeneous term on the right- 
hand side must be orthogonal to all solutions of the homogeneous adjoint problem 
in order for a solution to exist [41]. (In terms of a vibrating string, this means that a 
steady-state solution does not exist when the string is forced at a resonant frequency.) 
The solutions of the adjoint problem are simply the modes Zo(z). Therefore, we must 
have 

which implies, 

This is the first correction due to an arbitrary perturbation K:(z). TO apply this 
formula to material absorption we take the complex sound speed c(z) = c,(z) +ici(z) 
and form K2(z)  = K:(z) + iK:(z) = w/c(z). The real part, K:, is used to generate 
our zeroth-order unperturbed problem which is easily solved to provide eigenvalues 
k, and eigenfunctions Z(z). We next denote the perturbation term by CK? = iK,?(z) 
and the corresponding perturbation to the eigenvalue by ek? = ik;. In this notation, 
Eq. (2.135) reads 

or, 

In practice, this perturbational approximation is usually adequate. It gives poor 
numerical accuracy when the imaginary part is very large, that is, when the mode 
decays very rapidly in range. In such cases the accuracy is normally not critical since 
the pressure field is then usually dominated by other modes .which are less severely 
attenuated. 

A similar perturbational approach is also useful for treating loss due to surface 
or bottom roughness. Kuperman and Ingenito[49] derive the result: 
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for the perturbation in the eigenvalues due to surface scatter loss. Here, a denotes 
the RMS roughness of the sea surface, and 

2.8 Normal Modes for Range-Dependent Environments 

We tend to think of normal mode models as primarily suitable for range-independent 
problems, however, it is in principle easy to extend them to provide range-dependent 
solutions. One way of doing this is to divide the range axis into a number of segments 
and approximate the field as range-independent within each segment. The solution 
within a range independent segment is constructed using the standard normal mode 
solution and interface conditions (continuity of pressure and normal velocity) are 
used to 'glue' the solutions together. 

This "coupled mode" approach is straightforward but leads to a computationally 
intensive procedure. For this reason it is, at least at the present, primarily useful for 
providing an exact solution for verifying simpler approximate models such as the PE 
technique. The full two-way solution is not actually implemented in K R A K E N ,  how- 
ever, it provides a useful starting point for discussing two successive simplifications 
in which we ignore 1) the back-scattered component, and 2) coupling between dif- 
ferent modes at the interfaces (the adiabatic approximation). These approximations 
are frequently a reasonable compromise between accuracy and run-time. 

2.8.1 Coupled Modes 

Our derivation follows Evans [ 6 5 ] .  We begin by dividing the problem into N segments 
in range as illustrated in Fig. 2.13. Neglecting contributions from higher order modes 
or the continuous spectrum, the general solution in the j th  segment can be written 
as follows: 

where kl, 2 are the following ratios of Hankel functions, 

and we define r j - ~  = r l  in the special case where j = 1. This scaling of the Hankel 
functions is done to avoid overflow problems for the leaky modes. For such modes 
the Hankel functions involve growing and decaying exponentials. In practice, it 
is convenient to replace the Hankel functions by their large argument asymptotic 
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Figure 2.13: Segmentation for coupled mode formulation. 

representation yielding: 

We shall use this asymptotic representation in the remainder of the analysis. 
Next we impose continuity of pressure at the j th  interface: 

This matching condition involves a continuum of depth points in that we require 
continuity of pressure for all z-values. In practice, however, we are going to work 
with a limited mode set and therefore we need a finite set of conditions which relate 
the M mode coefficients a,, b,. This can be done in several ways. For instance, we 
could require continuity of pressure at M discrete depth points. We shall impose 
a moment condition that the error considered as a function of depth should have 
vanishing components of each of the first M modes. Thus, we apply the operator 

to our matching equation where 1 = 1, . . . , M. Because of the orthogonality property: 
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only one term remains from the sum on the left of Eq. ( 2 . 1 4 5 ) .  Therefore we have: 

where, 

In matrix notation, we can write this equation as: 

where, H; and H; denote the diagonal matrices with entries ~ l L ( r ~ )  and ~ 2 k ( r ~ )  
respectively. In addition, is the matrix with entries Elm and a, b are column 
vectors with entries all bl respectively. 

We next impose continuity of radial particle velocity. The particle velocity is 
proportional to 

This time we apply the op+,ratgr, 

to obtain, 

where, 
~ ; + ~ ( z ) z ; ~ ( z )  

C l m  = - i p j ( z )  
dz .  

63+'  
I 

Note that i. differs from E in the density term of the integral and by a ratio of 
horizont a1 wavenumbers . 

In matrix notation, this matching condition can be written as 

Combining this equation with the pressure-matching equation ( 2 . 1 5 0 )  we can obtain 
an explicit expression for aj+' and bjf l : 
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Finally, we need to include the boundary condition at r = 0 and a radiation 
condition as T + m. The latter is imposed by requiring that b: = 0, for m = 
1,. . . , M. The appropriate condition at r = 0 can be shown to be: 

Collecting all of these equations together we obtain a block matrix problem of 
the following form: 

where D is the diagonal matrix with entries 

and s is the column vector with entries: 

Comput ationally, 
mode problems, one 
banded, block linear 

, t h s  approach requires the solution of a whole family of normal 
for each range segment, followed by the solution of a large 

system. The range segments are frequently required to be less 
than a wavelength which leads to extremely long run times. 

Finally, we should also mention that it is possible to formulate the coupled-mode 
problem in a differential form. In fact, we shall follow this approach in a subsequent 
section since it leads more naturally to the adiabatic mode approximation. This 
development, in terms of piecewise range-independent sections, may then be viewed 
as simply one way of solving the coupled-differential equations in range. 
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2.8.2 One-way Coupled Modes 

The full two-way coupled mode formulation allows for interactions between each 
segment in range and as a result leads to a global problem rather than a marching 
type of solution provided by, for instance, the parabolic equation. Computation 
time can be reduced by neglecting these multiple interactions, usually with only a 
minor degradation in accuracy. 

An efficient marching implementation of coupled modes can be done in several 
ways with different degrees of accuracy. This is discussed in detail in Ref. [80]. A 
good compromise between accuracy and complexity is provided by the single-scatter 
formulation which treats each interface in range as an independent process thus 
neglecting the higher-order multiple-scattering terms. To derive this form we begin 
with the matching condition for the j th  interface given in Eq. (2.156): 

For the single-scatter approximation, the incoming wave in the left segment is 
assumed to be given, and we require that the solution is purely outgoing in the right 
segment, i.e. bjsl = 0 .  Solving for the backscattered amplitudes, b j ,  we find: 

Therefore, the forward scattered amplitudes, a j f l ,  are given by 

which is an explicit equation for the forward scattered field. The field in any given 
segment can then be computed by summing the terms in the modal sum representing 
the forward scattered field. 

In practice, an approximate single-scatter solution works nearly as well. This 
solution is obtained by neglecting lower-order terms in the single-scatter recursion: 

It can be shown that the matrix R1 is an arithmetic mean of coupling matrices 
based on pressure matching and velocity matching. 

2.8.3 The Adiabatic Approximation 

The one-way coupled mode approach discussed in the previous section provides a 
great speed-up in execution time but in many cases still remains too time consum- 
ing. For this reason a further approximation is often invoked in which one neglects 
the cross-coupling terms which allow energy from one mode to transfer into other 
modes. Instead, one assumes that in going from one range to the next the modes will 
couple adiabatically, that is, without any transfer of energy to other modes. This 
approximation was introduced to ocean acoustics problems by Pierce [54] based on 
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analogous results for the Schrodinger equation. Our derivation follows Pierce, how- 
ever we note that a somewhat more formal derivation is given by Weinberg and 
Burridge in Ref. [55] .  

To derive this approximation, we return to the Helmholtz equation in two- 
dimensions: 

Since the modes form a complete set, we can represent the solution at any range 
as a sum of local modes. We therefore seek a solution of the range-dependent problem 
in the form 

P(T, z) = C Rm(r)Zrn(z, r ) ,  
m 

where, Zm(r, z )  are the local modes defined by 

and primes denote differentiation with respect to z. Thus, at any range T, Zm (T, z )  
is found by solving the depth-separated modal equation with the environmental 
properties at that range. Substituting in the Helmholtz equation yields: 

where we have used Eq. (2.168) to eliminate the z-derivatives. Rearranging terms 
leads to, 

For simplicity we shall now assume that p is independent of T. Then we can 
apply the operator 

and because of the orthogonality property many of the terms in the sum will disap- 
pear. The result is: 

where, 
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Note that B1, = - Bml, since differentiating 

gives 

Equation (2.172) is a statement of coupled modes written for the case of con- 
tinuous variation of sound speed. It can be solved directly by, for instance, finite 
differences. The adiabatic approximation can now be stated simply as the assump- 
tion that the coupling matrices Blm and Alm are negligible. (Some authors retain 
the diagonal terms A,, which alters the results slightly.) This yields the set of 
decoupled equations 

The WKB approximation then yields the solution: 

The value of A is found by requiring that the WKB solution must match our normal 
solution, Eq. (2.16),  when the problem is range-independent. Thus, 

Substituting this results back into Eq. (2.167) we obtain the h a 1  result: 

In practice, the eigenfunctions and eigenvalues are normally calculated at a discrete 
set of ranges: values at intermediate ranges are then calculated by linear interpola- 
tion. Note that the adiabatic form is sensitive to the polarity of the modes; that is, 
if you flip the sign of Z m ( z ,  r)  at some particular range, the computed pressure is 
changed. Therefore, care must be taken that the modes are polarized in a consistent 
fashion in range. In K RAK EN the modes are polarized so that they assume a positive 
value at the turning point nearest to the surface. 

2.8.4 Example: A Warm-Core Eddy 

Range-dependence can occur as both bathymetric variation (due to seamounts, con- 
tinental slopes) and variation in material properties (due to oceanographic features 
such as fronts and eddies or to changes in bottom type). We consider a flat-bottom 
problem involving an eddy with a source located roughly above the center of the 
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Figure 2.14: Sound speed profiles taken through the eddy. 

eddy. The actual sound speed profiles are shown in Fig. 2.14. The warm-core eddy 
which is centered at roughly 1000 m depth and at zero range, shows up as a zone of 
increased sound speed. 

Figure 2.15 shows plots of the transmission loss obtained with a) range-independent 
normal modes using the first SSP throughout, b) coupled mode theory and c) adia- 
batic normal modes. The source frequency is 50 Hz and the source depth is 300 m. 
The range-independent calculation in Fig. 2.15ja) shows deep-cycling convergence- 
zone paths. A band of energy is also seen to propagate in the duct that is roughly 
centered at the source depth in the first profile. 

The one-way coupled-mode calculation in Fig. 2.15(b) shows that as the duct 
disappears in range the energy passes into the main SOFAR duct. The result is 
a great increase in transmission loss for a receiver located at ,  for instance, 100m 
depth. Thus, in this particular case a range-independent calculation would almost 
certainly be considered inadequate. 

The faster adiabatic calculation shown in Fig. 2.15(c) provides an intermediate 
result in terms of accuracy: it correctly shows the transition of energy from the 
near surface duct into the main SOFAR duct but fails to reproduce the details of 
the pattern. Whether this result would be considered adequate depends on the 
application. 

The adiabatic approximation provides accurate predictions when the range- 
dependence is sufficiently weak. What constitutes "weak" range-dependence? This 
is a question which has been addressed in numerous papers but is difEcult to an- 
swer in any general sense. In some cases the adiabatic approximation provides very 
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Figure 2.15: Transnfission loss for the eddy problem using (a) range-independent, 
(b) coupled and (c) adiabatic mode theory. 
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poor results. An interesting example of such a problem is obtained by introducing 
a seamount into our eddy problem. If the seamount is placed in the shadow zone 
between 100 and 150 km then the convergence zone paths will pass over it unaf- 
fected. If the seamount is placed in the ensonified area centered at 90 km then the 
convergence zone paths will reflect off the seamount and be displaced in range. How- 
ever, past the seamount the adiabatic formula depends only on the integral of the 
wavenumbers and is therefore insensitive to the location of the seamount. Despite 
these problems, the adiabatic approximation is frequently very useful. 

2.9 Normal Modes for 3-D Varying Environments 

As with all of the range-dependent 2-D models, a direct extension to 3-D problems 
is possible by simply running the 2-D models repeatedly along a number of different 
bearings. Along each bearing one then uses the sound speed profile and bathymetry 
for that track. Combining these results along numerous bearings allows one to 
build-up a three-dimensional image of the acoustic field. 

As in the 2-D problem it is convenient to calculate the mode sets on a coarse 
grid and calculate intermediate values by interpolation. As an example, we consider 
a scenario in the North Atlantic which encompasses a segment of the Gulf Stream. 
The environment is sampled at a number of different points in the zy-plane and 
modes are calculated at each of these points. The nodes are then used to construct 
a triangulation of the environment as shown in Fig. 2.16. The position of the Gulf 
stream, two eddies that have spun-off from it. and other features of the environment 
are echoed in the triangulation. 

The nodes of the triangles may be arbitrarily located; however, we have found it 
convenient to distribute them along isobaths. This enables extremely complicated 
bottom profiles to be treated without the burden of computing sets of modes at 
many different nodes- modes computed at one point 011 an isobath are unchanged 
(assuming no sound speed change) in going to other points on the isobath. Regular 
grids are also suitable: they are easier to set-up but may require more nodal points 
to produce an acceptable sampling of the environment. 

Once the modes are calculated and stored, 3-D acoustic images can be computed 
extremely rapidly by using the adiabatic formula in Eq. (2.179) along a fan of ra- 
dials emanating from the source. Where the adiabatic formula requires modes in a 
triangle, they are computed by bilinear interpolation. (A more complete discussion 
is given in Ref. [17] .) 

An example of this type of calculation is given in Fig. 2.17 where we have plot- 
ted transmission loss in the xy-plane at a constant receiver depth of 400m. The 
source depth and frequency for this calculation are 400 m and 50 Hz. Note how the 
Gulf stream casts an acoustic shadow behind it. (In fact, the energy is really just 
redirected to other depths.) The eddies in turn produce visibll perturbations in the 
transmission loss field. 
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Figure 2.16: Triangulation for the Gulf Stream problem. 
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Figure 2.17: Transmission loss for the Gulf Stream problem. 
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2.9.1 Horizontal Refraction Equations 
The range-dependent 2-D models assume azimuthally-symmetric environments and 
we violate this assumption in applying the model with different profiles for each 
bearing. In practice, this approximation is generally adequate and indeed is nor- 
mally implicit in a 2-D run of a range-dependent model. That is, we normally 
use environmental information on a bearing-line between source and receiver, not 
intending the slice to define an azimuthally-symmetric environment. 

In some cases, effects of horizontal refraction must be included. In principle, this 
is easily done. The derivation follows the pattern developed in the previous section 
for adiabatic modes in two-dimensions. We start with the Helmholtz equation in 
t hree-dimensions: 

or, written out in full, 

We next seek a solution of the form 

where Zm(x, y, z) are the local modes. Substituting in the Helmholtz equation and 
applying the operator I(.) z1(x7 y 7  ')&, (2.182) 

P 
gives: 

where, 

2 1  Alm = / (?+ ax2 ?) dy2 Zm-dl, 
P 

Blm = - B m l =  -- / " dl,  
a2 P 

Clm = -Cml= 
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The adiabatic approximation can then be obtained by neglecting the contributions 
of the coupling matrices A, B and C. This yields the horizontal refraction equation: 

Using the local normal modes, we have eliminated the z-dimension from the 
problem and obtained a new Helmholtz equation, but now in the lateral coordinates 
x and y. The effective index of refraction is given by the horizontal wavenumber 
kl(z, y) so that every mode generates a corresponding Helmholtz equation. Such 2-D 
Helmholtz equations can be solved using normal modes, PE, ray or spectral integral 
methods. Weinberg and Burridge[55] present results using ray theory to solve the 
horizontal refraction equations. 

Note that the horizontal refraction equation leads to the usual results for the 
cases of stratified range-independent or range-dependent but cylindrically symmetric 
profiles. For instance, if we rewrite the horizontal refraction equation in cylindrical 
coordinates and assume a cylindrically symmetric sound speed profile, we obtain, 

The WKB approximation to the solution is then, 

Using this result in Eq. (2.181) yields the usual adiabatic rr~ode result of Eq. (2.179). 
In KRAKEN the horizontal refraction equations are solved using Gaussian beams 

which refract in the horizontal plane. As we have just seen, the "refractive medium" 
for each set of Gaussian beams is constructed from the phase velocity field corre- 
sponding to that particular mode. The field due to an individual beam involved a 
Gaussian decay in the horizontal plane and a depth dependence determined by the 
local mode. 

The Gaussian beam solution to the horizontal refraction equation is straightfor- 
ward. As discussed in references [59,60,61] the method begins by tracing a fan of 
beams originating from the source. The beams are defined by a central ray (which 
obeys the usual ray equations), the beam radius, L(s) and the curvature, K(s),  
which are functions of arclength dong the ray. The beams are Gaussian in that 
at any point on the central ray of an individual beam the intensity falls-off in a 
Gaussian form as a function of normal distance from the central ray. The final step 
is to sum up the contributions of a.ll of the beams to compute the solution. 

In more detail, the process is as follows. We begin by solving for the central rays 
of the beams which satisfy ray equations: 
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where, s denotes arclength along the ray and cl (z ,  y) is the phase speed of the j th  
mode. A beam is then constructed about each ray using ray-centered coordinates, 
(s, n)  where n denotes the normal distance from the ray. The result is, 

where the complex quantities p(s) and q(s) are obtained by integrating an auxiliary 
set of differential equations, 

where the subcript n in cn, indicates the derivative of the sound speed in a direction 
normal to the central ray. 

The term r(s) in Eq. (2.189) is the phase delay or travel time which satisfies, 

It is convenient to think of the p - q functions as defining the evolution of the beam 
in terms of its radius and curvature. Consider, 

Clearly, L(s) characterizes the beam radius in terms of the normal distance at which 
the beam decays by l l e .  Furthermore, K(s)  is a representation of the number of 
phase fronts crossed as one travels normal to the central ray and is a measure of 
curvature of the beam. 

To summarize, the beam is defined in terms of (z(s),  y(s)), (((s), ~ ( s ) ) ,  (p(s), q(s)), 
and T(S) representing respectively the central ray of the beam, the tangent to the 
central ray, the beam width and curvature, and the travel time. All of these functions 
are obtained by integrating a set of ordinary differential equations. To complete the 
definition we must provide initial conditions. For the central ray these are simply, 

~ ( 0 )  = 26, 
~ ( 0 )  = Ys,  

sin a 
4 0 )  = qjy ,  
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where (x,, y,) is the source coordinate and a is the take-off angle of the central ray. 
The optimal choice of initial conditions for the p - q equations is a matter of 

current research. The two extremes of infinitely wide and infinitely narrow beams 
may be favored in cases with strong variation of wave speeds or when head waves are 
generated. Fortunately, the horizontal refraction equations are especially benign. In 
contrast to the usual T - z ocean acoustic problem, there are no boundaries to worry 
about. Secondly, the effective sound speed is so gradually varying that in may cases 
there is no clear need to even try to account for it. We have obtained good results 
using the analytic result for an isovelocity medium and selecting the initial beam 
width to minimize the beam width at the receiver. The beam curvature is chosen 
to be zero at the origin. 

The final step is to synthesize the field by summing up the Gaussian beams. 
Thus, we seek a solution, 

where gl(s, n) is the lth beam. Following the standard procedure, we construct the 
expansion by the method of canonical problems, i.e., we require that the beam ex- 
pansion be reasonable for a homogeneous medium. In a homogeneous medium, the 
equations which define the beam may be solved analytically. In addition analytical 
representations for the receiver coordinate (x,, y,) in terms of the ray-centered coor- 
dinates (s, n) may also be obtained without fanfare. Finally, one applies the saddle 
point method to compute the high-frequency asymptotic expansion of the integral. 
The result is, 

On the other hand, the exact solution for a single-mode propagating in a stratified 
medium is 

..(x,Y) = Zl(zs)e -ikldm, (2.198) 

Evidently the forms match if the weighting for each beam, A(a) is z~(z,)/&. 
Putting ad these things together, we obtain 

where 
+r(x,u, 2) = /gl(s,n)da, 

and 

p(s) n2]} . '(') exp - iw r ( s )  + - 9'('.") = A Ja { [ 2 4 s )  

The procedure then is to begin a loop over each mode. For each mode one 
has a Helmholtz equation with that mode's phase speed acting like the usual ocean 
sound speed. Each such horizontal refraction equation is solved by looping over an 
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azimuthal take-off angle and each azimuthal take-off angle leads to a beam which 
propagates out from the source. As each beam is traced out its contribution to the 
field is summed up. This procedure is repeated for each mode to obtain the complete 
field representation. 
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Numerical Solution of the 
Modal Equation 

There are many ways of numerically treating the modal equation. Generally, core 
storage is not a problem so that the algorithms can be impartially compared by 
setting an accuracy threshold and seeing which method requires the least execution 
time to meet that criterion on a typical set of test problems. The algorithm used 
in KRAKEN was chosen by just such a fly-off of numerous different algorithms. 
This included 3- and 5-point difference schemes, Numerov's method, iterated defect 
corrections and layer methods. Richardson extrapolation was also studied using 
polynomial and rational (PadC) approximations with the various algorithms. Several 
root-finders were also compared including newton, secant, and bisection schemes. 
The algorithm described below was the most rapid across the suite of test problems; 
however, it should be noted that the optimal algorithm is partly a function of the 
types of problems forming the test ensemble. 

