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Targe t  de tec t ion  using a three- layered 
neu ra l  ne twork  t r a i n e d  b y  superv ised  
back-propaga t ion  

H. Meek 

Execut ive  Summary :  A neural network should be considered as a com- 
puter program that has the ability to improve its performance at a defined 
task by making use of a 'learning phase' before it is applied to actual data. 
During this learning phase a large amount of representative data is repeat- 
edly presented to the network. The network automatically adjusts its internal 
parameters to optimize its performance as measured by a simple test at the 
network's output. No information on the internal parameters are presented 
to the user. 

This ability of neural networks to use a priori knowledge often leads them to 
being incorrecly referred to as 'intelligent systems' but it does not give them 
the potential to outperform more conventional techniques that do not involve 
prior training. However, it should be borne in mind that this potentially 
enhanced performance is only available for the previously defined task. To be 
as successful at a different task the network must be retrained. 

To date, in the realm of sonar, neural networks have been used almost exclu- 
sively for classification where it is perceived that operator experience is a vital 
factor. They can, llowever, operate as a detection system and still make use 
of any available a priori knowledge. 

In this memorandum a so called three-layered network has been applied to the 
detection problem using simulated data. The performance of networks as a 
function of signal-to-noise-ratio, absolute signal level and network complexity 
has been briefly evaluated. 

The results indicate that such a network can perform at least as well a s  a 
conventio~~al detection system when simulated data is used. However, work 
with real sonar data is required before any definite statements can be made 
as to its applicability to target detection. 
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Target  de tec t ion  using a three-layered 
neu ra l  ne twork  t r a ined  b y  supervised 
back-propagat ion 

H. Meek 

Abst rac t :  In any sonar system a detection process has to be performed a t  
the processor output to decide whether or not a particular signal is present 
in the water. In the particular case of an active sonar employing coherent 
processing the requirement is to examine the output of the matched filter and 
decide whether an output signifying the presence of a target echo is present 
or not. In the present study a neural network has been trained and then 
applied to this problem. Its performance has been evaluated by examining 
the statistics of the probability of detection and probability of false alarm 
using unfamiliar but synthesized data. A preliminary investigation of the 
effect of varying some of the network parameters has been performed. 

Keywords:  active sonar o coherent processing o neural networks o 
probability of detection o probability of false alarm 
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Introduction 

The last few years have seen a resurgence of interest in neural networks and their ap- 
plications. In particular new learning algorithms for networks have been developed, 
which can provide an alternative to traditional signal processing methods [I-31. 

In the present study, neural networks were applied to the problem of target detection 
in sonar signals. A supervised back-propagation learning algorithm [4] was used 
to train three-layered networks to recognize the presence of a target echo. The 
performance of the networks was then evaluated by testing them on unfamiliar data 
sets. An investigation of the effect of varying some of the network characteristics 
was begun, but was not completed due to time constraints. 

Section 2 will provide an introduction to the theory and architecture of neural net- 
works, with emphasis on the three-layered architecture used in this study. Following 
this in Sect. 3 is a description of the back-propagation algorithm used in training 
the networks. Section 4 contains an account of the experiments performed. The 
sonar data is described, along with the methods employed in training and testing 
the networks. Some results are presented in Sect. 5. Suggestions for further work 
are given in Sect. 6. 

Report no. changed (Mar 2006): SM-234-UU



Layered neural networks 

A layered neural network, see Fig. 1, consists of at least two distinct layers of neurons 
or units. Input signals are presented to the network via the input layer. The signal 
resuliing from processing by the network is communicated via the output layer. In 
addition there may be one or more hidden layers between input and output, so 
called because they are invisible to the outside world. Hidden layers are used by 
the network to represent knowledge for feature extraction and problem solving. In 
general there are weighted connections between all units in a layer and all units in 
adjacent layers. 

Output Values 

Figure 1 Generalized neural network. 

