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ABSTRACT 

A solution is given for the problem of inverse propagation in an 

inhomogeneous rectangular two-dimensional waveguide. The sound speed is 

assumed to vary in depth and inverse propagation means the calculation of 

the field at range xl in tenns of the field at range x2 where 

x2 > xl. The method is analogous to that used by Wolf, Shewell, and Lalor 

for the inverse diffraction problem in a homogeneous half space. It is 

found that the field at xl can be expressed in terms of two integrals 

over the field at x2• The kernel of the first integral is bounded and 

expresses physically the result at xl of the waves at x2 reversing 

their direction of propagation and decay, ie they now propagate and decay 

in the direction of xl. A reciprocity relation for this term is possible. 

The kernel of the second integral is singular and expresses the mathematical 

fact of the residual effect of the evanescent waves at xl as they reverse 

their direction at x2 and now grow exponentially. Consequences of the 

neglect of this singular term are discussed. 
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INTRODUCTION 

Recently, Wolf and Shewell l and Lalor2 discussed the solution of 

the inverse di ffracti on prob lem ina homogeneous half-space. Simply, one 

has a field propagating into a half-space z > 0, and assumes the field 

is known on some plane z = z2. The problem is then to find the field 

on the plane z = z, where zl < z2. For example, one might wish to 

calculate the II near ll field from the IIfarll field. The result is expressed 

as the inverse of one of the Rayleigh diffraction formulas. The kernel of 

the inversion contains two terms, one of which is singular. Methods for 

handling the singular term are discussed. 

In this paper we briefly present a similar analysis with the problem 

being the calculation of the inverse field in a two-dimensional rectangular 

waveguide. Here, in addition, the waveguide is assumed to be inhomogeneous 

in the sense that the sound speed is a function of depth. 

In Sec. 1 we present the basic analysis and express the field at 

xl < x2 as a sum of two terms each of whi ch is an integral over the 

field at x2• The kernel of the first integral is bounded and the term 

describes that part of the field at xl due to waves at x2 reversing 

their direction of propagation and decay. The kernel of the second integral 

is singular and the term describes exponentially growing waves at xl due 

to evanescent waves at x2 which grow towards xl. In Sec. 2 the reciprocity 

relation of the first ter~ is derived, and in Sec. 3 a brief discussion is 

given of the consequences of neglect of the singular term. 
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1. GENERAL FORMALISM 

In two dimensions the propagation of sound is governed by the 

Helmholtz equation 

for the velocity potential field ~.3 Here, ~(z), the index of 

( 1 ) 

refraction, is proportional to the inverse of c(z), the sound speed, and 

k = 2rr/ A is the wavenumber with A the wavelength. Since c is a 

function of depth the equation is said to be inhomogeneous. The general 

problem of sound propagation involves the solution of (1) assuming that ~ 

satisfies appropriate boundary conditions. Here we first wish to solve (1) 

in the region 0 oS z.s 0 and O~ x < 00 (see Fig. 1), where ~ 

satisfies boundary conditions at z = 0 and 0, x = 0, and an outgoing 

radiation condition as x 400. Then we will assume that the field is 

known on a (far) plane x = x2 and express the field on a (near) plane 

x = xl < x2 in terms of the field on x2• 

The solution of (1) is separable and can be written in terms of an 

infinite discrete spectral representation 

~(x,z) = 

00 r Ajl/!j(z)exp(ikmjx) 
j=O 

where the eigenfunctions l/!j satisfy the ordinary differential equation 

with q(z) = 1 - ~2(z) 

and mj = (T - Jl.)~ 0 <Jl.<l 

[ + i (Jl. ~ 1) ~ J -
Jl. > 1 

J J 
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The boundary conditions at z = 0 and 0 (which we do not specify) 

yield specific forms for the ~j and the discrete eigenvalues ~j' 

which we assume for simplicity are confined to the positive real axis in 

the j-plane. The choice of branch in (5) is to ensure outgoing or 

decayi ng waves as x -) 00. In addi ti on we ass ume the ~j are orthonormal. 

o 
J ~j(z)~m(Z)dz = 
o 

j = m 
. ~ m Jr . 