In the following sections we shall describe the algorithm which emerged as the 
fastest technique. Sections 3.1-3.3 describe the hite-difference discretization which 
leads to an algebraic eigenvalue problem (EVP). The EVP is solved using what is 
sometimes called the determinant search method as described in Sect. 3.4. Sec- 
tion 3.5 describes the treatment of elastic media and Sect. 3.6 discusses the use of 
Richardson extrapolation which provides an adaptive technique for controlling the 
error as well as an efficient means of obtaining high-accuracy. 

3.1 Finite-Difference Discretization 
As illustrated in Fig. 3.1 we divide the interval 0  < z  < D into N equal intervals to 
construct a mesh of equally spaced points 

z j =  jh,  j = O ,  ..., N 

where h is the mesh width given by h = D I N .  Furthermore, we shall use the 
notation Z j  = Z ( z , ) .  The number N should be chosen large enough so that the 
modes are adequately sampled; usually 10 points per wavelength are sufficient. 
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Figure 3.1: Finite-difference mesh. 

We shall assume for the moment that the density is constant, yielding the modal 
problem 

Z 1 l ( z )  + (I' - k' )  Z ( * )  = 0, 
c 2 ( z )  

where the primes denote differentiation with respect to z .  Following a standard 
procedure for deriving finite difference equations, we use the Taylor series expansion 
to obtain 

Rearranging terms, we obtain a forward-dzflerence approximation for the first deriva- 
tive. 

An 0 ( h )  approximation to the first derivative is therefore, 

2; z zj+l - zj 
h . 

An improved approximation is obtained by using the governing equation Eq. (3.2) 
to evaluate the first term in the forward difference approximation. That is, we 
substitute 
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This yields the O ( h 2 )  approximation 

Similarly, a backward-dzfference approximation is obtained starting with the Tay- 
lor series 

yielding, the 0 ( h)  approximation 

and the 0 ( h 2 )  approximation 

Finally, adding Eqs. (3 .3)  and (3.8) we obtain a centered-difference approxima- 
tion to the second derivative: 

With these finite-hfference approximations in hand, we can proceed to replace 
the derivatives in the continuous problem with discrete analogues. Let us recall the 
continuous problem: 

Using the centered, forward and backward difference approximations for the ODE, 
the top and bottom boundary conditions we obtain: 
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We next write the first of these equations as 

Then collecting the difference equations together we obtain an algebraic eigenvalue 
problem of the form: 

A ( ~ ~ ) z  = 0. (3.15) 

Here, Z is the vector with components Zo, Z1,. . . ZN. These components are ap- 
proximations of the eigenfunctions of Eq. (3.2) evaluated at the mesh points. In 
addition, A is a symmetric tridiagond matrix defined by 

where the coefficients d j  and e j  are defined by 

and, 

We have consciously introduced a scaling factor of l / ( h p )  in every row here. For 
a constant-density problem with a single mesh width this would serve no purpose; 
however, later we shall consider multiple layers for which this scaling is the natural 
one. 

Note that for a pressure-release surface the ratio f /g which appears in the bound- 
ary condition goes to infinity. In this case, 20 vanishes and we can simply delete 
the first line and column from the matrix eigenvalue problem. Furthermore, if the 
functions fTgB,  gT.B are independent of k (as happens for the pressure release sur- 
face and rigid bottom conditions) then the above problem is a standard algebraic 
eigenvalue problem and can be solved using standard routines. In general, only the 
lower-order modes will be sufficiently accurate: the higher order modes are under- 
sampled by the finite-difference mesh. Thus, routines which are designed to extract 
a subset of the eigenvectors and eigenvalues are desired. 
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Figure 3.2: Finite-difference mesh for an interface. 

The problem is a non-standard eigenvalue problem because the eigenvalue enters 
in a functional form through bottom boundary conditions. (For perfectly rigid or 
free boundary conditions the problem reduces to a classical algebraic eigenvalue 
problem.) We shall discuss the solution of the eigenvalue problem in Sect. 3.3. 

3.2 Treatment of Interfaces 

Frequently ocean acoustic problems involve discontinuities in the sound speed or 
density, for instance in passing from ocean to sediment. Such problems are treated 
by dividing the problem into layers such that within a layer these material properties 
vary smoothly. Within a layer the previous finite difference equations are applicable. 
At the interface one then derives a special condition to tie together the individual 
layers. 

As an example, we consider a a single interface between two layers representing 
the water and the sediment. Within each layer we construct independent finite- 
difference meshes with grid spacing h, and h, as illustrated in Fig. 3.2. In the 
water, the finite-difference approximation to Eq. (3.2) is 
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and in the sediment the finite-difference approximation is 

At the interface, the pressure must be continuous, a condition which is imposed 
implicitly by allowing for a unique value ZN at the interface. We must also impose 
continuity of normal velocity, that is, 

where pw and p,  denote the densities in the water and sediment respectively. This 
interface condition can then be approximated by, 

= [zN+i:zN - (c2;;+) -- k2) ZN :] IPS,  

where we have used the backward difference formula for the water and the forward 
difference for the sediment. Furthermore, C(D* ) denotes the limiting value of the 
sound speed at the interface as approached from z < D (D-) and z > D (D+). 
Rearranging we obtain, 

Note that if hw = h,, pw = p,  and c ( z )  is continuous we obtain the same finite- 
difference formula given in Eq. (3.18) for a point not on an interface. 

This process can obviously be repeated for every interface in the problem and, 
just as for the single layer case, leads to a symmetric matrix eigenvalue problem. 
Incidentally, the resulting problem is precisely equivalent to what one would obtain 
by using finite elements with hat-shaped basis functions and 'mass-lumping'. 

3.3 Mode Normalization 
Recall that the evaluation of the pressure requires the nomalized modes. The 
normalization constant is 

d z -  - 
2km dk  

' 1 2 ) .  (3 .23)  
2km dk  

The integral term can be evaluated by the trapezoidal rule. That is, 
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where 
2; 4 .  - - (3.25) 

- ~ ( z j )  ' 

In problems with density discontinuities, the trapezoidal rule is applied separately 
within each smooth region. Finally, the derivatives d(f/g)TIB/dk can be either 
evaluated analytically or by a simple centered-difference formula depending on their 
complexity. In order to accommodate a wide variety of boundary conditions without 
over-complicating the code, K R A K E N uses the difference approach. 

3.4 Solving the Discretized Problem 
The solution of the above matrix eigenvalue problem proceeds in two steps. First, 
the eigenvalues are found by applying a root finder to the characteristic equation, 

where A(k2) denotes the determinant of the matrix. Finally, once the eigenvalues are 
found, the eigenvectors are computed using inverse iteration. The inverse iteration 
is given by, 

~ ( k ? ) z ( ' f l )  = z('). 
J (3.27) 

The matrix A is (nearly) singular because kj is (nearly) an eigenvalue of A. 
One may easily show that the effect of this iteration is to continually amplify the 
eigenvector component in the starting vector that corresponds to the eigenvalue kj. 
Thus, the starting vector ~ ( l )  may be picked fairly arbitrarily. After each iteration, 
the new iterate z(~+') is renormalized to avoid overflow. In addition, the growth of 
the iterates is used as a check for convergence. (Typically 2 iterations are sufficient.) 

This inverse iteration technique is described in numerous texts on algebraic eigen- 
value problems, see for instance, Wilkinson [62]. The usual development applies for 
this nonlinear eigenvalue problem with some minor restrictions. In particular, the 
inverse iteration will not be reliable in cases where one-sided shooting would be un- 
stable for constructing the impedance conditions. There are two cases where this 
could be an issue: 1) when the 'internal reflection coefficient' option is used recklessly 
and 2) for certain elastic problems with internal ducts. 

One of the most difficult aspects of normal mode computations is that of finding 
the roots of the characteristic equation. The fundamental difficulty is that many 
familiar root-finding algorithms (such as the secant method or Newton's method) will 
only converge to a particular root if an initial guess is provided which is sufficiently 
close. Unfortunately, even though the eigenvalues of a purely acoustic problem are 
guaranteed to be distinct, they can be very nearly degenerate. As a result, many 
existing mode codes provide accurate but incomplete mode sets. 

Two root-finding techniques are used in the KRAKEN program which we shall 
describe next. The first is efficient and robust, in fact fool-proof, but is applicable 
only to purely acoustic problems, or acoustic problems with an elastic half-space. 
The second is less reliable but valid for problems with elastic layers. 
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3.4.1 Method I: Sturm Sequences 

For a purely acoustic problem a bisection approach is generally the most attractive 
solution. For this fairly broad class of problems the method will calculate a particular 
subset of the modes in a predictable amount of time without fail. However, for more 
complicated problems, for instance problems involving elasticity or complex wave 
speeds this technique is not applicable. 

In brief, the bisection algorithm relies on the interlace property of the Sturm- 
Liouville problem that the number of zeroes in a trial eigenfunction increases mono- 
tonically as k decreases. (Recall that the mth mode has m zeroes.) A discrete 
analogue of a trial eigenfunction is the vector Sj of principal minors of A. That is, 

For any fixed k2 the number of sign changes in the sequence indicates the number 
of eigenvalues greater than that particular k2. In addition, the function SN(k2) is 
the characteristic equation, the roots of which are the eigenvalues. The first property 
is used to construct isolating intervals for the eigenvalues. Thus, for each eigenvalue 
one computes interval endpoints which contain exactly one eigenvalue. The second 
property is used by a root finder to refine the eigenvalues within their isolating 
intervals. 

In more detail this process proceeds as follows. First we compute an upper 
bound on the eigenvalues using Gerschgorin's theorem. (Incidentally, Gerschgorin's 
theorem applied to the discrete problem yields the bound k,,, = w/cmin where c,in 
is the lowest sound speed in the problem.) This provides an upper bound for the 
mode search. There are an infinite number of modes so that a lower bound must be 
selected in some fashon. This bound is user specified, but if it exceeds the halfspace 
velocity in the problem, the bound is reduced to eliminate leaky modes from the 
problem. 

Next, we take the midpoint of the interval and compute the number of modes 
to the right of the midpoint. Based on the number of zero-crossings in the trial 
eigenfunction one may decide whether the first eigenvalue lies to the left or to the 
right of the midpoint. The midpoint then becomes either a new lower bound or a new 
upper bound for the eigenvalue. This process of interval halving is repeated until 
the interval contains precisely one eigenvalue. With the isolating interval computed 
for the first mode, one then performs the same process for the second mode and so 
on. For subsequent modes an upper bound is available from the lower bound of the 
previous mode. In addition, information generated during the bisection for the first 
mode provides useful bounds for hgher order modes. As a result the generation of 
all M of the isolating intervals typically requires little more than M bisection steps. 

In the second stage these bracketing intervals are passed to sophisticated root 
finder (Brent's method [63]) which combines bisection, Linear interpolation and in- 
verse quadratic interpolation to provide an estimate of the eigenvalue. This latter 
root finder is guaranteed to converge given an isolating interval for the root. The 
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whole process is very efficient (compared to brute force linear searching) and ro- 
bust (compared to techniques which rely on asymptotic estimates to provide initial 
guesses for a root finder). 

In practice, the sequence Sj  is replaced by pj where, 

The sequence pj then satisfies the following recursion: 

where, 

The number of sign changes in pj is the same as that for the original sequence, 
since e j  has no sign changes. However, pj is well scaled and requires half as many 
floating-point operations to compute. Incidentally, this latter sequence is precisely 
equivalent to what one obtains in a simple one-sided shooting scheme. Instabilities 
often occur in this sequence which are removed by simply scaling it down as it 
gets too large. The scale factors are retained and passed separately to the root 
finder. Surprisingly, this instability does not in the least affect the accuracy of the 
eigenvalues. This is proven in Wilkinson's text [62]. 

We have glossed over a difficult aspect of this method. Namely, the information 
provided by the Sturm sequence (regarding the number of modes to the right of 
some trial eigenvalue) is only justified for purely acoustic problems with free or rigid 
boundaries. However, for homogeneous half-spaces or elastic half-spaces there exists 
a simple correction to the count [l6,71]. For elastic or acousto-elastic problems with 
more than one elastic layer or elastic gradients there is no useful extension and we 
are forced to use the deflation method described next. 

3.4.2 Method 11: Deflation 

The philosophy of the deflation method is to start above the first eigenvalue and 
use the secant method to find the fist eigenvalue. Once that eigenvalue is located 
it is deflated, that is, divided out of the characteristic equation, and the process is 
repeated for each eigenvalue in turn. Interestingly, one may formally prove that the 
secant method will always converge to the first eigenvalue if started at a point above 
that first eigenvalue. (See Wilkinson, [62].) Naturally, there are some footnotes to 
this sweeping statement. The key one is that the characteristic function should be a 
polynomial. Some care is required to avoid violating this requirement. Secondly, the 
eigenvalues should all be real. In practice, the deflation procedure works very well 
for most realistic ocean acoustic problems- even for complex eigenvalues. However, 
if branch cuts are present, problems are not unlikely. 
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The deflation of previous eigenvalues is a trivial process. Instead of computing 
the characteristic function, A(k2), one computes: 

where kj are the previously computed eigenvalues which are to be removed or de- 
flated. 

3.5 Elastic Media 
Mixed acousto-elastic problems are treated in one of two different ways. The f i s t  
approach is to simply incorporate all of the elastic effects into a boundary condition. 
The particular boundary condition was already written down in Eq. (2.81). The 
coefficients of that boundary condition require the solution of Eq. (2.79) which is 
accomplished using a simple explicit integrator. Specifically, we employ the modified 
midpoint method which for a first-order system Y' = f(t, Y )  takes the form: 

and, 

The integration is carried out in succession through each of the elastic layers to 
compute the coefficients of the impedance boundary condition. This approach is 
used in K R A K E N  and KRAKENC. 

The other approach, which is implemented in KRAKEL, is simply to apply fi- 
nite differences directly to the stress-displacement equations (2.74). The result is a 
somewhat complicated 9-diagonal matrix whose characteristic is evaluated using a 
LINPACK routine (DGBDI). 

3.6 Richardson Extrapolat ion 
The above sections provide an essentially complete description of a numerical algo- 
rithm for the modal problem. The techniques described involve the simplest finite 
difference schemes and therefore lead to a relatively simple algorithm. However, as 
it stands, the method would be inefficient compared to certain methods based on 
higher-order difference schemes, e.g. Numerov's method. The simplicity of the ba- 
sic method however can be retained while gaining great improvements in efficiency 
by using Richardson extrapolation. This is the technique used in K R A K E N  and is 
described next. 

It can be shown that the numerically derived eigenvalues vary as a function of 
the mesh width h, as follows: 
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where ki denotes the exact eigenvalue of the continuous problem. It is, of course, 
ki which is sought, however it is computationally expensive to evaluate k2(h) with 
small values of h. Instead, we solve the discretized problem for a series of meshes 
and fit a polynomial in h2 through the mesh points. The value of the polynomial 
evaluated at h = 0 provides the Richardson extrapolation of the eigenvalue. 

The extrapolation can be done with little effort. We denote the Richardson 
extrapolation using meshes h,, . . . , h, by k 2 ( p , . .  . , q). The Richardson extrapola- 
tion for the first mesh is trivial since the polynomial fit degenerates to a constant. 
Thus, k2(1) is identically equal to the value obtained at the first mesh. Subsequent 
extrapolations are obtained recursively as follows: 

(h i  - h2)k3(p + 1,. . . , p  + q )  - (hi+, - h2)kj(p,. . . , p  + q - 1) 
~ ; ( P , . . . , P s ~ ) =  

- %+, 
(3.39) 

where h denotes the mesh width for which the extrapolation is desired. 
As discussed in Chap. 2, a waterlsediment interface can be handled by setting 

up an independent mesh in each medium and applying matching conditions at the 
interface. In such cases there are two mesh spacings h, and h,. As long as the 
ratio h,/h, is kept constant when the mesh is refined one can pick either h = h, or 
h = h, in Eq. (3.39) and obtain the same result. 

The extrapolation is implemented in an adaptive fashion. An error tolerance 
E in the eigenvalues is computed based on the maximum range for which the field 
will be calculated. Then, the problem is solved for successively refined meshes and 
at each step the extrapolation to zero mesh width ( h  = 0) is performed using the 
above recursion. When the difference between two successive extrapolations is less 
than E ,  the extrapolated eigenvalue is accepted and the process is terminated. For 
simplicity, this convergence test is performed on a "key-value" which is a particular 
eigenvalue chosen roughly in the middle of the spectrum. 

The solution of the discretized problem for each mesh can be performed as de- 
scribed above, however, for subsequent meshes the circumstances are changed in 
that we have a good estimate of the eigenvalue and eigenfunction. This information 
is exploited by using Richardson extrapolation in a second fashion to provide an 
estimate of the eigenvalue for each new mesh. In order to be confident that we ex- 
trapolations are sufficiently accurate for the root-finder this process is adopted only 
for the third and subsequent meshes. 

A priori it is not at all obvious how well the extrapolation process should work. 
It  depends on how rapidly the coefficients in the Taylor series for k2(h) decay. Con- 
sequently, it is necessary to examine the merits of the method for individual classes 
of problems. Our initial experience with smooth single layer ocean acoustic prob- 
lems was extremely favorable[l3]. For more complicated multilayer problems one 
must take care that the mesh does not straddle an interface[64]. For this reason 
the difference equations have been set up to allow an independent mesh within each 
medium. 

An additional issue arises when the sound speed is provided in a tabular form 
as is typical for ocean acoustic problems. If piecewise-linear interpolation of the 
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sound speed profle is used, then the mesh must be set up to land precisely on those 
depths where the sound speed is tabulated. Since this must be done at each mesh, 
the mesh refinement is refined by simple halving. Alternatively, a new "medium" 
can be introduced for each piecewise Linear layer. Finally, one can bypass both these 
alternatives by simply using a very smooth fit to the sound speed profile. In the 
present version, one has the option of using a spline fit, which however can introduce 
its own artifacts. 

The reader who is having difficulty remembering the constraints and the various 
alternatives may be comforted to know that in practice the extrapolation works quite 
well even when the theoretical requirements are not satisfied. At one extreme, if you 
have a single medium with numerous discontinuities within the medium, you would 
probably find that the extrapolation provided no improvement over the answers 
obtained at the finest mesh. On the other hand, for extremely smooth profiles the 
extrapolation yields typically 3 additional significant digits per extrapolation. 

We should also mention for the reader that contemplates modifying the code, 
that we have found that seemingly innocuous changes can introduce terms of odd 
power in h  to the Maclaurin series for k 2 ( h ) .  The result then is to eliminate the 
usefulness of polynomial extrapolation in h2 .  Such terms can easily be introduced 
at interfaces if care is not taken that the interface condition is O ( h 2 )  and that 
higher-order terms of odd power are not present. 

Report no. changed (Mar 2006): SM-245-UU



Chapter 4 

Running the Program 

The K R A K E N  program is actually part of a complete package of modeling tools 
referred to as the Acoustics Toolbox and structured as shown in Fig. 4.1. Besides the 
K R A K E N  normalmode model, there is also a 1) raylbeam tracing model, BELLHOP, 
2) an FFP (spectral integral), SCOOTER, and 3) a time-domain FFP model, SPARC. 

The models take as input a user-provided environmental file (ENVFIL) to de- 
scribe the problem. This file has the same format for all models. PLOTSSP can be 
used to produce a plot of the sound speed profile defined in the environmental file. 

The models then produce a binary 'shade' file (SHDFIL) that contains calculated 
pressure fields. PLOTFIELD can be used to convert the pressure to transmission 
loss and produce a color or grey shade plot of the transmission loss over range and 
depth. The program PLOTSLICE is used to plot a dice of the field along a fixed 
receiver depth. Additional programs exist for using the shade files to do matched- 
field processing, to compute a probability of detection or a radius of detection. 