Output Layer 

H~dden Layers 

Input Layer 

The networks used in this study were feed-forward, meaning that information flows 
unidirectionally from input through hidden layers to the output layer. This infor- 
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mation flow is in the form of unit activity, which is propagated forward from layer to 
layer. The activity of each unit in the network is computed as follows. The activity 
of a unit in the input layer is simply the value of the input signal at that unit. For 
the j th unit in a non-input layer, the activation level E j  is the linear weighted sum 
of its inputs: 

where wij is the connection weight between it and the ith unit in the layer below, 
and pi is the activity of this ith unit. A sigmoidal transformation function is then 
applied to the activation level to obtain the j th unit's activity p,: 

where p is a constant that determines the slope of the sigmoidal function (a value 
of p = 1.0 was used for these experiments). The algorithm originally presented in 
[4] has been modified slightly as recommended in [5], to provide an activity range 
from - $ to + i. The output values of the network are the activities of the units in 
the output layer. 

In genetal the behaviour of a neural network is modified by adjusting its connection 
weights by the repeated application of some learning rule. It can be trained by 
presenting it with a training set of input signals and corresponding output signals; 
the learning rule adjusts the weights so that the output produced in response to an 
input is as close as possible to the desired output. Once the network has been trained, 
it can be tested by presenting it with signals that were not used during training. If 
the network responds correctly to these unknown signals it is said that generalization 
has taken place. This capability for generalization is a highly significant attribute 
of neural nets. 
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Back-propagation algorithm 

The networks in this study were trained using the supervised back-propagation 
method originally proposed in [4], also called the generalized delta rule. The goal 
of the algorithm is to minimize the average squared error between the output val- 
ues produced in response to an input signal, and the desired output values for that 
signal. 

For each input signal in the training set, unit activities are propagated forward 
through the network by applying (1) and (2) .  The resulting output values are 
compared to the desired output values, and an error 6jN) is calculated for each 
output unit as follows: 

(N)  - ( N )  bj - ( ~ 5  - pj)P1(Ei ), (3)  
where N is the number of layers in the network (three in this case), pJ is the desired 
value of the j th output unit, pj is its actual activity, and P' is the first derivative of 
P. If the difference between the desired and actual outputs pJ - pj is greater than 
some specified margin (a value of 2.0 was used in these experiments), the error is 
back-propagated recursively to each lower layer in the network as follows: 

where wij is as in (1). Each connection weight in the network is adjusted in propor- 
tion to its contribution to the total error 

where E controls the rate of learning (a value of 1.0 was used here). 
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Experiments 

The networks used in these experiments were three-layered, with 600 input units, 
one output unit, and a number of hiden units ranging from 25 to 200. An output 
value of 1.0 represented detection of a target, while 0.0 indicated that there was no 
target present. 

Network training and testing programs were written in the C programming language, 
while data generation and format conversion programs were written in Fortran. All 
experiments were run on a VAX 8600 computer under VMS version 4.7. 

4.1. SONAR DATA 

The investigation did not use real data but instead used a computer program which 
within sensible bounds simulated the output of a standard matched filter processor 
when presented with a set of multipath arrivals in a gaussian white noise background. 
The assumed signal for all the simulations was a 2 sec LFM at a frequency of 200- 
300 Hz sampled at 1 kHz. Thus with one data value per network input unit, an 
input layer of size 600 represented a span of 0.6 sec. All signals were input into the 
network with the target echo in the same place, roughly centered over the 600 units. 

The simulation program could generate three different types of data sets each con- 
taining 50 signals: 

1. Alternate signals contained either an echo-response with noise or pure noise. 
These signals were used for 'training' purposes only. 

2. Each signal contained noise only. 

3. Each signal contained both an echo and noise to simulate the 'target present' 
situation. 

In any noise-contaminated signal the noise was generated as a stationary process and 
chosen to have an equiprobable rms amplitude between two limits (N,,, and N,in). 
This represented the noise at the output of the correlator which can be referred to 
the correlator input using the standard relationship 
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where Ni, and NOut are the rms noise amplitudes at the input and output of the 
correlator, T is the pulse time length, and F, is the sampling frequency. 