Multiplying (2) by ~.(z), integrating over z from 0 to D and , 
using (6) yields 

o 
A j = ex p ( - i k m j x ) J ¢ ( x , z ) ~ j ( z ) dz • 

o 

Now let x = xl and z = zl in (2), x = x2 and z = z2 in (7), and 

substitute the resulting (7) into (2) to get 

j=O 

Next assume xl < x2 

I:- = 

D 

~j(zl)exp [ikmj (x l-x2)] J "'j(z2)cI>(x2,z2)dz2• 
o 

and split the sum in (8) into two parts defined by 

J 00 

I l~+ = III 
j=O j=J+l 

where ~ J < 1 and ~ J+ 1 > 1. To the res ult, add and subtract the term 

D 

(6 ) 

(7) 

(8) 

(9) 

I+~j(Zl)eXp f ~k{~j_l)i{x2-x1) 1 J ~j{z2)¢ {x2,z2)dz2 (10) 
o 
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and rewrite the result as the sum of two terms 

where we define (m = 1,2) 

with 

00 

= I I 1/Ij(Zl)1/Ij(z2)eXP[-ikm;(X2-x l )] 

j=Q 

where the * is complex conjugation, and 

Thus it is possible to write 1> at (xl'z ,,) in terms of two integrals 

over 1> at (x2,z2). The ' kernel of the first integral, Kl , is bounded 

and expresses physically the result at xl of the waves at x2 reversing 
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their direction of propagation and decay, ie they now propagate and 

decay in the direction of Xl' The kernel of the second integral, K2, 

is singular since the summation in (14) goes to infinity, and the problem 

becomes ill-posed since a small change in the "initial" condition 

¢(x2,z2) could produce a large change in ¢(x1,zl).This is the mathemntical 

expression of the residual effect of the evanescent \</aves at x2 as they 

reverse their direction and grow exponentially in the direction of xl' The 

neglect of this latter term means neglect of large wavenumbers, short 

wavelength ,tenns and hence an inability to gather information on an obstacle 

or process with a characteristic length smaller than a certain amount. There 

is thus a lower bound on the size of obstacles which can be seen. 
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2. RECIPROCITY 

It is possible to express the ~l term as the inverse of one of 

the Rayleigh diffraction formulas. This is done as follows. The 

incoming wave Green's function G-(x,z; x',z') satisfies an equation 

similar to (1) with a delta function source term 

as well as the boundary conditions at z = 0 and D which are satisfied 

by the eigenfunctions, and the asymptotic condition of an incoming wave. 

It can be written as 

where 

00 

= \' 1/J.(z)1/J.(z')G:(x,x') L, J J J 
j=O 

G: satisfies the differential equation 
J 

and can be written as 

Gj(x,x') 

where the complex conjugate of mj is used in the exponential to ensure 

that for j) J the function is decaying towards xl. From (14) it can 

be easily seen that 

(15) 

( 16) 

( 17) 

(18) 

(19) 

so that ~l by (12) can be written as the inverse of a diffraction formula. 
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3. SUMMARY 

To use these results one must be able to neglect the singular 

tenn f/J2' Neglect of f/J 2 means neglect of tenns of the order of 

k(~(J+1-1)~ and larger, ie high frequency terms. The tenn k = t.4c 

where c is some reference sound speed, eg the sound speed at the 

surface. This establishes a characteristic length L = ~/21r{I-lJ+1-1)~ 

below which we cannot measure. The higher the frequency of sound the 

smaller the obstacles we can see, but high frequency sound is rapidly 

attenuated in the ocean anyway, so that neglect of f/J 2 probably yields 

no worse results than are now available. 

Footnotes 

* Temporary Address 

1. E. Wolf and J. R. Shewell, Phys. Lett. 25A, 417 (1967) and 26A, 

104 (1967) 

2. E. Lalor, J. Math. Phys.1, 2001 (1968) and J. Opt. Soc. Am. 58, 

1235 (1968). These papers also consider similar mathematical 

questions which arise here in greater detail. 

3. The harmoni c time dependence exp( -iwt} is assumed throughout. 
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FIG. 1 INVERSE PROPAGATION IN A RECTANGULAR TWO-DIMENSIONAL WAVEGUIDE. THE SOUND 

SPEED C IS A FUNCTION OF DEPTH Z. TH E FIELD IS ASSUMED KNOWN ON THE PLANE 
X = X2 AND THE PROBLEM IS TO CALCULATE IT ON THE PLANE X = Xl 
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