There are utilities available for converting between the NRL shade file format and 
the SACLANTCEN format (TONRL and TOSAC). This allows the SACLANTCEN 
models to be plotted using PLOTFIELD and PLOTSLICE for intermodel compar- 
isons. There are also utilities for converting the shade file to an ASCII format 
(TOASC) and back to their original binary format (TOBIN). These programs allow 
you to transfer files between computers with incompatible binary files by transferring 
an ASCII file instead. % 

While the basic structure is as shown in Fig. 4.1, each of the models has additional 
plotting routines which are unique to it. For instance, the BELLHOP ray model 
produces rays and so it has a ray plotting program, while the K R A K E N  normal 
mode produces modes and so it has a mode plotting program. In this chapter, we 
focus on the description of the K R A K E N  component, however, the other models are 
also discussed (briefly). 

Most of the development work has been done on a VAX using VMS Fortran but 
careful thought has been given to portability. The following changes are necessary 
to run KRAKEN under UNIX using the f7 7 compiler: 

1. Change the logical record length used for opening files. VMS uses longwords 
(4 bytes) most other systems seem to use bytes. 
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Figure 4.1: Structure of the Acoustics Toolbox. 
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2. Change the timing routines in TIME.FOR. 

3. Change the machine constants in SLATECBESSEL.FOR or eliminate the 
Twersky ice-scatter option which uses those routines. This is done by re- 
placing TWERSK.FOR with TWERSKYFUSE.FOR. With the latter routine 
it is no longer necessary to link with SLATECBESSEL and MATHIEU. 

4. Apparently there is no way for the Unix system to retrieve a record length for a 
file automatically. You will need to modify the mode-file format to include the 
record length, do a preliminary read to obtain the record length, then re-open 
the file with the correct record length. 

5. If you have core space problems, change the parameter MAXN which controls 
the maximum number of mesh points in depth. In KRAKEN this and other 
parameters are defined in the include-file COMMONTOR . Similar include- 
files exist for KRAKENC, SCOOTER, SPARC, and BELLHOP. 

4.1 Structure of the KRAKEN model 
A schematic of the KRAK EN program structure is shown in Fig. 4.2. At the first level 
we see that KRAKEN actually consists of three different models KRAKEN, KRAKENC 
and KRAKEL. KRAKENC and KRAKEL are for more sophisticated users with special 
requirements. The differences are discussed in more detail in the KRAKEN.HLP 
file below. 

A transmission loss calculation involves a two-step process running in sequence 
1) KRAKEN to calculate the modes and 2) PLOTTLR or PLOTTLD to sum up the 
modes and plot TL versus range or depth. In addition, PLOTMODE can be run 
to look at the individual modes and PLOTGRN can be used to calculate a Green's 
function. 

Producing a grey shade or color plot of transmission loss involves a three-step 
process running in sequence 1) KRAKEN to calculate the modes and 2) FIELD to 
sum the modes and calculate the pressure field, and 3) PLOTFIELD to plot the 
results. * 

Three-dimensional calculations follow a similar sequence but using FIELD3D 
instead of FIELD to sum the modes. As discussed in Chap. 2, 3-D calculations 
use a triangular patchwork over the ocean bottom that is defined in an input field- 
parameter file (FLPFIL). PLOTTRI is used to plot the triangular patchwork. Be- 
sides the 3-D pressure fields, FIELD3D also produces output describing the hori- 
zontal refraction which can be plotted using PLOTRAYXY. 

Detailed information on how to run KRAKEN is contained il a sequence of help 
files included with the source code. These help files are reproduced below. Note that 
all the plot programs require a few lines providing axis information (minimum, max- 
imum, interval for tick marks and axis lengths). This information can be read from 
a file however it is generally convenient to place the data directly in the command 
file used to execute the program. Comnland files for the VAX (with the extension 
'.COM') are provided with the program. 
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FIELD I 
Figure 4.2: Structure of the KRAKEN model. 
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4.2 The Main Program 

KRAKEN is a normal mode program for range-varying environments in either carte- 
sian (line sources) or cylindrical coordinates (point sources). The basic method is 
described in 

Porter, Michael B. and Reiss, Edward L., "A numerical method for ocean- 
acoustic normal modes", JASA 76, 244-252 (1984). 

Porter, Michael B. and Reiss, Edward L., "A numerical method for bottom 
interacting ocean acoustic normal modes", JASA 77, 1760-1767 (1985). 

Range-dependent solutions are obtained by using optionally adiabatic or coupled 
mode theory. 

The principal plot package used is DISSPLA. (The PLOTFIELD program ac- 
tually uses the UNIRAS plot package; however, an older version, PLOTFIELDD, 
which uses DISSPLA, is available on disk.) 

The following modules are part of the package. 

GROUP I: MODE COMPUTATIONS: 

KRAKEN Solves for the modes and writes them to disk. 
Elastic media are allowed but material attenuation 
in an elastic medium is ignored. 

KRAKENC A version of KRAKEN which finds the eigenvalues in the 
complex plane. KRAKEN uses perturbation theory to 
obtain imaginary parts of the eigenvalues while KRAKENC 
computes the complex eigenvalues exactly. 

KRAKENC runs about 3 times slower but is necessary for 
leaky mode computations or for including material 
attenuation in elastic media. Internally KRAKENC replaces 
elastic layers by an equivalent reflection coefficent. 
For this reason, you cannot use KRAKENC to look at 
fields within the elastic layers. 

KRAKEL Analogous to KRAKENC but also computes elastic 
displacements and stresses for elastic media. 
KRAKEL is seldom used and tends to not be kept 
up-to-date. 

GROUP 11: BASIC PLOTTING ROUTINES: 
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PLOTSSP Plots the sound speed profile. 

PLOTMODE Plots selected modes. 

PLOTGRN Plots the Green's funtion for the depth separated wave 
equation for a particular source/receiver combination. 

PLOTTLR Plots transmission loss versus range. 

PLOTTLD Plots transmission loss versus depth. 

PLOTTRI Plots the triangular elements used for 3-D field 
calculations. 

GROUP 111: FIELD COMPUTATIONS: 

FIELD Computes fields on a vertical array over a specified 
range and for a series of source depths. Individual 
phones in the array may be displaced from the 
vertical. Range dependence is handled by either 
adiabatic or one-way coupled mode theory. 

FIELD3D Computes field for a three-dimensionally varying SSP 
using adiabatic mode theory. 

GROUP IV: PLOTTING ROUTINES THAT USE GROUP I11 PROGRAM OUTPUT: 

PLOTFIELD Plots tranmission loss in plan or elevation, i.e. 
an (x,y) plot or an (r,z) plot. 

PLOTSLICE Plots overlays of transmission loss versus range 
curves by extracting slices from several shade files. 

PLOTRAYXY Plots the ray paths of the Gaussian beams 
generated during 3D field calculations. 

The various programs for computing fields (GROUP 111) are only 
needed for PLOTFIELD, or for special user programs (e.g. 
ambiguity surfaces). PLOTTLR and PLOTTLD compute the field 
internally and therefore do not need a shade file from FIELD to 
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run. 

The following extensions are used with these programs: 

.FOR 

. ALP 

. COM 

. LNK 

The FORtran source code 
A HeLP file documenting the module 
A COMmand file which runs the module 
A command file which performs a LiNK 

A11 user input in all modules is read using list-directed 110. 
Thus data can be typed in free-format using space, tabs, commas 
or slashes as delimeters. Character input should be enclosed in 
single quotes like this: 'CHARACTER INPUT'. 

You will see the ' / '  character in a number of the input files. 
This terminates an input line causing the program to use 
default values. 

**+** INSTAI,LATTON NOTES *-*** 

There is a VMS command file for sac5 ,>f the plogrm~s in this package 
which assigns necessary input files to The appropriate Fortran 
unit number used by that prograrc,. I n  order to simplify the installation, 
these command files make use of I c 3 l t a l  camas fcr certain directories. 
The logical names are in tarn define.+ in a single file call AT-1NIT.COM 
which is the ONLY file uhich neec',e to be customized for a new VMS installation. 

The following symbols and logical names for directories are used with 
the KRAKEN command files: 

AT: This is the Acoustics Toolbox directory which contains 
command files for running KRAKEN and other models 
in the toolbox. 

KRAK: The KRAKEN source code 

MISC: Miscellaneous scientific subroutines, e.g. 
root-finders, linear equation solvers, . . .  

GLOB: Global routines, that is, routines which operate on 
shade files. These routines operate on the output of 
a number of different propagation codes including 
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SCR : 

KRAKEN, FSTFLD, BELLHOP, SCOOTER and SPARC. 

A directory for scratch files. 

DISSPLA is a symbol which points to the DISSPLA plotting 
library. 

The following is an example of how these might be defined under: 

$ DEFINE AT US : [PORTER. AT] 
$ DEFINE BELL US : [PORTER. AT. BELLHOP] 
$ DEFINE GLOB US : [PORTER. AT. GLOBAL] 
$ DEFINE KRAK US : [PORTER. AT. KRAKEN] 
$ DEFINE MAN US : [PORTER. AT. MANUAL] 
$ DEFINE MISC US : [PORTER. AT. MISC] 
$ DEFINE SCO US : [PORTER. AT. SCOOTER] 
$ DEFINE SCR US : [PORTER. SCRI 
$ ! 
$ DISSPLA == "[DISll.LIBjDISLIB/L, INTLIB/L, DISLIB/L, HCBS/LW 

***** aOW TO RUN KRAKEN ***** 

0. Starting out for the first t i m e 7  Take a look at 
CLINK.COM for a compile and link of the whole package. 

1. Create the environmental file for your problem, following the 
directions in KRAKEN.HLP. 

2. Run KRAKEN (or KRAKENC). On the VAX this is done by typing 
either 

QKRAKEN filename 
0 r 

SUBMIT KRAKEN/PAR=filename 

where "filename" is the environmental file. 
The KRAKEN.HLP file details the differences between the 
KRAKEN and KRAKENC. 

3. You now have several choices (all the GROUP I1 programs): 
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a. Plot tranmission loss: 

QPLOTTLR filename 

b. Plot the modes: 

OPLOTMODE filename 

c. Plot the sound speed profile (actually, this can be done 
even before running KRAKEN): 

QPLOTSSP filename 

d. Plot the pressure field as a function of range and depth. 
This is a 2-step process: 

QFIELD filename 
QPLOTFIELD filename 

In general, you'll have to modify each command file before 
running it to provide the appropriate inputs as described in 
the help file for each program. 

Once the modes are created by KXAKEN or KRAKENC you can run 
the above plot programs in any sequence or as often as you 
like. 
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KRAKEN is the main program. It takes an environmental file, computes the modes, 
and writes them to disk for use by other modules. A print file is also produced, 
echoing the user input. 

KRAKENC is a complex arithmetic version (hence the C in KRAKENC) of 
KRAKEN. By working in the complex domain, loss mechanisms such as ice scatter 
and material absorption may be included 'exactly' rather than perturbatively. In 
addition, leaky modes may be computed. The price of t h s  non-perturbative treat- 
ment is a slowdown in speed by approximately a factor of 4. This factor principally 
represents the difference between complex and real arithmetic. 

A further slow down by a factor of 2 or more may occur it the Twersky scatter 
option is used in KRAKENC. The calculation of the Twersky scatter function can 
require significant CPU time; enough to actually be a dominant part of the cost 
of computing the modes. KRAKEN incorporates the scatter perturbatively and is 
much less sensitive to the cost of Twersky scatter 

KRAKEN does not at allow for losses in elastic media due to material attenua- 
tion. Thus. for attenuating elastic media. KRAKENC should be used. 

Files : 

Name 
Input 

* .ENV 
* . a R C  
* . TRC 
* . IRC 

Output 
* . PRT 
*.MOD 

Pascription 

25;'; ~ r o a x l e n t a l  data 
Kottom R e f l .  Coef. (op t l )  
Top Ref l .  Coef . (opt11 
I?-terna? Ref l . Coef . (op t l )  

PRinT f i l e  
MODe file 

EXAMPLE AND DESCRIPTION OF ENV FILE: 

'FRAMIV Twersky S/S ice s c a t t e r '  
50.0 
4 
'NSF' 
0.0092 8.2 5.1 
750 0.0 3750.0 

0.0 1436.0 0.0 1.03/ 
30.0 1437.4 / 
50.0 1437.7 / 
80.0 1439.5 / 

! TITLE 
! FREQ (Hz) 

! NMEDIA 
! OPTIONS 
! BUMDEN ( l / m )  ETA (m) XI (m) 
! NMESH SIGMA (m) NSSP 
! Z(m) CP ~S(m/s) ~HO(gm/cm3) 
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100.0 1441.9 / 
125.0 1444.6 / 
150.0 1450.0 / 
175.0 1456.1 / 
200.0 1458.4 / 
250.0 1460.0 / 
300.0 1460.5 / 
350.0 1460.6 / 
400.0 1461.0 / 
450.0 1461.5 / 
500.0 1462.0 / 
600.0 1462.9 / 
700.0 1463.9 / 
800.0 1464.8 / 
900.0 1465.8 / 
1000.0 1466.7 / 
1100.0 1467.0 / 
1200.0 1469.0 / 
1300.0 1469.5 / 
1400.0 1471.8 / 
1600.0 1474.5 / 
1800.0 1477.0 / 
2000.0 1479.6 / 
2500.0 1487.9 / 
3750.0 1510.4 / 
35 0.0 3808.33 
3750.0 1504.6 
3808.33 1603.07 / 
35 0.0 3866.66 
3808.33 1603.07 
3866.66 1701.53 / 
35 0.0 3925.0 
3866.66 1701.53 
3925.0 1800.0 / 

'A' 0.0 
3925.0 1800.0 
0.0 1504.0 
300.0 
1 100.0 / 
I 200.0 / 

! BOTOPT SIGMA (m) 
0.0 1.60 .15 0.0 

! CLOW CHIGH (m/s) 
! RMAX (km) 
! NSD SD(1 :NSD) (m) 
! NRD RD(1 :NRD) (m) 

DESCRIPTION OF INPUTS: 
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(I)  - TITLE 

Syntax : 
TITLE 

Description: 
TITLE: Title of run enclosed in sinqle quotes. 

(2) - FREQUENCY 

Syntax : 
FREQ 

Description: 
FREQ: Frequency in Hz. 

(3) - NUMBER OF MEDIA 

Syntax : 
NMEDIA (<20) 

Description: 
NMEDIA: Number of media 

The problem is divided into media within which it is 
assumed that the material properties vary smoothly. A new 
medium should be used at fluid/elastic interfaces or at 
interfaces where the density changes discontinuously. The 
number of media in the problem is defined excluding the 
upper and lower half-space. 

(4) - OPTIONS 

Syntax : 
OPTION 

Description: 
OPT(1:l): Type of interpolation to be used for the SSP. 

'C' for C-linear, 
'N' for N2-linear (n the index of refraction), 
' S '  for cubic Spline, 
'A' for Analytic. The user must modify the 

analytic formulas in PROFIL.FOR then 
compile and link. 
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If your not sure which option to take, I'd suggest 
you use 'C' or 'N'. Practically, you can pick 
either one: the choice has been implemented to 
facilitate precise intermodel comparisons. 

Option 'S' is a little dangerous because splines 
yield a poor fit to certain kinds of curves, 
e.g. curves with sharp bends. If you insist 
on splines, you can fix a bad fit by dividing the 
water column into two 'media' at the bend. 

Run PLOTSSP to check that the SSP looks the way you 
thought it should. Apart from potential typos, 
this will also show up fit-problems. 

OPT(2:2): Type of top boundary condition. 
'VJ VACUUM above top. 
' A '  ACOUSTO-ELASTIC half-space. 

Requires another line as described in 
block (4a). 

'R' Perfectly RIGID. 
'F' Reflection coefficient from a FILE 

(available in KRAKENC only). Requires 
additional lines as described in 
block (4c). 

'W' WRITE an internal reflection coefficient to 
a file (available in KRAKENC only). The file 
is given the extension '.IRC' and can 
subsequently be read in as a bottom boundary 
condition. (See option 'P' under 
bottom boundary conditons.) 

'S' for Soft-boss Twersky scatter. 
'H' for Hard-boss Twersky scatter. 
'T' for Soft-boss Twersky scatter, amplitude 

only. 
'I' for Hard-boss Twersky scatter, amplitude 

only. The Twersky scatter options require 
another line as described in block 
(4c). Mnemonically, T, I options are one 
letter after S, H in the alphabet. Current 
wisdom is that option T is most 
appropriate for ice scatter. 

For open ocean problems option 'VJ should be 
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used for the top BC. The Twersky options 
are intended for under-ice modeling. 

OPT(3:3): Attenuation units. 
'N' Nepers/m. 
'F' dB/(kmHz) (F as in Freq. dependent) 
'M' dB/m (M as in per Meter) 
'W' dB/uavelength (W as in per Wavelength) 
'Q' quality factor. 
'T' Thorp attenuation formula. This overrides 

any other attenuations specified. 

KRAKEN ignores material attenuation 
in elastic media. (KRAKENC treats 
it properly) . 

OPT(4:4): Slow/robust root-finder. 
' . '  As in: I want all the modes and I don't 

care how long it takes. Period. 
(Available in KRAKENC only.) 
In certain problems with elastic layers 
the old root-finder has been known to 
skip nodes.  

(4a) - TOP HALFSPACE PROPERTIES 

Syntax : 
ZT CPT CST RHOT APT AST 

Description: 
ZT: Depth (m) . 
CPT: Top P-wave speed (m/s). 
CST: Top S-wave speed (m/s). 
RHOT: Top density (g/cm3). 
APT: Top P-wave attenuation. (units as given in Block 2) 
AST: Top S-wave attenuation. ( I '  " 11 I1 11 

I' 

This line should only be included if OPT(2:2)='A', i.e. 
if the user has specified a homogeneous halfspace for 
the top BC. 

(4b) - TOP REFLECTION COEFFICIENT 

Syntax : 
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NTHETA 
THETA (1) RMAG ( 1 ) RPHASE ( 1 ) 
THETA (2) RMAG(2) RPHASE(2) 

Description: 
NTHETA: Number of angles. 
THETA ( ) : Angle. 
RMAGO: Magnitude of reflection coefficient. 
RPHASE(): Phase of reflection coefficient (degrees). 

Example : 
3 
0.0 1.00 180.0 
45.0 0.95 175.0 
90.0 0.90 170.0 

These lines should be contained in a separate '.TRC' file. 
This file is only required if OPT(2:2)='F', i.e. if the 
user has specified that the top BC is read from a '.TRCJ 
(Top Reflection Coefficient) file. 

This option for tabulated reflection coefficients is 
somewhat experimental at this time. I haven't worried about 
the multivalued character of the phase function: choose 
your reference and make sure the phase varies continuously. 
A complicated reflection coefficient may well cause 
problems for the mode-finder. 

(4c) - TWERSKY SCATTER PARAMETERS 

Syntax : 
BUMDEN ETA XI 

Description: 
BUMDEN: Bump density (ridges/km). 
ETA: Principal radius 1 (m). 
XI: Principal radius 2 (m) . 

This line should only be included when one of the 
Twersky-scatter options is selected. 
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(5) - MEDIUM INFO 

Syntax : 
NMESH SIGMA Z(NSSP) 

Description: 
NMESH: Number of mesh points to use initially. 

The number of mesh points should be about 10 
per vertical wavelength in acoustic media. In 
elastic media, the number needed can vary quite 
a bit; 20 per wavelength is a reasonable 
starting point. 

The maximum allowable number of mesh points is 
given by 'MAXN' in the dimension statements. 
At present 'MAXN' is 50000. The number of mesh 
points used depends on the initial mesh and the 
number of times it is refined (doubled). The 
number of mesh doublings can vary from 1 to 5 
depending on the parameter RMAX described 
below. 

SIGMA: RMS roughness at the interface. 

Z(NSSP): Depth at bottom of medium (m). 
This value is used to detect the last SSP point 
when reading in the profile that follows. 

(5a) - SOUND SPEED PROFILE 

Syntax : 
Z(1) CP(1) CS(1) RHO(1) AP(1) AS(1) 
Z(2) CP(2) CS (2) RHO (2) AP(2) AS ( 2 )  

Z (NSSP) CP (NSSP) CS (NSSP) RHO (NSSP) AP (NSSP) AS (NSSP) 
Description: 

Z() : Depth (m). 
The surface starts at the first depth point 
specified. Thus if you have say, XBT data which 
starts at 50 m below the surface, then you'll 
need to put in some SSP point at 0 m, otherwise 
the free-surface would be placed at 50 m giving 
erroneous results. 
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CP() : P-wave speed (m/s). 
CS() : S-wave speed (m/s) . 
RHO() : Density (gIcm3). 