In order to simulate a complex propagation path the 'echo' within every signal 
contained 20 components, each with a random but statistically known amplitude 
and arrival time. The total time spread for all 20 signals was set at 0.2 sec whilst 
the arrival time of any one component was given a gaussian distribution with a 5 
msec standard deviation about a fixed time. 

The signal amplitude of one of these components (the 'main' arrival) was set to lie 
within limits given by the expressions 

where R is a user-defined parameter describing the average ratio (over all 50 pulses) 
between the main arrival amplitude and the mean amplitude of the noise at the cor- 
relator output. (It should be noted that in the results presented in Sect. 5 this ratio 
has been converted to the more conventional signal-to-noise ratio (SNR) expressed 
in decibels.) The amplitudes of the other 19 components were described with an 
equiprobable destribution function lying between 0 and S,,,. 

4.2. TRAINING T H E  NETWORKS 

Each network was trained to detect signals with a particular SNR in some particu- 
lar range of noise amplitudes. Training sets consisted of 50 signals, in which every 
second signal contained a target echo. (It was determined after preliminary investi- 
gation that this ratio of one noise-only signal to one signal with target produced the 
fastest training rate.) Noise-only signals were given a desired output of 0.0, while 
signals with a target present had a desired output value of 1.0. The training set was 
presented repeatedly to the network until the network could correctly classify all of 
the signals. 

The degradation in performance of networks trained on signals with decreasing SNR 
was examined. In addition the effect of varying the number of hidden units was 
investigated. 
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4.3. T E S T I N G  T H E  N E T W O R K S  
Networks were tested as to their ability to detect targets in unfamiliar signals with 
the same SNR and range of noise amplitudes used in training. Testing sets were 
composed of either 50 noise-only signals or 50 signals with target present; within 
each test set the noise amplitude was constant. 

The mean and standard deviation of output values were averaged over the 50 signals 
in each training set. The differences in these values for signal-present and signal- 
absent data at a particular noise value gave some indication of the network's ability 
to detect a target at this noise amplitude. For each network these values were 
averaged over all noise amplitudes to summarize the performance of the network. 
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5 
Results and discussion 

The results of testing a network 'with 50 hidden units, trained on noise amplitudes 
equivalent to 4-6 V at the correlator input and SNR 12 dB, are given in Table 1. 
It can be seen from the table that the ratio of average output to standard devia- 
tion of output with a target present increases with noise amplitude, indicating that 
detection is better at signal levels at the high end of the training range. In fact 
from results obtained using different ranges of noise amplitude it appears that the 
networks are sensitive to the absolute value of the noise amplitude used during train- 
ing; the precise extent and nature of this dependence is not known as there was not 
sufficient time to do a detailed investigation. 

Table 1 Resul ts  of testing a network with 50 hidden uni ts* 

N Noise-only Target present 

Avg. 0.1744 0.2089 0.7615 0.2574 

* For each noise amplitude N the network was tested with 50 
noise-only signals and 50 signals with target present. The SNR 
throughout was 12 dB. The mean and standard deviation are 
given for the output values P. The network had 50 hidden 
units. 

On the assumption that the distribution of output values for noise-only signals was 
gaussian, the mean and standard deviation of this distribution were approximated 
by averaging those values over all test sets of noise-only data. The hstribution of 
outputs for signals with target present was characterized in a similar manner. From 
these parameters it was determined that a threshold output value of 0.4564 would 
~naximize the probability of detection (Pd) and minimize the probability of false 
alarm (Pf,,.) of a system with these output distributions. This threshold yielded a 
theoretical Pd of 0.8820 and a theoretical Pf,, of 0.0886; however, the actual Pd and 
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Pr... obtained from the data using this threshold were 0.8480 and 0.1280. It is clear 
that the distributions are not gaussian but have heavy tails, probably as a result of 
averaging over such a wide noise range. 