Density variations within an acoustic medium 
are at present ignored. 

AP(): P-wave attenuation (units as given in Block 2) 
AS(): S-waveattenuation( " " II 

I t  11 
If 1 

These lines should be omitted when the 'A' option is used 
(indicating that an analytic profile is supplied by a user 
written subroutine). 

The ' 1 '  character signals that the remaining data on the 
line is the same as in the previous line of SSP data. For 
the very first line the default or 'previous' line is: 

This block should be repeated for each subsequent medium. 

(6) - BOTTOM BOUNDARY CONDITION 

Syntax : 
BOTOPT SIGMA 

Description: 
BOTOPT: Type of bottom boundary condition. 

'V' VACUUM below bottom. 
'A' ACOUSTO-ELASTIC half-space. 

Requires another line with the half-space 
parameters. The format is the same as that 
used for specifying the top halfspace BC. 

'R' Perfectly RIGID. 
'F' reflection coefficient from a FILE (available 

in KRAKENC only). Requires a Bottom 
Reflection Coefficient file with 
extension '.BRC'. The format is the same as 
that used for a Top Reflection coefficient. 

'P' Precaculated internal reflection coefficient 
from a FILE (available in KRAKENC only) 

Option 'A' is generally used for ocean bottom 
modeling. 

SIGMA: Interfacial roughness (m). 
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(7) - PHASE SPEED LIMITS 

Syntax : 
CLOW CHIGH 

Description: 
CLOW: Lower phase speed limit (m/n) .  

CLOW will be computed automatically if you set 
it to zero. However, by asing a nonzero CLOW you 
can skip the computztion of slower modes. Mainly 
this is used to exclnde interfacial modes (e.g. 
a Scholte wave). T2.e root finder is especially 
slow in converging to thebe interfzcial 
modes and when t h a  s o y r r e  and receiver are 
sufficientl? i r *  isr P:on; rhc ic~erface the 
interfacial nncle:, 3: ,. i;:!~'? . ,  i 3-- 3 7  210.  

. & CHIGH: Upper phase S ; . ~ , ~ C  . ., :L::Z: 

The larger :i-'.j.;h , :  . ,>., :.:,~-s ;,cdo,s ars 
calculate? and t Y c  2 .  ' ?.i5 =.xacctlon time. 
Therefore CHIGF '  s.;.;:&!* L.C :I.cr .is sniill as 
possible to-, y:n:;:- ?.? ; ;'rrr+ :' : :;7 t2 r r .e  = 

On the ct;r!~?s . I !  - :, ?, . :. - . .  maximum 
ray acgie l i t  . - l . :~ '> - ,  . .. , , . :*.:?. 7 field 

. - 4 -  c,:.!ii:ied which turn cal.culati:>n-.- r-: : - .  - - - .  . 

at the depth .: ..--! ?. - C. . -, - - . Lk; ;K in the SSP. 
Thus a large:  ? ' - I  i Ci< T e  :-,,- :.s d:?+ply 
penetratiqg ray:-: L .  - c i i . . l~ .2e< , 

Choice of Ci<iS1! t i l t ! >  becsni2s a matter of 
experiencs. ;n  the  far-Zleld and at 
high-frequencies, szys travailing in the ocean 
bottom are severely sztenuated and one may set 
CHIGH to the sound speed at the ocean bottom. In 
the near-field, 13w-frequency case, rays 
refracted in the Sot~om may contribute 
significantly to the field and CHIGH should be 
chosen to include such ray paths. 

KRAKEN will (if necessary) reduce CHIGH so that 
only trapped (non-leaky) modes zre computed. 

KRAKENC will attempt to compute leaky modes if 
CHIGH exceeds the phase velocity of either the 
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S-wave or P-wave speed in the half-space. Leaky 
mode computations are somewhat experimental at 
this time. 

(8) - MAXIMUM RANGE 

Syntax : 
RMAX 

Description: 
RMAX: Maximum range (km) . 

This parameter should be set to the largest 
range for vhich a field calculation will be 
desired. 

During the mode calculation the mesh is doubled 
successively until the eigenvalues are 
sufficiently accurate at this range. If you set 
it to zero, then no mesh doublings will be 
performed. You don't need to worry too much 
about this parameter-- even if you set it to 
zero the results will usually be reasonable. 

(9) - SOURCE/RECEIVER DEPTH INFO 

Syntax : 
NSD SD(1:NSD) 
NRD RD(1:NRD) 

Description: 
NSD: The number of source depths. 
SD(): The source depths (m). 
NRD: The number of receiver depths. 
RD() : The receiver depths (m) . 

This data is read in using list-directed 1/0 so you can 
type it just about any way you want, e.g. on one line or 
split onto several lines. Also if your depths are 
equally spaced then you can type just the first and last 
depths followed by a ' I '  and the intermediate depths 
will be generated automatically. 

CPU time is essentially independent of the number of 
sources and receivers so that you can freely ask for up 
to 4095 depths. However, for high-frequencies the 
storage for the mode files can be excessive. 
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The source/rcvr depths are sorted and merged and then the 
modes are calculated at the union of the two sets 
of depths. Thus, it doesn't matter if you mix up source 
and receiver depths. Furthermore, you can leave out 
either the source or receiver specification (but not 
both simultaneously) simply by using a ' / '  for that 
line. 

Sources and receivers cannot be placed in a half-space. 

- - - - * - - -_ - -_______- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  

SAMPLE PRINT OUT 

The print-out for this deck is shown below 

KRAKEN- FRAMIV Twersky S/S ice scatter 
Frequency = 20.00 NMEDIA - 4 

N2-LINEAR approximation to SSP 
Attenuation units : dB/mkI?z 
TWERSKY SOFT EOSS surface scatter model 

Twersky ice model parameters: 
Bumden = 0.920000E-02 Eta = 8.20 X i =  5.10 

ALPH AR 

( Number of pts = 
0.00 1436.00 
30.00 1437.40 
50.00 1437.70 
80.00 1439.50 
100.00 1441.90 
125.00 1444.60 
150.00 1450.00 
175.00 1456.10 
200.00 1458.40 
250.00 1460.00 

BETAR RHO 

RMS roughness = 0.000E+00 ) 
1.03 0.0000 0.0000 
1.03 0.0000 0.0000 
1.03 0.0000 0.0000 
1.03 0.0000 0.0000 
1.03 0.0000 0.0000 
1.03 0.0000 0.0000 
1.03 0.0000 0.0000 
1.03 0.0000 0.0000 
1.03 0.0000 0.0000 

1.03 0.0000 0.0000 
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( Number of pts = 
3750.00 1504.60 
3808.33 1603.07 

( Number of pts = 
3808.33 1603.07 
3866.66 1701.53 

( Number of pts = 
3866.66 1701.53 
3925.00 1800.00 

RMS roughness = 0.000E+00 ) 
1.50 0.1500 0.0000 
1.50 0.1500 0.0000 

RMS roughness = 0.000E+00 ) 
1.53 0.1500 0.0000 
1.53 0.1500 0.0000 

RMS roughness = 0.000E+00 ) 
1.57 0.1500 0.0000 
1.57 0.1500 0.0000 

ACOUSTO-ELASTIC half-space, ( RMS roughness = 0.000E+00 ) 
3925.00 1800.00 0.00 1.60 0.1500 0.0000 

CLOW = 0.00000E+00 CHIGH = 1504.0 
RMAX = 300.0000000000000 

Number of sources = 
100.0000 

Number of receivers = 
200.0000 

Mesh multiplier CPU seconds 
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ALPHA 
-0.8519020992E-06 
-0.1302695655E-06 
-0.1059327457E-06 
-0.1136748056E-06 
-0.1192384459E-06 
-0.1156165482E-06 
-0.1130917467E-06 
-0.1185453302E-06 
-0.1314814525E-06 
-0.1255743704E-06 
-0.1276318031E-06 
-8.1377681231E-06 
-3.1377169389E-06 
-0.1339925824E-06 
-0.1378254389E-06 
-0.1450063419E-06 

PHASE SPEED 
1456.956646 
1464.125663 
1467.544468 
1470.541667 
1473.682861 
1476.582050 
1479.222129 
1481.886116 
1484.483039 
1487.064845 
1489.637606 
1492.152796 
1494.612151 
1497.073136 
1499.500598 
1501.880476 

If the program a b ~ r t s  in scme way, exmine the print file which is produced. 
Frequently an expected line has been omitted and the environmental file is therefore 
misinterpreted. 

The message "FAILURE TO CONVERGE IN SECANT" occurs when KRAKEN 
rlquires more than 500 iterations to converge to a mode. Usually less than 20 iter- 
ations are needed but convergence to interfacial modes (Scholte or Stoneley waves) 
can be except~onally slow, especialiy at higher frequencies. The simplest solution is 
to exclude interfacial modes by setting the lower phase-speed limit to the minimum 
p-wave speed in the problem. Alternately, you can increase the value of MAXNIT 
which controls the MAXimum Number of ITerations in the root fmder. 
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4.3 Acoustic Field Calculations 

The FIELD program uses the modes calculated by K R A K E N  and produces a shade 
file which contains a sequence of snapshots of the acoustic field as a function of range 
and depth. A snapshot is produced for every source depth specified by the user. 

Files : 

Name 
Input 

* . FLP 
*.MOD 

Output 
* . PRT 
* . SHD 

Unit Description 

FieLd Parameters 
MOD6 files 

PRinT file 
SHaDe file 

EXAMPLE AND DESCRIPTION OF FLP FILE: 

1 9  

'RA' 
9999 
1 0.0 
501 200.0 220.0 / 
1 500.0/ 
1 2500.0 / 
1 0.0 / 

! TITLE 
! OPT 'X/R', 'CIA' 
! M (number of modes to include) 
! NPROF RPROF(~ :NPROF) (km) 
! N R  R(1:NR) (km) 
! NSD SD(1 :NSD) (m) 
! NRD RD(1:NRD) (m) 
! NRR RR(1:NRR) (m) 

(I) - TITLE 

Syntax : 
TITLE 

Description: 
TITLE: Title to be written to the shade file. 

If you type a 1, the title is taken from the 
first mode file. 

( 2 )  - OPTIONS 

Syntax : 
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OPTION 
Description: 

OPTION(1:l): Source type. 
'R' point source 

(cylindrical (R-Z) coordinates) 
' X '  line source 

(cartesian (X-Z) coordinates) 
OPTION(2:2): Selects coupled or adiabatic mode theory. 

'C' Coupled mode theory. 
'A' Adiabatic mode theory (default). 

(3) - NUMBER OF MODES 
Syntax : 

M 
Description: 

M: Number of modes to use in the field computation. 
If the number of modes specified exceeds the 
number computed then the program uses all the 
computed modes. 

(4) - PROFILE RANGES 

Syntax : 
NPROF RPROF(1:NPROF) 

Description: 
NPROF: The number of profiles, i.e. ranges where a new 

set of modes is to be used. 
RPROFO: Ranges (km) of each of these profiles. 

For a range independent problem there is only 
one profile and its range is arbitrary. 
mode files must exist for each range of a 
new profile and be assigned in sequence to 
units 30,31, . . .  The modes for the last SSP 
profile are extended in a range-independent 
fashion to infinity so that RMAX can exceed 
RPROF (NPROF) . 

(6) - SOURCE/RECEIVER LOCATIONS 

Syntax : 
NR R(1:NR) 
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NSD SD (1 : NSD) 
NRD RD(1:NRD) 
NRR RR( 1 : NRR) 

Description: 
NR: Number of receiver ranges. 

(NR<4094 and NR*NRD <= 210000) 
R O :  The receiver ranges (km) 
NSD: The number of source depths. (<51) 
SDO: The source depths (m). 
NRD: The number of receiver depths. 

((201 and NR*NRD < 210000) 
RDO: The receiver depths (m). 
NRR: The number of receiver range-displacements. 

Must equal. NRD. (YES, IT IS REDUNDANT) 
RRO: The receiver displacements (m). 

This vector should be all zeros for a perfectly 
vertical array. 

The field is compnted by stepping through the 
ranges, R(::NR), and adding in the range 
displacements, R R O  before computing the field 
on the array. Fjonzero values are used to tilt or 
dis+cr: the receiving array, thereby simulating the 
distartiori ui: lch e r r i i r s  on an array deployed in 
7: b. e :: ,, ,> a j-~ , 

The fornat cf ;he source/rcvr info is an integer 
indicating the nxnber of sources (receivers) followed by 
real numbers indirzting the depth (range) of each 
receiver. Si3cs  this data is read in using list-directed 
1/0 you can type it just about any way you want, e.g. on 
one line or split onto several lines. Also if your depths 
are equally spaced then you can type just the first and 
last depths followed by a ' / '  and the intermediate depths 
will be generated automatically. 

Report no. changed (Mar 2006): SM-245-UU



CHAPTER 4 .  RUNNING THE PROGRAM Report no. changed (Mar 2006): SM-245-UU



4.3. ACOUSTIC FIELD CALCULATIONS 

The FIELD3D program uses the modes calculated by KRAKEN and produces a shade 
file which contains a sequence of 2-D slices of the acoustic field. It is commonly used 
to compute a field in plan view, i.e. as a function of horizontal coordinates (x,y). 
It can  also be used to compute the field on a vertical slice along any fixed bearing 
through the 3-D environment. 

FTELD3D uses a tiling of the ocean environment based on triangles. The ter- 
minology is taken from finite-elements, To define the triangles you must do the 
following: 

(1) Lay out a grid of points (nodes) where you will construct environmental files 
for KRAKEN and solve for the modes. A coarse rule-of-thumb is to pick points every 
10 km but obviously a coarser spacing can be used in sites with less environmental 
change. 

(2) Assign a number to each of the nodes. 
( 3 )  Form a triangulation of the nodes. That is, connect the nodes with lines such 

that the grid is divided into a nl~rnher cf triangles. This should be done with an eye 
towards keeping the area ol'the jnCi1;idual triangles uniform. All nodes should be a 
corner of at least one triangle. Each triangle is referred to as an element. 

There are algorithm.; fc,r performing this step automatically and if you write one 
I would be glad to receive i t .  If instead you d.1 this by hand you will rapidly discover 
the merits of using a regular grid. 

(4)  Assign a 11urnhe; ec? F~:.!I of r h r  e!err:ents. 
You now have the infc:r~natior? reqluired liy FIELD3D t.o describe your triangu- 

lation. In the inpat file :ia.;1 Eri t  tell FJEI,D3D the coordinates of each node and 
the name %cf the fi!- co;~: a i n i ~ g  the mode, at eack node. You then tell FIELD3D 
how you cormecteii the i:.~i-it?s to  f ~ r m  n triangularion. Thls is done by specifying 
the node numbers which defize t [I*.- i-c:rners each sl~ccessive element (triangle). 

Files : 

Name 
Input 

* . FLP 
*.MOD 

Output 
+ . PRT 
* . SHD 

U n i t  Description 

FieLd Parameters 
MODe files 

PRinT file 
SHaDe file 

......................................................... 

EXAMPLE AND DESCRIPTION OF FLP FILE: 

' MUNK3D ' ! TITLE 
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' STDFM ' ! OPT 
9999 ! M (number of modes) 
0.001 0.001 ! XS YS (source position) (km) 
1 1000.0 ! NSD SD(1 :NSD) (m) 
1 800.0 ! NRD RD(1:NRD) (m) 
0.0 100.0 501 ! RMIN RMAX NR (km) 
19 0.0 360.0 / ! NTHETA THETA (1 : NTHETA) (degrees) 
5 Number of SSP'S (NSSP) 

100.0 0.0 'SCR:MUNKTO' ! ( x ,  y) i=l, NSSP (km) 
0.0 100.0 'SCR:MUNKTSO' 

-100.0 0.0 'SCR:MUNKTO' 
0.0 -100.0 'SCR:MUNKT270J 
0.0 0.0 'SCR:MUNKTO1 

4 NELTS 
5 1 2  ! Nodes of corners 
5 2 3  
5 3 4  
5 4 1 
4.0 360.0 90 
500.0 160 
0.3 

! ALPHA1 ALPHA2 NALPHA 
! STEP NSTEPS 
! EPMULT 

(1) - OPTIONS 

Syntax : 
OPT 

Description: 
OPT(3:3): Type of caculation. 

'STD' (Standard) for an Nx2D run. 
'GBT' (Gaussian beam trace) for a 3D run. 
'PDQ' For a fast preview run. 
The 'STD' option neglects horizontal 
refraction but runs a lot faster. 
Avoid using the 'CBT' option: 
it requires some care to use 
properly. Option 'PDQ' runs about 3x as fast 
as 'STD' but is less accurate. 

OPT(4:4): TESCHECK (tesselation check) flag. 
'T' Perform the tesselation check. 
'F' omit the tesselation check. 
For all but the simplest setups the user will 
INVARIABLY make an error in setting up the 
triangulation. The first step to avoid this 
is to run PLOTTRI to get a plot of the 
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4.3. ACOUSTIC FIELD CALCULATIONS 

triangulation. Even after that one should 
invoke this 'TESCHECK' option however for 
large problems some time can be saved by 
turning off this feature after the 
triangulation has been checked once. 

OPT(5:5): Type of beams. 
There are several types of Gaussian beams 
available. I suggest using 'M'. This option 
is ignored unless the Gaussian beam 
calculation has been selected. 

OPT(6:6): Ray file flag. 
Use 'R' to have a file of ray path 
trajectories (in the horizontal plane) written 
to disk for subsequent plotting using the 
PLOTRAYXY program. These rays show the 
horizontal refraction of individual modes. 
This option is ignored if you select a 'STD' 
or 'PDQ' run for then the ray paths are just 
straight lines. 

(2)  - NUMBER OF MODES 

Syntax : 
M 

Description: 
M: Number of modes to use in the field computation. 

If the number of modes specified exceeds the 
number computed then the program uses all the 
computed modes. 

(3)  - SOURCE COORDINATES 

Syntax : 
XS YS 

Description: 
XS: X-coordinate of source (km). 
YS: Y-coordinate of source (km). 

(4) - SOURCE/RECEIVER DEPTHS 

Syntax : 
NSD SD (1 : NSD) 
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NRD RD(1:NRD) 
Description: 

NSD: The number of source depths. (<3) 
SD() : The source depths (m) . 
NRD: The number of receiver depths. 

(<51 and NR*NRD < 54000) 
Multiple receiver depths and multiple 
azimuthal radials are exclusive. If the number of 
receiver depths is greater than one then 
the program will overide your specification of 
multiple radials. 

RDO: The receiver depths (m). 

(5) - RECEIVER RANGES 

Syntax : 
RMIN RMAX NR 

Description: 
RMIN: First receiver range (km). MUST BE ZERO! 
RMAX: Last receiver range (km). 
NR: Number of receiver ranges. 

(NR<4094 and NR*NRD <= 210000) 

(6) - RADIALS 

Syntax : 
NTHETA THETA(1:NTHETA) 

Description: 
NTHETA: Number of radials. (<101) 
THETA(): Angles for each radial (degrees). 

For full circle (or disc) coverage our plotting program 
likes to have a repeated radial, say 0 and 360 degrees. 

(7) - NODES 

Syntax: 

NNODES 
x(1) y ( 1 )  FILNAM ( 1) 
X(2) Y (2) FILNAM(2) 
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X(NN0DES) Y(NN0DES) FILNAM(NN0DES) 
Description: 

NNODES : Number of nodes. (C1000) . 
X(> : X-coordinate of node (km) . 
Y o  : Y-coordinate of node (km) . 
FILNAMO: Name of the mode file for that node. 

Use the name 'DUMMY' to produce an acoustic 
absorber. 

(8) - ELEMENTS 

Syntax : 
NELTS 
NODE1 (1) NODE2 (1) NODE3(1) 
NODE1 (2) NODE2(2) NODE3 (2) 

NODE1 (NELTS) NODE2 (NELTS) NODE3(NELTS) 
Description: 

NELTS : Number of elements. (<1500) 
NODElO: Number of node at first corner of the triangle. 
NODE20 : II I! I 1  " second " " I 1  I! 

NODE3 ()  : I 1  11 !I ll third ll II II 11  

In this fashion we defica a tiling of triangular 
elements. The ordering of the elements is arbitrary. 

(9) - GAUSSIAN BEAM INFO 

Syntax : 
ALPHA1 ALPHA2 NALPHA 
STEP NSTEPS 
EPMULT 

Description: 
ALPHA1: First angle for beam fan (degrees). 
ALPHA2: Last I' 

11 11 I! I' 

NALPHA: Number of beams in fan. 
STEP: Step size (m). 
NSTEPS: Number of steps. 
EPMULT: Epsilon multipler for beam initial conditions. 

This Gaussian beam info can be omitted if the 'STDJ option 
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in block (1) is used. 

To get a rough idea of run time, consider a 50 Hz deep water problem 
with 60 modes (waterborne modes only) and for 37 radials with 501 
range points per radial. On a 1 megaflop workstation, this required 
about 3 minutes with option 'STD' and 6 hours when including horizontal 
refraction via option 'GBT'. 

Run time is roughly proportional to M * NTHETA * NR. 
Dimensional constraints: 

Number of modes at a single node <= 1500 
Number of distinct sets of modes <= 250 
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4.4 Plotting routines 

PLOTFIELD produces either rectangular or polar plots of shade files. The former 
are used for range-depth plots of transmission loss (slices in a vertical plane) and 
the latter for range-range plots of transmission loss (slices of in a horizontal plane). 

Files : 

Name Unit Description 
Input 

* . PLP 1 PLot Parameters 
Output 

* . SHD 11-99 SHaDe file 

EXAMPLE AND DESCRIPTION OF PLP FILE: 

'RD' ! 'S' SCALE, 'L' OR 'D' LINEAR OR DB 
'CA' ! POLAR OR CARTESIAN ('PO', 'CA') 
' W G C  ' ! DEVICE ('PRX', 'TEK', 'TEK', 'T41') 
0 ! Segment number (0 for none) 
0.0 ! SMOOTHING WINDOW (m) 
1 ! NPLOTS 
'SCR:DEEPB' 100.0 ! SOURCE DEPTH 
0.0 50.0 0.0 5000.0 ! RMINPL RMAXPL (km) ZMIN ZMAX (m) 
66.0 102.0 4.0 ! Thin TLmax (dB) 

(1) - SCALING 

Syntax : 
OPT 

Description: 
OPT(1:l): Source type. 

'R' No scaling applied. 
'S' Field multiplied by sqrt(r). 

OPT(2:2): Linear or dB 
'L' Linear scale (useful for pulse plots). 
'D' dB scale (for most other plots). 

(2) - COORDINATE SYSTEM: 
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Syntax : 
COORD 

Description: 
COORD(1:2): Source type. 

'CA' Cartesian. 
'PO' Polar. 

COORD(3:3): Grid plotting. 
'G' Grid. 
' ' No grid. 

(3) - OUTPUT DEVICE: 

Syntax : 
DEVICE 

Description: 
DEVICE(1: 3) : Device type. 

'VUG' Vugraph machine. 
'TEK' Tektronix 4691 hardcopy device. 
'THE' Tektronix 4693 hardcopy device. 
'VUG' Tektronix VUGRAPH hardcopy device. 
'T41' Tektronix 41xx terminal. 
'VTT' DEC VT340 terminal. 
'MGP' VAXstation 2000. 
'X11'  X-windows device. 
'PSP' Postscript printer. 

DEVICE(4:4): Color or black and white 
' C ' Color 
'B' Black and white 

DEVICE(5:5): Smooth (linear interp.) or blocky shading. 
'S' Smooth. 
'B' Blocky. 

DEVICE(6:6): Final copy. 
' F ' Final 
' ' Standard labels 
This option labels the plots (a), (b), (c) 
and strips out certain other information to 
make the plot suitable for a final report. 

(4) - SEGMENT NUMBER: 

Syntax : 
SEGNUM 

Description: 
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SEGNUM: If you specify a nonzero segment number, then 
the file will be added into the default segment 
file. (See UFJIRAS documentation for info on 
segment files) . 

(5) - SMOOTHING WINDOW 

Syntax : 
DR3DB 

Description: 
DR3DB: Three dB smoothing window (m). The tranmission 

loss is computed then smoothed in range using a 
Gaussian filter. DR3DB gives the range interval 
over which ~ h &  smoothing is performed. 

(6) - NUMBER OF PLOTS 

Syntax : 
NPLOTS 

Description: 
NPLOTS: Yoc i a n  no I,? or 3 plots per page as indicated 

by  NPI.07:-;. 

(7) - PLOT DATA: 

Syntax : 
FILNAM SC 
RMIN RMAX ZINC RAXL 
ZMIN ZMAX Z I N C  ZAXL 
TLMIN TLMAX TLINC 

Description: 
FILNAM: Name of the shade file. 

The file name is provided without the 
extension which is assumed to be '.SHD'. 

SD : Source depth. 
RMIN: Minimum range (km 1. 
RMAX: Maximum range (km 1. 
RINC: Range interval for tick marks (m/s). 
RAXL: Range axis length (cm ) .  

ZMIN: Minimum depth (m) . 
ZMAX: Maximum depth (m> . 
ZINC: Depth interval for tick marks (m/s). 
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KRAKEN- FRAMlV Twersky SIS ice scatter 
FREQ= 20. Sd= 25. 0 ABOVE 95 

0 94-95 
93.94 

1 92.w 
91-92 
90-91 
89-90 
86-89 
8 7 - a  
86-87 
85-86 

1 84-85 
83-84 
82-83 

. . . . . . . 81-82 
BO-81 

BELOW 80 

50 
Range (km) 

Figure 4.3: Sample output of PLOTFIELD: transmission loss for the Arctic problem. 

ZAXL : Depth axis length 

TLMIN: Minimum transmission loss (dB). 
TLMAX: Maximum transmission loss (dB). 
TLINC: Increment in transmission loss (dB). 

This information should be repeated for ISRC = 1, NSRCS 

For a polar plot the form is: 

Syntax : 
FILNAM SD 
XMIN XMAX XINC XAXL 
YMIN YMAX YINC YAXL 
TLMIN TLMAX TLINC 

where XMIN, XMAX, YMIN, YMAX, specify the x and y limits of 
the plot in kilometers. 
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4.4.2 PLOTGRN.HH;P 
PLOTGRN uses the modes to  ~ r o d u c ~ s  plots of the amplitude of the Green's func- 
tion, G(k) corresponding to  a part;L LT aourcelreceiver combination. The Green's 
function is plotted as a fimct ion of' hfirizontal wavenumber, k. 

F i l e s  : 

Input 
Name 

* . PLP 
* .MOD 

Output 
* . PRT 

Descr ipt ion 

FLot Parameters 
MODe f i l e  

PIiinT f i l e  

EXAMPLE AN3 DESCRIPTTOIi GF ?LF FILE 

! SD RD (m) 
! NKPTS ATTEM ( a t t e n u a t i o n )  
! R M I N ,  KMAX, KINC,  KAXL (cm) 
! ZMIN, GMAX, GINC, GAXL (cm) 

(1) - SOURCF/SECEIYER. DEPTHS 

Syn t ax  : 
SD RD 

Description- 
SF. Souzca depth (lo, 

RD:  Recelvex depth (mj 

(2) - SAMPLING INFORMATION 

Syntax : 
NKPTS 
ALPHA 

Descr ipt ion:  
NKPTS: Number of p o i n t s  i n  k-space f o r  eva lua t ing  

t h e  k e r n e l .  
ALPHA: S t a b i l i z i n g  a t t e n u a t i o n  (l/m). 

Since G(k) has s i n g u l a r i t i e s  on t h e  r e a l  k-axis ,  it i s  
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2400 KRAKEN- FRAMIV 

Q, 
0 1800 
3 
CI . - - r 
Q: 1200 - 
F 
CI 
0 
Q) 
a 600 vl 

0 
0.083 0.084 0.085 0.086 0.087 0.088 0.089 0.090 

Figure 4.4: Sample output of PLOTGRN: the Green's function for the Arctic prob- 
lem. 

evaluated on a slice displaced into the complex plane a 
distance i ALPHA. 

(3) - AXIS INFO 

Syntax : 
KMIN KMAX KINC KAXL 
GMIN GMAX GINC GAXL 

Description: 
KMIN: k-minimum (l/m) . 
KMAX: k-maximum (l/m). 
KINC: k-interval for tick marks (l/m). 
KAXL: k-axis length ( cm). 
GMIN: G-minimum. 
GMAX: G-maximum. 
GINC: G-interval for tick marks. 
GAXL: G-axis length ( cm) . 

If GMAX is set to zero, the program will automatically 
compute a value. 
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PLOTMODE produces plots of specified modes using a solid line for the real part 
and and dashed line for the imaginary part. It requires the usual KRAKEN output 
files containing the modes and an additional file containing a list of which modes to 
plot terminated by a zero. 

Note that the modes are tabulated only at the source and receiver depths spec- 
ified during the KRAKEN run. Thus, if you specify only one source and receiver 
depth in the KRAKEN run, the mode plots will be grossly undersampled. 

Before plotting each mode the maximum absolute value of the (complex) eigen- 
function is calculated, that is, 

T = max ( abs( Z(z) ) 
where Z(z) denotes the eigenfunction and the maximum is calculated over the 

depth points in the plot window. The eigenfunctions are then scaled by this factor 
and plotted along with the value of T. As a result, purely real eigenfunctions will 
peak at 1 on the plot; complex eigenfunctions may have a peak in their real or 
imaginary parts which is less than 1. 

F i l e s  : 

Name Unit Description 
Input 

* . PLP 5 PLot Parameters 
* .MOD 3 0 MODe f i l e  

Output 
* . PRT 6 PRinT f i l e  

EXAMPLE A N D  DESCRIPTION OF PLP FILE: 

'P' 
0.0 5000.0 1000.0 15.0 ! ZMIN ZMAX Z I N C  ZAXL 
1 
2 
3 
4 
0 

(1) - COMPONENT 

Syntax : 
COMP 

Description: 
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KRAKEN- FRAMIV 

Mode 1 
mox = 

Mode 2 
0.0769 ma. - 0.0506 

Mode 3 Mode 4 
mox - O W 7  mox - 0.0426 

0 

MOO ~p 0 1 

Figure 4.5: Sample output of PLOTMODE: selected modes for the Arctic problem. 

COMP: Selects which component of a mode is plotted. 
'V' Vertical displacement 
'H' Horizontal displacement 
'T' Tangential stress 
' N ' Normal stress 
'P' Pressure (gives same result as 'N') 

(2) - DEPTH AXIS INFO 

Syntax : 
ZMIN ZMAX ZINC ZAXL 

Description: 
ZMIN: Z minimum (m 1. 
ZMAX: Z maximum (m 1. 
ZINC: Z interval for tick marks (m ) .  
ZAXL: Z axis length (cm) . 
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PLOTSLICE produces plots of coherent transmission loss versus range by extracting 
a particular slice from a shade file which is produced by any of several propagation 
models including FSTFLD, K R A K E N ,  SCOOTER and IFD. An additional input file 
'.PLP' contains plot parameters. 

F i l e s  : 

Name Unit Descr ipt ion 
Input 

* . PLP 1 PLot Parane te r s  
Output 

* .PRT 6 PRinT file 
* . SHD 11-99 SHaDe file 

EXAMPLE A N D  DESCRIPTION OF ?LP FILS 

' R ' ! S?T ' R ' S '  ( s c a l i n g ) ,  ' L / D '  ( l inear /dB)  
3 I .jClJ?,,iZS 
500.0 2500.0 a 5 3  !?;.I ::y,) 

200.0 220.0 / ? q): i - :!:WAX 7 KI?JC  (km) RAXL (cm) 

70.0 110.0 r' ! 1'- v , ra:  1l..F:qX T i I \ l C  (dB) TLAXL (cm) 
0 . 0  , -... 

i .I:.. - D H  (m! ;smoothing window) 

(1)  - SCALING 

Syntax : 
OPTION 

Descr ip t ion  : 
OPTION(1:l): Source t y p e .  

'R' No s c a l i n g  a p p l i e d .  
IS' F i e l d  mul t ip l i ed  by s q r t ( r )  

OPTION(2:2): Linear o r  dB. 
' L '  f o r  l i n e a r  s c a l i n g  

( u s e f u l  f o r  pu l se  p l o t s )  . 
'D' f o r  p l o t s  i n  dB 

( f o r  most o t h e r  p l o t s ) .  

(2) - NUMBER OF CURVES 
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Syntax : 
NCURVES 

Description: 
NCURVES: Number of curves to plot. 

For each curve a shade file name should be 
passed in the parameter list. 

(3) - SOURCE/RECEIVER DEPTHS 

Syntax : 
SD RD 

Description: 
SD: Source depth (m) . 
RD: Receiver depth (m) . 

(4) - RANGE AXIS INFO 

Syntax : 
RMIN RMAX RINC RAXL 

Description: 
RMIN: Range minimum (m/s). 
RMAX: Range maximum (m/s). 
RINC: Range interval for tick marks (m/s). 
RAXL: Range axis length (cm) . 

(5) - TRANSMISSION LOSS AXIS INFO 

Syntax : 
TLMIN TLMAX TLINC TLAXL 

Description: 
NCURVES: Number of curves. 
TLMIN: TL minimum (dB). 
TLMAX: TL maximum (dB). 
TLINC: TL interval for tick marks (dB). 
TLAXL: TL axis length (cm) . 

(6) - SMOOTHING: 

Syntax : 
SIGMA 

Description: 
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SIGMA: Smoothing window (m). 
A gaussian filter is applied with this 
window size. 
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PLOTSSP produces plots of the sound speed profile. It requires as input an environ- 
mental file of exactly the same form used by K R A K E N .  It ouputs a print f le  echoing 
the input data. The number of points used in plotting the sound speed profile is 200 
per medium. 

Files : 

Input 

Output 

Name 

* . ENV 
* . PLP 

Unit Description 

ENViromental data 
PLot Parameters 

PRin'l' file 

EXAMPLE 8V3 DESCRIPTION GF PLP F I L E :  

1425.0 1525.0 25.0 iC . O  CPI IN  CMAX C I N C  (m/s) CAXL (cm) 
0.0 400C.0 1000.0 1 .  ! %??IN ZMAX Z I N C  (m) ZAXL (cm) 

(1) - SOUND SPEED A X I S  YkF:i 

S y n t a x  : 
CMIZl  CHAX C I i i C  CxXL 

Descr i~ - -  *I .AOP.: - 
C M I N :  Sound speed minimum (m/s) . 
CKAZ; Sound speed maximum (m/s> . 
C T N C :  Sound speed interval for tick marks (m/s). 
CAXL: Sound speed axis length (cm 1. 

(2)  - DEPTH A X I S  I N F O  

Syntax : 
Z M I N  ZMAX Z I N C  ZAXL 

Description: 
ZMIN:  Depth minimum (m > .  
ZMAX: Depth maxirnum (m > .  
Z I N C :  Depth interval f o r  tick marks (m 1. 
ZAXL: Depth axis length (cm) . 
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Sound Speed (m/s) 

Figure 4.6: Sample output of PLOTSSP: the sound speed profile for the Arctic 
problem. 
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PLOTTLD produces plots of coherent transmission loss versus depth. The user 
must provide a mode file as computed by K R A K E N .  

Files : 

Input 
Name 

* . PLP 
* .MOD 

Output 
* . PRT 

Unit Description 

PLot Parameters 
MODe file 

PRinT file 

EXAMPLE AND DESCRIPTIObJ OF PLP F1L.Z: 

'R' 
999 
25.0 
50.0 
501 0.0 3750.0 / 
0.0 4000.0 1000.0 10.0 
70.0 110.0 10.0 10.0 

! OPT f X  or R for cart or cyl coords) 
! M (nuznber of modes to include) 
! SD (m) 
! Receiver range (km) 
! NRCVRS RD(1:KRCVRS) (m) 
! Z M I X  ZXAX ZINC (m) ZAXL (cm) 
! TiMI!,: TLMAX TLINC (dB) TLAXL (cm) 

(I) - OPTIONS 

Syntax: 
OPTION 

Description: 
OPTIOM(1:I): Source type. 

'R' for a point scurce 
(cylindrical or R-Z coordinates). 
'X' for a line source 
(cartesian or X-Z coordinates) 

OPTION(2:2): Dummy variable for consistency with PLOTTLR. 
OPTION ( 3  : 3) : Component. 

" (null) for pressure. 
'H' for Horizontal displacement. 
'V' for Vertical displacement. 
'T' for Tangential stress. 
'N' for Normal stress. 
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(2) NUMBER OF MODES 

Syntax : 
M 

Description: 
M: Number of modes to use in the field calculation. 

If this number is larger than the actual number of 
modes in the mode file it is reduced accordingly. 

(3) - SOURCE/RECEIVER LOCATIONS 

Syntax : 
S D 
RR 
NRD RD(1:NRDj 

Description: 
SD: Source depth (m ) .  
RR: Receiver range (km) . 
NRD : Number of receivers. 
RD 0 : Receiver depths (m) . 

The format of the source/rcvr depth info is an 
integer indicating the number of receivers 
followed by real numbers indicating the range 
of each receiver. Since this data is read in 
using list-directed 1/0 you can type it just 
about any way you want, e.g. on one line or 
split onto several lines. Also if your depths 
are equally spaced that you can type just the 
first and last depths followed by a ' / '  and the 
intermediate depths will be generated 
automatically. 

(6) - Z AXIS INFO 

Syntax : 
ZMIN ZMAX ZINC ZAXL 

Description: 
ZMIN : Z minimum (m >.  
ZMAX : Z maximum (m > .  
ZINC: Z interval for tick marks (m ) .  
ZAXL: Z axis length (cm) . 
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2000 E !----, 
k--- moo + = ,  

Figure 4.7: Sample oiit1:at 17E i3i20TTLD: transmission loss vs. depth for the Arctic 
problem. 

(7) - TRANSMISSICN LOSS AXIS INFO 

Syntax : 
TLMIN TLMAX TLINC TLAXL 

Descr ip t ion :  
TLMIN: TL minimum (dB). 
TLMAX: TL maximum (dB). 
TLINC: TL i n t e r v a l  f o r  t i c k  marks (dB). 
TLAXL: TL a x i s  l eng th  (cm) . 

If you s e t  TLMIN=TLMAX then t h e  curve is  au tosca led .  
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4.4.7 PLOTTLR.HLP 
PLOTTL,R sums the modes to produces plots of coherent transmission loss versus 
range . 

Files : 

Input 
* . PLP 
* .MOD 

Output 
* .PRT 

Description 

PLot ParameTers 
MOPS files 

EXAMPLE A N D  DESCkIPTI3?; Lr PLP i li; 

' R A N '  GF'; ( : : a r ~ , ,  c y l i n  cr scaled coords) 
999 !.I ::-:;rr~i.cr af ,;:;jdes to include) 
1, 0.0 I ? .  HP45Fi 1 : TiPROF) (km) 
25.0 25.0 . , . , , . ~ . L I  '. :: 1 

0.0 100.0 501 10.0 1 2 . ~  . . , . >  i7ydx ";"n RIRC (km) RAXL (cm) 

70.0 110.0 1 0 . C  6 .C  s . .  '.: . c A TLINC (dB) TLAXL (cm) .r - ,jT" '7: i l k  il 

0.0 ::'$E ,<?:! ,:-:;h-lng vindow (m) 

Syntax:  
OPTIOFi 

Description: 
OPTION(1:1): S ~ u r c e  type. 

' R '  point scurce. 
(cylindrj ca? or R-Z coordinates) 

' X '  line scurce. 
(cartesisn or X-Z coordinates) 

OPTION(2:2): Selects  coupled mode or adiabatic mode theory 
'C' for Coilpied mode theory. 
'A' for Adiabatic mode theory (default). 

OPTION(3:3): Component 
" (nail) f o r  p r e s s m e .  
' H i  for  Horizontal displacement. 
'VJ far Ver2ical displacement. 
' T J  for Tailqential stress. 

Report no. changed (Mar 2006): SM-245-UU



CHAPTER 4. RUNNING THE PROGRAM 

'N' for Normal stress. 

(2) - NUMBER OF MODES 

Syntax: 
?I 

Description: 
M: Muinber of modes to use in the field computation. 

If this nunber is larger than the actual number of 
modes in the rr,ode file it is reduced accordingly. 

S y n t a x  : 
NFF.3' RF ? 2 Z  (I . YPRDF 

Deecri7'lor.: 
BPROF : '?:P.? >~11~ber of prof iies , i . e. ranges where a new 

ae: ~f ~ 0 6 ~ s  is to be used. 
;'IPRSF(> : F,anges im1) sf each of these profiles. 