The degradation in performance with decreasing SNR was investigated using net- 
works with 50 hidden units and an equivalent noise amplitude range at the input 
correlator of 4-8 V. Each network was trained and tested on pings with a constant 
SNR. The mean and standard deviation of output values, averaged over signals with 
and without a target as described above, are given in Table 2. In addition the num- 
ber of repetitions of the training set required to train each network is given. As a 
means of comparing the performance of different networks, the Pd was fixed at 0.9 
and the Pr.,, was dktermined by counting the number of false alarms produced by 
each network. Figure 2 shows the performance of the networks as a function of SNR. 
It is clear that both performance and training rate deteriorate rapidly as the SNR 
goes below 12 dB. 

Networks with sizes of hidden layer ranging from 25 to 200 were trained with the 
same training set. The training and testing signals had noise amplitudes of 4-6 V 
and a SNR of 12 dB. The effect of hidden-layer size on network training rate and 
output values is given in Table 3. Output values seem to improve with the number 
of hidden units, in the sense that the average output for noise-only signals decreases 
while that for signals with a target present increases. However, the variation in 
output also increases with hidden-layer size. 

Figure 3 shows the effect on performance of the network, as defined above. Perfor- 
mance seems to stabilize for large hidden layers, while the training rate increases. 
This suggests that there is some optimal number of hidden units, which is supported 
by results obtained from preliminary testing on simple functions such as z2 and z-' . 
In fact it appeared in these cases that performance actually degraded above a cer- 
tain size of hidden layer; it is unfortunate that there was insufficient time to train 
networks with more than 200 hidden units to see if the same effect was observed. 
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Table 2 Degradation of performance with decreasing SNR* 

SNR (V) Repeti- Target present 
tions - - 

P u p  P u p  

* Output mean and standard deviation were averaged over noise values. 
Networks had 50 hidden units; noise amplitudes were 4-8 V. Number 
of repetitions of training set required for training is also given. 

Table 3 Effect of hidden-layer size on network performance* 

Units Repeti- Noise-only Target present 
tions - - 

P UP  P U P  

* Noise amplitudes were 4-6V; SNR 12 dB. 
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to-noise ratio; noise amplitudes were 4-6 V; the networks had 
50 hidden units. 
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hidden layer; noise amplitudes were 4-6 V, SNR was 12 dB.  

om--, 

RlO- 
€ m 3 ais- 

4 
L 0.17- 
C 
0 
d 
Q 
P 

0.1s- 

aid 1 I i I I 1 1 
25 50 7S 100 1 26 150 115 e00 

Number of Hidden Units 

Report no. changed (Mar 2006): SM-234-UU



Suggestions for further work 

Areas indicated for further investigation can be divided into two categories: data 
characteristics and network parameters. In the first ease, the dependence of per- 
formance on absolute noise amplitude needs to be understood. Other factors that 
could be studied include size and composition of training set and sampling frequency 
of signals. 

The sensitivity of the network's performance to varying the echo statistics would 
also deserve a deeper study. In fact, the present performance of the 50 hidden 
units' network us SNR in presence of the signal statistics described in Subsect. 4.1 
is not immediately comparable with detection statics of signals under normal cir- 
cumstances (i.e. those signal statistics found in the standard textbooks). Due to the 
similarity with model-based processing, it may be anticipated that a neural network 
should achieve a performance that lies somewhere between that of a fully incoherent 
post-processor (e.g. the energy averager gain) and the fully coherent recombination 
gain of the multipath structure achieved by an optimal model-based processor. 

It is likely that network performance can be improved by finding some optimal 
balance of parameters such as learning rate, error tolerance while training, number of 
input units and hidden units. Some of these parameters were not investigated at all 
in this study, while others were given a hasty examination. For instance, rudimentary 
testing indicated that for simple functions, training rate increased with learning rate 
while performance remained roughly constant. However for complicated data, the 
time needed for network connection weights to converge during training seemed 
extremely high with learning rate values greater than 0.1 (which is why this value 
was chosen). It would be interesting to discover just how much improvement could 
be obtained by fine-tuning these parameters. 
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