For a rang+ independent problem there is only 
one p r o f i l e  and its range is arbitrary. Mode 
f lles !-nust exist for each range of a new 
pr ; f  i l e  and be assigned in sequence to units 
3 3 , 3 : ,  . . .  The modes for the last SSP profile 
a r  3 extended in 2 range-independent fashion to 
: c f i a i t v  SO that RMAX can exceed RPROF(NPR0F). 

Syntax : 
SD R 3  

Description: 
SD: Source depth (m) . 
RD: Receiver depth (m). 

(5) - RECEIVER RANGES/AXIS INFO 

CHAPTER 4. RUNNING THE PROGRAM 
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4.4.7 PLOTTLR.HLFJ 
PLOTTLR sums the modes t o  prodaces plots of coherent transmission loss versus 
range . 

Files : 

Naae 
Input 

* . PLP 
* . M O l i  

Output. 
* . FRT 

Description 

PLot Parm~ezers 
KOPa files 

EXAMPLE AND DESCBIPTL3'i CT' PLD f li: 

'RAN' hF': : :ar.*: ; .:.;.l~n or scaled coords) 
999 ; iq 4,: . .m~<:r c: .::c;ries to include) 
1, 0.0  NPECP ,??BqF(1 :;PROF) (km) 
25.0 25.0 , " .  -.' .-, t , ~ l  , :! 1 

0.0 100.0 5 0  1 . : J . , , . .  .-. +,?A ;t 3iWC (km) RAXL (cm) 
70.0  110.0 1.2, fi 6 ;.; .* . :{:.: - 7 :  . . ' 5 )  .. .. X I N C  (dB) TLAXL (cm) 

. . 
0 . 0  :! 7 ,-,::, 6:-::fi-,.r,s :~j.r~~dow (m) 

Spnt ax : 
DPTIObi 

Descripti on: 
OPTTOX(1 : 1) : Source t p e .  

' R '  point s c u r c e .  
(cyLindr3 c a ?  or R-Z coordinates) 

'X' line S G U I ' : ~ .  

(car tes r .w or X-Z coordinates) 
OPTIONC2:2): Selects coupled mode or adiabatic mode theory 

'C' f o r  Conpled mode theory. 
'A ' f a r  Adiai~at i c  mode theory (default) . 

OPTIOW(3:3): Compocent 
" (nail) for pressure. 
'H' far Horizontal displacement. 
' V J  f o r  Verfical displacement. 
'T' for Twl,$ential stress. 
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'N' for Normal stress. 

(2)  - NUMBER OF MODES 

Syntax: 
?I 

Description: 
PI: Muinber a f  modes to use in the field computation. 

If this n~nber is larger than the actual number of 
nodes i c  the %ode file it is reduced accordingly. 

S y n t r i x :  
:;p?.s-T ?<:?,,;?':. ,?:pFb[>F ; 

Descr;ct :cr.. -. , J F R , l V .  " 

: !I? n ~ ~ - ~ b e r  c f  prof iies , i . e . ranges where a new 
~ , e t  of  so.5es is to be used. 

yt [> 3 / \> - , . ,  , . ~.zri.ges im:) 3f each of these profiles. 
2 0 1  a range  independent problem there is only 
:jne p r o f l i e  and its range is arbitrary. Mode 
flies : l u s t  e x i s r  for each range of a new 
- - - f ; 1 9  ., ,,-, , ,rLd 3 5e assigned in sequence to units 
S,:,?:,. . The modes for the last SSP profile 
>r.  eurended in z. range-independent fashion to 
:c f : o? t . r  so ths: %MAX can exceed RPROF(NPR0F) . 

Syntax : 
SD R!l 

Descripti on : 
SD : 3oiirce depth (m) . 
RD: Receiver depth (IF.) . 

(5) - RECEIVER RANGES/AXIS INFO 

Syntax: 
RMIM RMAX NR R I N C  R A X L  

Description: 
RMIN: First receiver range 
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RD: Last  r e c e i v e r  range ( k m ) .  
NR: Number of r e c e i v e r  ranges .  
RIMC:  Range i n t e r v a i  f o r  t i c k  marks (km). 
RAXL: Range a x i s  l eng th  (cm) . 

( 6 )  - TRANSMISSION LOSS AXIS INFO 

Syntax : 
TLMIM TLMAX T L I N C  TLAXL 

Descr ipt ion:  
TLMIN : TL rnlnirn~l~.  (dB). 
TLMAX : TIA rnax i r i m  (dB) . 
T L I N C  : TL - n t o r v a l  f o r  c l c k  marks (dB). 
TLAXL : TL a x i s  :ength (cm> . 

If you s e t  ? L Y I ? ~ = T _ Y L X  thes t h e  aurve i s  au tosca led .  

(7) - SMOOTHING WINDO':< 

Syntax : 
DK3DB 

1 on : Descript:  
DR3DB: Three (13 S- ; ~ t  r.ii?g 2i c<iol; (m) . 

T h e  trarnasslon l o s s  i.s computed then smoothed i n  
range u s l i : ~ :  a Gaassian f i l t e r .  DR3DB g ives  t h e  
rz7ge ~ n t a r r a l  over v ? z c h  t h e  smoothing i s  
per-f,:rred 
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,, KZAKEN- FQAMIV 

J J  1 SD = 25 m 
! RD .- 25 m 
I 

3C 1 

&' 1 
-z 
V 

cn ; 
-1 jr. 

+ - 4 7  1 . . 

' ? C  7 

I I 
3 2 3  40 60 80 100 

Range (km) 

Figure 4.8: Sample output of PLOTTLR: transmission loss vs. range for the Arctic 
problem. 
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PLOTTRI takes an input file '.FLP' in the same format that FIELD3D uses, and 
produces a plot showing the layout of triangular patches which the user has specified. 

Files : 

Name 
Input 

* . PLP 
* . FLP 

Output 
* . PRT 

Unit Description 

PLot Parameters 
FieLd Parameters 

PRinT file 

EXAMPLE AND DESCRIPTION OF PLP FILE: 

! XMIN XMAX XINC (km) XAXL (cm) 
! YMIN YMAX YINC (km) YAXL (cm) 

(1) - X-AXIS INFO 

Syntax : 
XMIN XMAX XINC XAXL 

Description: 
YMIN: The minimum Y-value ( k m ) .  
YMIN: The maximum Y-value &In). 
YINC: Y-interval for tick marks (km). 
YAXL: Y-axis length (cm) . 

(2) - Y-AXIS INFO 
Syntax : 

YMIN YMAX YINC YAXL 
Description: 

YMIN: The minimum Y-value (km) . 
YMIN: The maximum Y-value (km) . 
YINC: Y-interval for tick marks (km). 
YAXL: Y-axis length (cm) . 
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Tunisia-Sordinio Stroit 

Figure 4.9: Sample output of PLOTTRI: triangulation used for a 3D Mediterranean 
scenario. 
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4.5. THE BELLHOP RAY/BEAM MODEL 

4.5 The BELLHOP ray/beam model 
It is often useful to be able to plot the rays for a given environment for illustrative 
purposes. Also for high-frequency problems the ray model provides results more 
rapidly. The results are allnost inevitably less accurate than KRAKEN or SCOOTER 
calculations but sometimes the inaccuracy is negligible. 

BELLHOP is not particularly efficient as far as ray models are concerned, nor 
is it very general. With regard to  efficiency the model actually is set up internally 
to do a full range-dependent ray trace while it allows only for a range-independent 
input structure. 

BELLHOP differs from standard ray models in using a robust variant of Gaussian 
beam tracing referred to as geometric bean1 tracing. For those familiar with tradi- 
tional implementations of ray tracing, the results are often astonishingly accurate. 

BELLH 0 P computes acc~ustic 6eld:: iil oceanic en.:ironments via Gaussian beam trac- 
ing. The environment t r e a t 4  cor,sists of an acoustic medium with a sound speed 
which may depend on range and depth. A theoretical description may be found in: 

Michael B. Porter and Homer P. Bucker, "Gaussian beam tracing for computing 
ocean acoustic fields," . J .  Acc~nsi.  Soc .  Amer. 82, 1349-1359 (1987). 

The following programs are u s e 4  with BELLHOP: 
BELLHOP Main program ?or doing Gnu.;>ian beam tracing 
PLOTRAY Produces plets vf central rays of teams 
ANGLES Given the source m r i  -ec:.r sound speeds, computes the angle of the 

Limiting ray. 
PLOTSSP Plots the sourld speed profile 
BELLHOP produces pressure fields in the NRL standard format. These fields 

can then he plotted sing the f~llowing routines: 
PLOTSLICE Plots a transmission loss versus range curve. 
PLOTFIELD Plots a full TL field versus range and depth. 

The s t e p s  i n  runcing t h e  program a r e  a s  fo l lows :  

1. Se t  up your environmental f i l e  and run PLOTSSP t o  make s u r e  
t h e  SSP looks reasonab le .  

2 .  Do a ray  t r a c e .  That i s ,  

A. Run BELLHOP u i t h  t h e  ray  t r a c e  op t ion  t o  c a l c u l a t e  about 50 
rays . 

B .  Run PLOTRAY t o  make s u r e  you have t h e  angular  coverage you 
expec t .  Do t h e  rays  behave i r r e g u l a r l y ?  I f  s o  reduce t h e  
s t e p - s i z e  and t r y  a g a i n .  
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3. Re-run BELLHOP using the coherent, incoherent or semicoherent 
option for transmission loss. (Use the default number 
of beams.) 

4. Run either PLOTSLICE to plot a single transmission 
loss curve or PLOTFIELD to plot a full range-depth field plot. 

5. Double the number of beams and check convergence. 

Files : 

Name 
Input 

* . ENV 

Output 
* . PRT 
* . RAY 
* . SHD 

Unit Description 

ENVironmental data 

PRinT file 
RAY file 
SHaDe file 

--------------------------------------------------------- 

EXAMPLE AND DESCRIPTION OF ENV FILE: 

'Munk profile' ! TITLE 
50.0 ! FREQ (Hz) 
1 ! NMEDIA 
' SVN ' ! SSPOPT (Analytic or C-linear interpolation) 
51 0.0 5000.0 ! DEPTH of bottom (m) 

0.0 1548.52 / 
200.0 1530.29 / 
250.0 1526.69 / 
400.0 1517.78 / 
600.0 1509.49 / 
800.0 1504.30 / 
1000.0 1501.38 / 
1200.0 1500.14 / 
1400.0 1500.12 / 
1600.0 1501.02 / 
1800.0 1502.57 / 
2000.0 1504.62 / 
2200.0 1507.02 / 
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2400.0 1509.69 / 
2600.0 1512.55 / 
2800.0 1515.56 / 
3000.0 1518.67 / 
3200.0 1521.85 / 
3400.0 1525.10 / 
3600.0 1528.38 / 
3800.0 1531.70 / 
4000.0 1535.04 / 
4200.0 1538.39 / 
4400.0 1541.76 / 
4600.0 1545.14 / 
4800.0 1548.52 / 
5000.0 1551.91 / 
'V' 0.0 
1 lOOO.0 / 
2 0.0 5000.0 / 
501 0.0 100.0 / 
' R' 
51 -11.0 11.0 / 
200.0 5500.0 101.0 

! NSD SD(1:NSD) (m) 
! NRD RD(1:NRD) (m) 
! NRR RR(1:NR ) (km) 
! Run-type: 'R/C/I/S' 
! NBEAMS ALPHA(I:NBEAMS) (degrees) 
! STEP (m) ZBOX (m) RBOX (km) 

DESCRIPTION OF INPUTS 

(1) - TITLE 

Synt-ax : TITLE 

Description: 
TITLE: Title of run enclosed in sinqle quotes 

(2) - FREQUENCY 

Syntax: FREQ 

Description: 
FREQ: Frequency in Hz 

(3) - NUMBER OF MEDIA 

Syntax: NMEDIA (<20) 
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Description: 
Dummy parameter for compatibility with KRAKEN. 

(4) - OPTIONS 

Syntax: OPTION 

Description: 
OPTION(1:l): Type of interpolation to be used for the SSP 

'S' for cubic Spline (recommended) 
'C' for C-linear 
'N' for N2-linear 
'AJ for Analytic. The user must modify the 

analytic formulas in ANALYT.FOR and re-link. 

Use PLOTSSP to check that 
the SSP looks the way you thought it should. 
Apart from potential typos, this will also 
show up fit-problems which might occur with 
the spline option. Splines yield a 
poor fit to certain kinds of curves, e.g. 
curves with sharp bends. 

OPTION(2:2): Type of top boundary condition 
'V' VACUUM above top 
'R' Perfectly RIGID 

For open ocean problems option 'V' should be 
used for the surface BC. 

OPTION(3:3): Volume attenuation option 
'T' Thorp attenuation formula. 
'N' No volume attenuation. 

(5) - SOUND SPEED PROFILE 

Syntax : 
NMESH SIGMA Z(NSSP) 
z (1) CP(1) I 
Z(2) CP(2) I 
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Description: 

NMESH: Dummy parameter for KRAKEN compatibility 
SIGMA: Dummy parameter for KRAKEN compatibility 
Z(NSSP): Depth at bottom of medium (m). 

This value is used to detect the last 
SSP point when reading in the 
profile which follovs. 

The following should be omitted when the 'A' option 
is used (indicating that an analytic profile is 
supplied by a user written subroutine). 

Z O :  Depth (m). Note that the surface starts at the first 
depth point specified. Thus if you have say, XBT 
data which starts at 50 m below the surface, then 
you'll need to put in some SSP point at 0 m, 
otherwise the free-surface would be placed at 50 m 
giving erroneous results. Try to keep the number of 
depth points to the minimum necessary to describe the 
physics: a fine SSP sampling can force a fine step-size 
for integrating the rays. 

CPO : P-wave speed (m/s) (Must be followed by a ' / ' 
for compatibility with the KRAKEN program.) 

(6) - OPTIONS 

Syntax: OPTION SIGMA 

Description: 
OPTION(1:l): Type of bottom boundary condition 

'V' VACUUM below bottom 
'R' Perfectly RIGID 

SIGMA : Bottom roughness (currently ignored) 

(7) - SOURCE/RECEIVER DEPTHS AND RANGES 

Syntax : 
NSD SD(1:NSD) 
NRD RD(1:NRD) 
NR R(1:NR 

Description: 
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NSD: The number of source depths ((51) 
SDO: The source depths (m) 
NRD: The number of receiver depths (<I01 and NR*NRD <= 52000) 
RDO: The receiver depths (m) 
NR: The number of receiver ranges 

(NR < 1001 and NR*NRD <= 50000) 
R() : The receiver ranges (km) 

This data is read in using list-directed 1/0 you can type it 
just about any way you want, e.g. on one line or split onto 
several lines. Also if the depths or ranges are equally spaced 
then you can type just the first and last depths followed by a 
' / '  and the intermediate depths will be generated automatically. 

(8) - RUN TYPE 

Syntax: 
OPTION 

Description: 
OPTION: 'R' generates a ray file 

'C' for Coherent TL calculation 
'I' for Incoherent TL calculation 
'S' for Semicoherent TL calculation 

(Lloyd mirror source pattern) 

(9) - BEAM FAN 

Syntax : 
NBEAMS ALPHA(1:NBEAMS) 

Description: 
NBEAMS: Number of beams (use 0 to have the program 

calculate a value automatically. 
ALPHA() : Beam angles (negative angles toward surf ace) 

For a ray trace you can type in a sequence of angles 
or you can type the first and last angles followed by a 
. For a TL calculation, the rays must be equally spaced 
otherwise the results will be incorrect. 

(10) - NUMERICAL INTEGRATOR INFO 
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Syntax : 
STEP ZBOX RBOX 

Description: 
STEP: The step size used for tracing the rays (m). 
ZBOX: The maximum depth to trace a ray (m) . 
RBOX: The maximum range to trace a ray (km) . 

The requirad step size depends on many factors. This includes 
frequency, size of features in the SSP (such as surface 
ducts), range of rcvrs, and whether a coherent or incoherent 
TL calculation is performed. If you use STEP=O.O BELLHOP will 
use a default step-size and tell you what it picked. You should 
then halve the step size until the results are convergent to 
your required accuracy. To obtain a smooth ray trace you should 
use the spline SSP interpolation and a step-size less than the 
smallest distance between SSP data points. 

Rays are traced until they exit the box ( ZBOX, RBOX 1. By 
setting ZBOX less than the uater depth you can eliminate 
bottom reflections. 
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PLOTRAY produces plots of the rays generated by BELLHOP and contained in a 
file 'Pl'.RAY. 

F i l e s  : 

Name 
Input 

Unit Desc r ip t ion  

PLot Parameters 
RAY f i l e  

EXAMPLE A N D  DESCRIPTION OF PLP F I L E :  

0 .0  2500.0 500.0  5 . Q /  
0 . 0  7 5 . 0  25.C 10.3/ 

'RED' 'GREEN' 'YELLOX' 'YELLOKJ 
' D A S H '  'DOT' 'SOLJD' 'SOLID' 

I ZMIN ZMAX Z I N C  (m) ZAXL (cm) 
! RMIN RMAX R I N C  (km) RAXL (cm) 

(1) - DEPTH AXIS iNFO 

Syntax : 
Z M I N  ZMAX Z I N C  E A X L  

Lon : Descr i p t  ' 
Z M I N :  nop th  minimum (m/s) . 
ZMAX: Depth zaximum (m/s>.  
Z I N C :  Depth i n t e r v a l  f o r  t i c k  marks (m/s) .  
ZAXL: Depth a x i s  l eng th  (cm 1. 

(2) - RANGE AXIS INFO 

Syntax : 
RMIN RMAX R I N C  RAXL 

Desc r ip t ion  : 
R M I N :  Range minimum OCIII). 
RMAX: Range maximum (km) . 
R I N C :  Range i n t e r v a l  f o r  t i c k  marks (km). 
RAXL: Range a x i s  l eng th  (cm) . 

(3)  - RAY COLORS 

Syntax : 
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COLR COLS COLB COLSB 
D e s c r i p t i o n :  

COLR: Color  f o r  p a t h s  which a r e  p u r e l y  Ref rac t ed .  
COLS: Color  f o r  p a t h s  which s t r i k e  t h e  S u r f a c e  o n l y .  
COLB: Color  f o r  p a t h s  which s t r i k e  t h e  Bottom o n l y .  
COLSB: Color  f o r  p a t h s  which s t r i k e  bo th  S u r f a c e  and Bottom. 

Choose from 'BLACK', 'WHITE', 'RED', 'GREEN', ' C Y A N ' ,  
'MAGENTA', 'YELLOW'. 
( d e f a u l t  i s  'BLACK'  f o r  a l l  r a y s )  

(4) - RAY PATTERNS 

Syntax : 
PATR PATS PATB PATSB 

D e s c r i p t i o n :  
PATR: P a t t e r n  f o r  p a t h s  which are pu re ly  Ref rac t ed .  
PATS: P a t t e r n  f o r  p a t h s  which s t r i k e  t h e  Sur face  o n l y .  
PATB: P a t t e r n  f o r  p a t h s  which s t r i k e  t h e  Bottom o n l y .  
PATSB: P a t t e r n  f o r  p a t h s  which s t r i k e  bo th  Sur face  and Bottom 

Choose from 'SOLID', 'DASH', 'DOT'. 
( d e f a u l t  i s  'SOLID' f o r  a l l  rays) 
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BELLHOP- Munk prof;le 

50GC -1 I 
0 2 0 40 6 0 80 100 

Range (km) 

Figure 4.10: Sample output of PLOTRAY: ray trace for the Munk profile 
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4.6 The SCOOTER FFP model 
Both normal mode models and Fast-Field Programs are based on a contour integral 
representation of the acoustic pressure. Normal mode models evaluate the integral 
by residues which involves finding the poles of the Green's function. FFP models 
evaluate the integral directly by stepping along the contour. 

In terms of efficiency, the question is whether one can find poles more rapidly 
than directly integrating. It takes about 15 Green's funtion evaluations to find 
a pole. The number of Green's function evaluations for an FFP model increases 
linearly with range. 

On the other hand, the normal mode series neglects certain contributions which 
tend to be important in the near-field (say within 10 water depths). Indeed some 
problems have no modes at all such as the problem of a point source in free space. 
Also for very complicated problems (with elasticity) it can be difficult to reliably 
find the modes. Then an FFP model is a good alternative. 

A complete explanation of when to use which model would require many pages. 
A rule-of-thumb is to use SCOOTER when you are concerned about the field within 
10 water depths and KRAKEN otherwise. SCOOTER can be used for larger ranges 
but will generally require more CPU time. KRAKEN can be run for closer ranges 
but requires some insight in setting up the environment to make slue that the modes 
are adequate for describing the field. This is done either by extending the model of 
the ocean bottom in depth, introducing a false bottom, or computing leaky modes. 

SCOOTER is a finite element code for computing acoustic fields in range-independent 
environments. The method is based on direct comput.ation of the spectral integral 
(reflectivity or FFP method). Pressure is approximated by piecewise-linear elements 
as are the material properties. (One exception is the density which is approximated 
by piecewise const ant elements) . 

The SCOOTER package includes two modules: 

SCOOTER the  main program 

FIELDS Produces shade f i l e s  o r  
p l o t s  of t he  Green's funct ion and transmission l o s s .  

The input (.ENV) f i l e  i s  iden t i ca l  t o  t h a t  used by KRAKEN or  KRAKENC. 
The output i s  a Green's funct ion f i l e  ( i n  place of t he  mode f i l e  
produced by KRAKEN ) .  

Note t h a t  SCOOTER includes the  e f f e c t  of densi ty  gradients  within 
media (KRAKEN and KRAKENC do n o t ) .  Also, i n t e r f a c i a l  s c a t t e r  is  not 
t r ea t ed  i n  SCOOTER. 
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Files : 

Name Unit Description 
Input 

* . ENV 1 ENVironmental data 
* . BRC 10 Bottom Ref 1. Coef . (opt11 
* . TRC 11 TOP Refl. Coef. (opt11 
* . IRC 12 Internal Refl. Coef. (optl) 

Output 
* . PRT 6 PRinT file 
* . GRN 2 0 GReen's function 

EXAMPLE AND DESCRIPTION OF ENV FILE: 

'Pekeris problem' 
10.0 
1 
' NVF ' 
500 0 .0  2 

0 .0  1500.0 / 
5000.0 1500.0 / 

' A '  0 .0 
5000.0 2000.0 0 .0  2.0 / 

1400.0 2000.0 
500.0 ! RMAX (km) 
1 500.0 / ! NSD SD(1:NSD) 
I 2500.0 / ! NRD RD(1:NRD) 

RMAX is the maximum range for a receiver. It translates directly into the 
number of k-space points that will be used in the spectral integral. CPU time is 
proportional to RMAX so it shouldn't be any larger than necessary. 

Note that both source and receiver must lie within the finite element domain. 
That is, the capability for placing source or receiver in the homogeneous half-space 
has not been implemented. 

CPU time is roughly independent of the number of receivers but increases linearly 
with the number of sources. (However, the first source requires about 3 times as 
much CPU time as subsequent sources, since an LU decomposition is required only 
for the first source.) 

Shade files or plots of transmission loss versus range are obtained by running 
FIELDS which uses the '.GRN' file as input. 
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The FIELDS program uses the Green's functions calculated by SCOOTER or SPARC 
and produces a shade file that contains a sequence of snapshots of the acoustic field 
as a function of range and depth. Alternatively, if a single source/receiver combina- 
tion is specified then FIELDS produces a plot directly of the Green's function and 
trvlsrnission loss. 

Files : 

Name 
Input 

* . PLP 
* . GRN 

Output 
* . PRT 
* . SHD 

Unit Description 

PLot Parameters 
GReen's function 

EXAMPLE AND DESCRIPTION OF ENV FILE: 

' RDB ' 
200.0 220.0 501 
0.0 0.0 
70.0 110.0 

! 'R/X ( c o o r d j ,  Lin/DB, pos/Neg/BothY 
f i i M I N ,  RMAX, NR 
! SOURCE, RCVR DEPTHS (0,O FOR ALL) 
! TLMIN, TLMAX 

( I )  - OPTIONS 

Syntax : 
OPT 

Description: 
OPT(1: 1) : Coordinates 

'R' Cylindrical (R-Z) coordinates. 
' X '  Cartesian (X -Z )  coordinates. 

OPT(2:2) : Scale 
'D' dB 
' L ' linear 

OPT(3:3): Spectrum 
'P' Positive (recommended) 
'N' Negative 
'By Both positive and negative 
The spectral integral should formally be done 
from all along the real k-axis, however the 
negative portion contributes significantly 
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only in the near-field. Run-time is less 
if it is neglected. 

(2) - RECEIVER RANGES 

Syntax: RMIN RMAX NR 

Description: 
RMIN: First receiver range (km) 
RD: Last receiver range (km) 
NR: Number of receiver ranges 

(3) - SOURCE/RECEIVER DEPTHS 

Syntax: SD RD 

Description: 
SD: Source depth (m) 
RD: Receiver depth (m) 

Specify zero SD and RD to have the entire file converted. 

(4) - TRANSMISSION LOSS AXIS INFO 

Syntax: TLMIN TLMAX TLINC TLAXL 

Description: 
TLMIN: Transmission loss minimum (dB) 
TLMAX: Transmission loss maximum (dB) 
TLINC: Transmission loss interval for tick marks (dB) 
TLAXL: Transmission loss axis length (cm) 

These lines are ingnored if you are running FIELDS to simply 
produce a Green's function file and not a plot. 

CHAPTER 4. RUNNING THE PROGRAM 
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4.7 The SPARC pulse model 

SPARC (SACLANTCEN Pulse Acoustic Research Code) is an experimental time- 
marched FFP. It treats problems with broadband or transient sources, that is, pulses. 
The environmental file is patterned after that used for KRAKEN and SCOOTER. The 
mathematical basis and numerical algorithm is described in: 

Michael B. Porter, "The Time-Marched FFP for Modeling Acoustic Pulse Prop- 
agation," J. Acoust. Soc. Amer. 87, 2013-2023 (1990). 

Files : 

Name 
Input 

* . ENV 
* . STS 

Output 
* . PRT 
* .GRN 
* . RTS 

Unit Description 

ENVironmental data 
Source Time Series 

PRinT file 
GReen ' s function 
Receiver Time Series 

EXAMPLE AND DESCRIPTION OF ENV FILE: 

'Munk profile' 
5.0 
2 
'NVWS ' 
500 0.0 27 

0.0 1548.52 0.0 1.0 0.0 0.0 
200.0 1530.29 / 
250.0 1526.69 / 
400.0 1517.78 / 
600.0 1509.49 / 
800 .O 1504.30 / 
1000.0 1501.38 / 
1200.0 1500.14 / 
1400.0 1500.12 / 
1600.0 1501.02 / 
1800.0 1502.57 / 
2000.0 1504.62 / 
2200.0 1507.02 / 
2400.0 1509.69 / 
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2600.0 1512.55 / 
2800.0 1515.56 / 
3000.0 1518.67 / 
3200.0 1521.85 / 
3400.0 1525.10 / 
3600.0 1528.38 / 
3800.0 1531.70 / 
4000.0 1535.04 / 
4200.0 1538.39 / 
4400.0 1541.76 / 
4600.0 1545.14 / 
4800.0 1548.52 / 
5000.0 1551.91 / 
500 0.0 2 
5000.0 1551.91 0.0 1.00 
10000 .o / 
'R' 0.0 
1500.0 1550.0 
10.0 
1 250.0/ 
26 0.0 5000.0 / 
'PH' 0.0 15.0 
1 60.0 0.200 / 
6 1.0 3.0 5.0 10.0 20.0 30.0 
-0.1 0.9 0.0 0.0 0.0 

! RMAX (km) 
! NSD SD(1 :NSD) (m) 
! NRD RD(1 :NRD) (m) 
! PULSE FMIN FMAX (Hz) 
! NRR RR(1:NRR) (km) 
! NTOUT ToUT(1:NTOUT) 
! TsTART (s) TMULT ALPHA BETA V (m/s) 

The input structure is identical to KRAKEN except for 
additional option in line 4 and 4 additional lines at the end. 

OPT(4:4): Type of calculation 
'S' for Snapshot. 
FIELDS must be run afterwards to convert the 
'.GRN' file to a '.SHD' file containing the pressure field. 
The shade file can then be plotted using PLOTFIELD. 

'R' for Range stack (horizontal array). 
The time series is written in a '.RTSY 
(Receiver Time Series) file which can be plotted using 
PLOTTS 

'D' for Depth stack (vertical array). 
The time series is also plotted using PLOTTS. 
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Additional lines: 

(1) - SOURCE PULSE INFORMATION: 
Syntax: PULSE FMIN FMAX 

Description : 
PULSE(1:I): Type of interpolation to be used for the SSP 

'P' Pseudo-Gaussian 
'R' Ricker wavelet 
'A' Approximate Ricker wavelet 
'S' Single sine 
'A' Hanning weighted four sine 
'N' N-wave 
'G' Gaussian 
'F' From a '.STS' (Source Time Series) file. 
'B' From a '.STS' file Backwards 

PULSE(2:2): Hilbert transforming. 
'H' perform a Hilbert transform of the source 
'N' don't 
Hilbert transforming is used to eliminate 
the left travelling wave. 

PULSE(3:3): Source sign flipping. 
'+ '  don't flip it (recommended) 
' - 2  flip it 

PULSE(4:4) : Source filtering . 
'L' low cut filter 
'H' high cut filter 
'B' both high and low cut filter 
'N' no cut 

FMIN: Low cut frequency (Hz) 
FMAX: High cut frequency (Hz). 

This should be no higher than necessary 
since the CPU costs are 
proportional to the bandwidth. 

(3) - RECEIVER RANGES 
Syntax : NRR RR( 1 : NRR) 

Description: 
NRR: Number of receiver ranges 
RRO: Receiver ranges (km) 
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This line is ignored unless option 'R' has been selected for a 
range-stack. 

(3) - OUTPUT TIMES 

Syntax: NTOUT TOUT(1:NTOUT) 

Description: 
NTOUT: Number of output times 
TOUT(): Output times (s) 

(3 )  - TIME INTEGRATION PARAMETERS 

Syntax: TSTART TMULT ALPHA BETA V 

Description: 
TSTART: Starting time for the march. This should always be 

earlier than the time at which the source begins to 
rise. 

TMULT: Time step multiplier. Specifying TMULT = 1.0 means 
that the maximum stable time step is used. 

ALPHA: Lumping parameter 
BETA: Explicitness parameter 
V : Convection velocity 

A good check of convergence can be done by running an isovelocity problem 
with a gaussian pulse. The pulse should, of course, be undistorted at the receivers. 
Remember that Hilbert transforming the source causes it to rise early so TSTART 
has to be adjusted accordingly. It's a good habit to plot the source function using 
PLOTTS before running SPARC. 
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PLOTTS PLOTS the Time Series used in or created by a SPARC . 

Files : 

Name Unit Description 
Input 

* . PLP 1 PLot Parameters 
* . ?TS 10 Source/Receiver Time Series 

Output 
* . PRT 6 PRinT file 
* . GRN 2 0 GReen's function 
* . RTS 3 5  Receiver Time Series 

EXAMPLE AND DESCRIPTION OF PLP FILE: 

5 . 0  0.0 5 0 0 0 . 0  'PH+N' ! FREQ FMIN FMAX PULSE 
0.0 1.5 0 . 5  / ! TMIN TMAX TINC (s) TAXL (cm) 
-1.0 1.0 1.0 / ! YMIN YMAX YINC (m) YAXL (cm) 

(1) - FREPUENCY SPECTRUM / PULSE INFORMATION: 

Syntax: 
FREQ FMIN FMAX PULSE 

Description: 
FREq : Characteristic frequency (Hz). 

This is only used for those canned signals 
defined by a characteristic frequency. 

FMIN : Low cut frequency (Hz) 
FMAX : High cut frequency (Hz). 
PULSE(1:l): Signal type 

'PJ Pseudo-Gaussian 
'R' Ricker wavelet 
'A' Approximate Ricker wavelet 
'S' Single sine 
'H' Hanning weighted four sine 
' N ' N-wave 
'GJ Gaussian 
'F' From an '.STSJ (Source Time Series) file. 
'BJ From an '.STSJ file Backwards 

PULSE(2:2): Hilbert transforming. This is used to eliminate 
the left travelling wave. 
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'H' perform a Hilbert transform of the signal 
'N' don't 

PULSE(3:3): Signal sign flipping. 
' + '  don't flip it 
' - '  flip it 

PULSE(4 : 4) : signal filtering . 
'L' low cut filter 
'H' high cut filter 
'B' both high and low cut filter 
'N' no cut 

(2) - TIME AXIS INFO 

Syntax : 
TMIN TMAX TINC TAXL 

Description: 
TMIN: First time (S 1. 
TMAX: Last time (S 1. 
TINC: Time interval for tick marks (s ) .  
TAXL: Time axis length (cm) . 

(3 )  - VERTICAL AXIS INFO 

Syntax : 
YMIN YMAX YINC YAXL 

Description: 
YMIN : Y minimum (m >.  
YMAX : Y maximum (m >. 
YINC: Y interval for tick marks (m ) .  
YAXL: Y axis length (cm> . 
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SPARC- lsovelocity problem, ( 
-107 Max = 0.01 63 F = 100 Hz 

I 

1 1 0 - 1  I 
0.00 0.05 0.10 0.15 0.20 

Time (s) 

Figure 4.11: Sample output of PLOTTS: an isovelocity problem. 
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4.8 The BOUNCE reflection coefficient model 

BOUNCE computes the reflection coefficient for a stack of acoustic media optionally 
overlying elastic media. The reflection coefficient is written to a '.IRC' file (internal 
reflection coefficient). This file can be used by KRAKENC to provide a boundary 
condition or plotted using PLOTRTH. 

The input structure is identical to that used by KRAKENC although the input 
lines for source and receiver depth are not read and can be omitted. Furthermore, 
the surface boundary condition is ignored and, in effect, replaced by a homogeneous 
halfspace where the incident wave propagates. 

If you are interested in getting a reflection coefficient for a bottom which is being 
used in a KRAKENC run you will need to delete the layers corresponding to the 
water column. Otherwise you will get a reflection coefficient corresponding to a wave 
incident from above the ocean surface. 

The angles used for calculating the reflection coefficient are calculated based 
on the phase velocity interval [CMIN, CMAX]. For a full 90 degree calculation set 
CMIN to the lowest speed in the problem (say 1400.0) CMAX to 1.OE9. The actual 
number of tabulated points is determined by RMAX. 

I suggest you pick RMAX equal to 10 km, interrupt BOUNCE after about 5 
seconds and look at NKPTS which is displayed in the print file. You can then 
increase or decrease RMAX to obtain adequate sampling of the reflection loss curve 
(200 points is probably sufficient). 

Files : 

Name 
Input 

* . ENV 
* . BRC 
* . IRC 

Output 
* . PRT 

Unit Description 

ENVironmental data 
Bottom Refl. Coef . (opt11 
Internal Ref 1. Coef . (opt11 

PRinT file 

EXAMPLE OF ENV FILE: 

'Refl. coef. test problem' 
50.0 
1 
'NVW' 
100 0.0 20.0 
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0.0 1600.0 400.0 1.8 0.2 0.5 
20.0 / 

'A' 0.0 
20.0 1800.0 600.0 2.0 0.1 0.2 

1400.0 19000.0 
10.0 ! RMAX (km) 
1 50.0 / ! NSD SD(1 :NSD) 
501 0.0 150.0 / ! NRD RD(1:NRD) 

The above example (taken from the SAFARI reference manual) involves two 
elastic layers. 
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PLOTRTH produces plots of the plane wave reflection coefficient as a function of 
angle ( R(THETA) ). Reflection loss defined as -20 log10 ( R ) may also be plotted. 
An Internal Reflection Coefficient file computed by BOUNCE provides the input. 

Files : 

Name 
Input 

* . PLP 
* . IRC 

Output 
* . PRT 

Unit Description 

PLot Parameters 
Internal Refl. Coef. 

PRinT file 

EXAMPLE AND DESCRIPTION OF PLP FILE: 

'D' , 
1500.0, 
0.0 90.0 10.0 / 
0.0 15.0 5.0 / 

(1) - OPTIONS 

! 'L/D' linear or dB scale 
! co 
! THMIN, THMAX, TBINC, THAXL (cm) 
! RMIN, RMAX, RINC, RAXL (cm) 

Syntax : 
OPTION 

Description: 
OPTION(1:l): Reflection coef. or reflection loss. 

'L' Linear scale 
(reflection coef . 

'D' dB 
(reflection loss. 

(2) - Reference wave speed 
Syntax : 

CO 
Description: 

CO: Sound speed in the halfspace. 
The reflection coefficient depends on the sound speed 
and density of the medium from which the wave is incident. 
The density is assumed unity. 
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Grazing angle 

Figure 4.12: Sample output of PLOTRTH. 

(3) - ANGLE AXIS INFO 

Syntax : 
THMIN THMAX NTH THINC THAXL 

Description: 
THMIN: First angle (degrees) . 
THMAX: Last angle (degrees). 
THINC: Angular interval for tick marks (degrees). 
THAXL: Angle axis length (cm) . 

(4) - REFLECTION LOSS AXIS INFO 

Syntax : 
RMIN RMAX RINC RAXL 

Description: 
RMIN : 
RMAX : 
RINC : 
RAXL : 

R minimum (dB). 
R maximum (dB). 
R interval for tick marks (dB). 
R axis length (cm) . 

If you set RMIN=RMAX then the curve is autoscaled. 
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Test Problems 

The following test problems have been developed to validate the model by exercising 
various components of the code and to illustrate the input structure required for 
various kinds of scenarios. In brief, we have: 

a PEKERIS: A simple (two-layer) Pekeris waveguide. 

a TWERSKY: The Pekeris wave guide with surface roughness. Demonstrates 
that the Twersky scatter works properly. 

a SCHOLTE: A two-layer waveguide with an elastic bottom which leads to a 
Scholte wave. Demonstrates that the elastic half-space condition functions 
correctly. 

a DOUBLE: A double-duct problem demonstrating that gradients are handled 
properly. 

a FLUSED: A three-layer problem involving ocean, sediment and half-space. 
Demonstrates that multiple layers are treated properly. 

a ELSED: A three-layer problem with shear properties in the sediment. Demon- 
strates that elastic media are handled properly. 

a ATTEN: A two-layer problem with volume attenuation. Demonstrates that 
attenuation is handled properly. 

a NORMAL: A problem with several density changes to check out the modal 
normalization in a severe case. 

a ICE: A problem with an elastic ice layer to demonstrate that elastic layers 
above the water column are handled properly. 

For each of these cases, we provide the environmental file along with the print-out 
from K RAKEN . The CPU times printed were obtained on a 0.5 megaflop workstation. 

In all cases, the frequency is chosen as 10 Hz and the transmission loss is com- 
puted for a source/receiver depth combination of 500 m and 2500 m respectively. The 
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transmission loss plots show an overlay of KRAKEN (solid line), KRAKENC (dotted 
line) and SCOOTER (dashed line) results. These results have also been checked 
against the NRL FSTFLD code which agrees to within 1 dB (usually less). 
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5.1. PEKERJS 

Figure 5.1: Schematic of the PEKERIS problem. 

5.1 PEKERIS 
This problem involves a homogeneous fluid layer with a sound speed of 1500m/s 
overlying a faster bottom with saund speed 2000 m/s and density of 2.0 g/cm3. 

'Pekeris problem' 
10.0 
1 
' NVF ' 
500 0.0 5000.0 

0.0 1500.0 / 
5000.0 1500.0 / 

'A' 0.0 
5000.0 2000.0 0.0 2.0 / 

1400.0 2000.0 
1000.0 ! RMAX (km) 
1 500.0 / ! NSD SD(1:NSD) 
1 2500 .O / ! NRD RD(1:NRD) 
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KRAKEN- Pekeris problem 
Frequency = 10.00 NMEDIA = 1 

N2-LINEAR approximation to SSP 
Attenuation units: dB/mkHz 
VACUUM 

Z ALPHAR BETAR RH 0 ALPHA1 BETA1 

( Number of pts = 500 RMS roughness = 0.000E+00 ) 
0.00 1500.00 0.00 1 .OO 0.0000 0.0000 

5000.00 i500.00 0.00 1.00 0.0000 0.0000 

( RMS roughness = 0.000E+00 ) 
ACOUSTO-ELASTIC half-space 

5000.00 2 0 0 0 .  GO 0.00 2.00 0.0000 0.0000 

CLOW = 1400.0 CHIGH = 2000.0 
RMAX = 1000.000000000000 

Number of sources = 
500.0000 

Number of receivers = 
2500.000 

Mesh multiplier CPU seconds 
1 5.49 
2 6.21 

PHASE SPEED 
1500.164010 
1500.656385 
1501.478167 
1502.631092 
1504.117605 
1505.940862 
1508.104751 
1510.613904 
1513.473722 
1516.690399 
1520.270954 
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Range (km) 

Figure 5.2: Transmission loss for the PEKERIS problem. 
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5.2 TWERSKY 
The previous Pekeris problem is modified by the inclusion of surface scatter. The 
rough surface involves a density of 0.092 bosses per km of width 8.2 m and height 
5 . lm.  Note that the KRAKEN result differs from the KRAKENC and SCOOTER 
results. This reflects the error in using a perturbation theory which however is 
probably negligible considering the approximations of the scatter model. 

'Pekeris  problem with Twersky i c e  s c a t t e r '  
10.0 
1 
'NSF' 
0.092 8.2 5.1 
500 0.0 5000.0 

0.0 1500.0 / 
5000.0 1500.0 / 
'A' 0.0 
5000.0 2000.0 0.0 2.0 0.0 0.0 
1400.0 2000.0 
1000.0 ! RMAX (km) 
1 500.0 / ! MSD SD(1:NSD) 
1 2500.0 / ! NRD RD(1:NRD) 
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F'igurc. 5 .3 :  Schematic of the TWERSKY problem. 

KRAKEM- Pekeris problem with Twersky ice scatter 
Frequency = 10.90 NMEDIA = 1 

M2-LINEAR approximation to SSP 
Attenuation units: dB/mkHz 
Twersky SOFT BOSS scatter model 

Twersky ice model parameters: 
Bumden = 0.920000E-01 Eta = 

ALPHAR 

( Nwnber of pts = 
0.00 1500.00 

5000.00 1500.00 

RHO 

500 RMS roughness = 0.000E+00 ) 
0.00 1 .oo 0.0000 0.0000 
0.00 1 .oo 0.0000 0.0000 

( RMS roughness = 0.000E+00 ) 
ACOUSTO-ELASTIC half-space 

5000.00 2000.00 0.00 2.00 0.0000 0.0000 

CLOW = 1400.0 CHIGH = 2000.0 
RMAX = 1000.000000000000 
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Number of sources = 
500.0000 

Number of receivers = 
2500.000 

Mesh multiplier CPU seconds 
1 8.08 
2 6.19 

ALPHA 
-0.7143639068E-09 
-0.2858563396E-08 
-0.6435953313E-08 
-0.1145206277E-07 
-0.1791463612E-07 
-0.2583358102E-07 
-0.3522095285E-07 
-0.4609093903E-07 
-0.5845985229E-07 
-0.7234613786E-07 
-0.8777040005E-07 
-0.1047554344E-06 
-0.1233263186E-06 
-0.1435104786E-06 
-0.1653378169E-06 
-0.1888408516E-06 
-0.2140548873E-06 
-0.2410182110E-06 
-0.2697723168E-06 
-0.3003621806E-06 
-0.3328365176E-06 
-0.3672481421E-06 
-0.4036543176E-06 
-0.4421171667E-06 
-0.4827041259E-06 
-0.5254884517E-06 
-0.5705497741E-06 
-0.6179747460E-06 
-0.6678576894E-06 
-0.7203013712E-06 
-0.7754178193E-06 
-0.8333291792E-06 
-0.8941686039E-06 
-0.9580810818E-06 

PHASE SPEED 
1500.163396 
1500.653927 
1501.472626 
1502.621218 
1504.102129 
1505.918494 
1508.074172 
1510.573761 
1513.422622 
1516.626905 
1520.193577 
1524.130462 
1528.446279 
1533.150699 
1538.254396 
1543.769115 
1549.707744 
1556.084403 
1562.914535 
1570.215017 
1578.004282 
1586.302458 
1595.131522 
1604.515480 
1614.480566 
1625.055467 
1636.271587 
1648.163336 
1660.768466 
1674.128458 
1688.288956 
1703.300275 
1719.217978 
1736.103543 
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210 
Range (km) 

Figure 5.4: Transmission loss for the TWERSKY problem. 
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Figure 5.5: Schematic of the EOUBLE problem. 

5.3 DOUBLE 
The ocean profile is converted to  cne invcdving three piecewise linear segments defin- 
ing a double- duct profile. 

'Double-duct problem' 
10.0 
3 
'NVF' 
100 0.0 1000.0 

0.0 1500.0 / 
1000.0 1550.0 / 

200 0.0 3000.0 
1000.0 1550.0 / 
3000.0 1500.0 / 

200 0 .0  5000.0 
3000.0 1500.0 / 
5000.0 1550.0 / 
'A' 0.0 
5000.0 2000.0 0.0 2.0 0 .0  0.0 

1400.0 2000.0 
1000.0 ! RMAX (km) 
1 500.0 / ! NSD SD(1 :NSD) 
1 2500.0 / ! NRD RD(1:NRD) 
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KRAKEN- Double-duct problem 
Frequency = 10.00 NMEDIA = 3 

N2-LINEAR approximation to SSP 
Attenuation units: dB/mkHz 
V A C W M  

ALPHAR BETAR RHO 

( Number of pts = 100 RMS roughness = 0.000E+00 ) 
0.00 1500.00 0.00 1 .OO 0.0000 0.0000 

1000.00 1550.00 0.00 1.00 0.0000 0.0000 

( Number of pts = 200 RMS roughness = 0.000E+00 ) 
1000.00 1550.00 0.00 1.00 0.0000 0.0000 

3000.00 1500.00 0.00 1 .OO 0.0000 0.0000 

( Number of pts = 200 RMS roughness = 0.000E+00 ) 
3000.00 1500.00 0.00 1 .OO 0.0000 0.0000 

5000.00 1550.00 0.00 1 .OO 0.0000 0.0000 

( RMS roughness = 0.000E+00 ) 
ACOUSTO-ELASTIC half-space 

5000.00 2000.00 0.00 2.00 0.0000 0.0000 

CLOW = 1400.0 CHIGH = 2000.0 
RMAX = 1000.000000000000 

Number of sources = 
500.0000 

Number of receivers = 
2500.000 

Mesh multiplier 
1 
2 

CPU seconds 
5.60 
6.18 

I K ALPHA 
1 0.4171018652E-01 0.0000000000E+00 
2 0.4147891740E-01 0.0000000000E+00 
3 0.4131862874E-01 0.0000000000E+00 

PHASE SPEED 
1506.391084 
1514.790091 
1520.666464 
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Range (km) 

Figure 5.6: Transmission loss for the DOUBLE problem. 
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5.4. SCHOLTE 165 

5.4 SCHOLTE 
This problem is a version of the Pekeris waveguide but with an elastic half-space 
as the bottom. This type of problem has a Scholte mode with a phase velocity less 
than the slowest speed in the problem. (Since the source and receiver are many 
wavelenghts from the interface the Scholte mode is not actually important for the 
transmission loss calculation.) 

'Scholte waveguide' 
10.0 
1 
' NVM ' 
500 0.0 5000.0 

0.0 1500.0 / 
5000.0 1500.0 / 
'A' 0.0 
5000.0 4000.0 2000.0 2.0 / 
1400.0 2000.0 
1000.0 ! RMAX (kin) 
1 500.0 / ! NSD SD(1:NSD) 
1 2500.0 / ! NRD RD(1:NRD) 
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Figure 5 . 7 :  Schematic of the SCHOLTE problem. 

KRAKEN- Scholte waveguide 
Frequency = 10.00 NMEDIA = 

N2-LINEAR approximation to SSP 
Attenuation units: dB/m 
VACUUM 

ALPHAR BETAR RHO 

( Number of pts = 500 RMS roughness = 0.000E+00 ) 
0.00 1500.00 0.00 1.00 0.0000 0.0000 

5000.00 1500.00 0.00 1.00 0.0000 0.0000 

ACOUSTO-ELASTIC half-space 
5000.00 4000.00 2000.00 

( RMS roughness = 0.000E+00 ) 

2.00 0.0000 0.0000 

CLOW = 1400.0 CHIGH = 2000.0 
RMAX = 1000.000000000000 

Number of sources = 
500.0000 

Number of receivers = 
2500.000 
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5.4. SCHOLTE 

Mesh multiplier CPU seconds 
1 5.61 
2 6.51 
4 4.64 

PHASE SPEED 
1427.677728 
1500.173101 
1500.692715 
1501.559773 
1502.775838 
1504.343123 
1506.264510 
1508.543581 
1511.184643 
1514.192774 
1517.573853 
1521.334613 
1525.482682 
1530.026639 
1534.976071 
1540.341632 
1546.135118 
1552.369538 
1559.059197 
1566.219793 
1573.868514 
1582.024153 
1590.707232 
1599.940135 
1609.747258 
1620.155170 
1631.192776 
1642.891500 
1655.285463 
1668.411654 
1682.310086 
1697.023903 
1712.599409 
1729.085975 
1746.535736 
1765.002998 
1784.543272 
1805.211941 
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Figure 5.8: Transmission loss for the SCHOLTE problem. 
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5.5. FLUSED 

Figure 5.9: Schematic of the FLUSED problem. 

5.5 FLUSED 
A fluid sediment is inserted between the bottom half-space and the ocean. 

'Fluid sediment problem' 
10.0 
2 
' NVF ' 
500 0.0 5000.0 

0.0 1500.0 / 
5000.0 1500.0 / 
200 0.0 5100.0 
5000.0 1400.0 0.0 1.5 / 
5100.0 1400.0 0.0 1.5 / 
'A' 0.0 
5100.0 4000.0 2000.0 2.0 / 
1300.0 2000.0 
1000.0 ! RMAX (krn) 
1 500.0 / ! NSD SD(1:NSD) 
1 2500.0 / ! NRD RD(1:NRD) 
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KRAKEN- Fluid sediment problem 
Frequency = 10.00 NMEDIA = 2 

N2-LINEAR approximation to SSP 
Attenuation units: dB/mkHz 
VACUUM 

Z ALPHAR BETAR RH 0 ALPHA1 BETA1 

( Number of pts = 500 RMS roughness = 0.000E+00 ) 
0.00 1500.00 0.00 1.00 0.0000 0.0000 

5000.00 1500.00 0.00 1.00 0.0000 0.0000 

( Number of pts = 200 RMS roughness = 0.000E+00 ) 
5000.00 1400.00 0.00 1.50 0.0000 0.0000 
5100.00 1400.00 0.00 1.50 0.0000 0.0000 

( RMS roughness = 0.000E+00 ) 
ACOUSTO-ELASTIC half-space 

5100.00 4000.00 2000.00 2.00 0.0000 0.0000 

CLOW = 1300.0 CHIGH = 2000.0 
RMAX = 1000.000000000000 

Number of sources = 1 
500.0000 

Number of receivers = 
2500.000 

Mesh multiplier CPU seconds 
1 7.96 
2 9.19 

PHASE SPEED 
1319.434416 
1500.159062 
1500.636692 
1501.434219 
1502.553829 
1503.998529 
1505.772107 
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Figure 5.10: Transmission loss for the FLUSED problem. 
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5.6. ELSED 

5.6 ELSED 
The previous problem (FLUSED) is modified by including shear properties in the 
sediment. This problem has several interfacial modes with phase velocities below 
1300 m/s which have been excluded from the calculation. 

'Elast ic  sediment problem' 
10.0 
2 
' NVF ' 
500 0.0 5000.0 

0.0 1500.0 / 
5000.0 1500.0 / 
200 0.0 5100.0 
5000.0 1400.0 700.0 1.5 / 
5100.0 1400.0 700.0 1.5 / 
'A' 0.0 
5100.0 4000.0 2000.0 2.0 / 
1300.0 2000.0 
1000.0 ! RMAX (km) 
1 500.0 / ! NSD sD(I :NSD) 
1 2500.0 / ! NRD RD(1:NRD) 
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Figwe 5.11 : Schemtic of the &$ED pra%le~%~. 

KRAKEN- Elastlc .=ediirent ~ r o i ~ ; @ n  

Frequency = 10.05 NFEDTA = ', 

N2-LINEAR appra:<lmatl.on to SSF 
Attenuation units: dRi~kYz 
VACUUM 

ALPHAR EETAR 

( Number of pts = 500 KMS roughness = 0.000E+00 ) 
0.00 1500.00 0.00 1.00 0.0000 0.0000 

5000.00 1500.00 0.00 1 .OO 0.0000 0.0000 

( Number of pts = 200 RMS toughness = 0.000E+00 ) 
5000.00 1400.00 700.00 1 .50 0.0000 0.0000 

5100.00 1400.00 700.00 1.50 0.0000 0.0000 

( RMS roughness = 0.000E+00 ) 

ACOUSTO-ELASTIC half-space 
5100.00 4000.00 2000.03 
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5.6. ELSED 

CLOW = 1300.0 C H I G H  = 2000.0 
RMAX = 1000.000000000000 

Number of sources = 
500.0000 

Number of receivers = 
2500.000 

Mesh multiplier CPU seconds 
1 23.9 
2 38.2 

P H A S E  SPEED 
1470.855857 
1500.167038 
1500.668425 
1501.504981 
1502.678091 
1504.189728 
1506.042473 
1508.239545 
1510.784823 
1513.682861 
1516.938916 
1520.558955 
1524.549688 
1528.918577 
1533.673873 
1538.824642 
1544.380804 
1550.353185 
1556.753575 
1563.594808 
1570.890861 
1578.656982 
1586.909858 
1595.667818 
1604.951087 
1614.782081 
1625.185742 
1636.189883 
1647.825524 
1660.127190 
1673.133125 
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Figure 5.12: Transrnissio~l loss fur the ELSED problem. 
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Figure 5.13: Schematic of the ATTEN problem. 

5.7 ATTEN 
Volume attenuation is included in both ocean and half-space. 

'Attenuation test .OOldB/kmHz' 
10.0 
1 
'NVF' 
500 0.0 5000.0 

0.0 1500.0 0.0 1.0 0.001 0.0 
5000.0 1500.0 0.0 1.0 0.001 0.0 
'A' 0.0 
5000.0 2000.0 0.0 2.0 0.001 0.0 
1400.0 2000.0 
1000.0 ! RMAX (km) 
1 500.0 / ! NSB SD(1:NSD) 
1 2500.0 / ! NRD RD(1:NRD) 
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KRAKEN- Attenuation test .001dB/kmHz 
Frequency = 10.00 NMEDIA = 1 

N2-LINEAR approximation to SSP 
Attenuation units: dB/mkHz 
VACUUM 

ALPHAR BETAR 

( Number of pts = 500 RMS roughness = 0.000E+00 ) 
0.00 1500.00 0.00 1 .OO 0.0010 0.0000 

5000.00 1500.00 0.00 1 .OO 0.0010 0.0000 

( RMS roughness = 0.000E+00 ) 
ACOUSTO-ELASTIC half-space 

5000.00 2000.00 0.00 2.00 0.0010 0.0000 

CLOW = 1400.0 CHIGH = 2000.0 
RMAX = 1000.000000000000 

Number of sources = 
500.0000 

Number of receivers = 
2500.000 

Mesh multiplier CPU seconds 
1 5.40 
2 6.08 

ALPHA 
-0.1151416386E-05 
-0.1151788191E-05 
-0.1152408844E-05 
-0.1153279807E-05 
-0.1154403131E-05 
-0.1155781449E-05 
-0.1157417981E-05 
-0.1159316538E-05 
-0.1161481525E-05 
-0.1163917959E-05 
-0.1166631476E-05 

PHASE SPEED 
1500.164011 
1500.656387 
1501.478168 
1502.631094 
1504.117606 
1505.940863 
1508.104752 
1510.613905 
1513.473723 
1516.690400 
1520.270955 
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Figure 5.14: Transmission loss for the ATTEN problem. 
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5.8. NORMAL 

5.8 NORMAL 
Mode normalization is checked using several density changes. Due to the shear in 
the lower halfspace, there is a Scholte wave with a phase velocity of about 1393 m/s. 
It has been excluded from the calculation. 

'Mode normalization test' 
10.0 
2 
' NVF ' 
300 0.0 3000.0 

0.0 1500.0 / 
3000.0 1500.0 / 
200 0.0 5000.0 
3000.0 1500.0 0.0 2.0 / 
5000.01500.0 0.02.0/ 
'A' 0.0 
5000.0 4000.0 2000.0 3.0 / 
1400.0 2000.0 
1000.0 ! RMAX (km) 
1 500.0 / ! NSD sD(1:NSD) 
1 2500.0 / ! NRD RD(1:NRD) 
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Figure 5.15: Schematic of the NORMAL problem. 

KRAKEN- Mode normalization test 
Frequency = 10.00 NMEDIA = 2 

M2-LINEAR approximation to SSP 
Attenuation units: dB/mkHz 
VACUUM 

ALPHAR BETAR 

( Number of pts = 300 RMS roughness = 0.000E+00 ) 
0.00 1500.00 0.00 1 .OO 0.0000 0.0000 

3000.00 1500.00 0.00 1 .OO 0.0000 0.0000 

( Number of pts = 200 RMS roughness = 0.000E+00 ) 
3000.00 1500.00 0.00 2.00 0.0000 0.0000 
5000.00 1500.00 0.00 2.00 0.0000 0.0000 

( RMS roughness = 0.000E+00 ) 
ACOUSTO-ELASTIC half-space 

5000.00 4000.00 2000.00 3.00 0.0000 0.0000 
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5.8. NORMAL 

CLOW = 
RMAX = 

1400.0 CHIGH = 
1000.000000000000 

Number of sources = 
500.0000 

Number of receivers = 
2500.000 

Mesh multiplier CPU seconds 
1 5.55 
2 6.40 
4 4.54 

PHASE SPEED 
1500.151242 
1500.763678 
1501.447049 
1502.823797 
1504.351329 
1506.069321 
1508.759748 
1510.860158 
1514.213069 
1517.609515 
1520.880899 
1525.813557 
1529.478022 
1534.898123 
1540.427381 
1545.360961 
1552.805905 
1558.274617 
1566.004361 
1574.023780 
1580.877849 
1591.267840 
1598.883424 
1609.388037 
1620.386026 
1629.621194 
1643.636948 
1653.867817 
1667.964831 
1682.590507 
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Figure 5.16: Transmission loss for the NORMAL problem. 
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5.9. ICE 

- - Figure 2.1  I : Scheznxiic of the ICE problem. 

5.9 ICE 

This problem is !oouely based .x 3c Arctic scenzrio with an elastic ice-canopy. Here 
the elastic medislrn lie. above :>:F :icoust;c rlleilla. Note that the KRAKEN result 
disagrees with both K R A K E N C  itnd SCOOTER.  This is expected since KRAKEN 
ignores at.tenuatioc in elastic media 

'Ice problem' 
10.0 
2 
'NVW' 
50 0.0 30.0 

0.0 3000.0 1400.0 1.0 0.3 1.0 
30.0 3000.0 1400.0 1.0 0.3 1.0 

500 0.0 5000.0 
30.0 1500.0 0.0 1.0 0.8 C.0 

5000.0 1500.0 0.0 1.0 0.0 0.0 
'A' 0.0 
5000.0 2000.0 0.0 2.0 0 . 0  0.0 

1400.0 2000.0 
1000.0 
1 500.0 / 
1 2500.0 / 

! RMAX (km) 
! NSD SD(1:NSD) 
! NRD RD(1:NRD) 
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KRAKEN- Ice problem 
Frequency = 10.00 NMEDIA = 2 

N2-LINEAR approximation to SSP 
Attenuation units : dB/wavelength 
VACUUM 

Z ALPHAR BETAR RH 0 ALPHA1 BETA1 

( Number of pts = 50 RMS roughness = 0.000E+00 ) 
0.00 3000.00 1400.00 1 .OO 0,3000 1.0000 

30.00 3000.00 i400.00 1.00 0.3000 1.0000 

( Kumber of pts = 500 RYS roughness = 0.000E+00 ) 
30.00 1500.08 0.OC 1.00 0.0000 0.0000 

5000.00 1500. CO 0.00 1 .OO 0.0000 0.0000 

( RMS roughness = 0.000E+00 ) 
ACOUSTO-ELASTIC half-space 

5000.00 2000.00 0.00 2.00 0.0000 0.0000 

CLOW = 1400.0 CHIGH = 2000.0 
RMAX = 1000.000000000000 

Number of sources = 
500.0000 

Number of receivers = 
2500.000 

Mesh multiplier CPU seconds 
1 11.5 
2 16.6 

I K ALPHA 
1 0.4188333139E-01 0.0000000000E+00 
2 0.4186961576E-01 0.0000000000E+00 
3 0.4184674417E-01 0.0000000000E+00 
4 0.4181469833E-01 0.0000000000E+00 
5 0.4177345263E-01 0.0000000000E+00 
6 0.4172297425E-01 0.0000000000E+00 
7 0.4166322309E-01 0.0000000000E+00 

PHASE SPEED 
1500.163692 
1500.655115 
1501.475307 
1502.626004 
1504.109646 
1505.929388 
1508.089111 
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Figure 5.18: Transmission loss for the ICE problem. 
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