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A method of extending ray tracing is proposed, such that medium-
scale irregularities of a statistical nature are taken into account 
along with large-scale irregularities in refractive index of the 
medium. 

INTRODUCTION 

Ray tracing is a relatively simple and very practical method of 
obtaining solutions to the fundamentally very difficult problem of 
wave propagation in an inhomogeneous medium. These solutions are 
admittedly approximate, but give perfectly satisfactory "engineering" 
answers, provided the scale size of the inhomogeneities is large 
compared to the propagating wavelength, and provided one does not 
require answers in regions of focusing or shadowing. 

I want to address myself to the problem of dealing with irregularities, 
both in the medium and on the boundaries, whose scale size is not 
large compared to the propagating wavelength. In particular, I am 
interested in scale sizes of the same order or somewhat larger than 
the propagating wavelength. I shall exclude from consideration those 
irregularities whose scale size is smaller than the propagating 
wavelength, since in a sense these will be invisible to the 
propagating wave and are likely to have only a collective effect. 



(For example, bubbles will have the effect of changing the acousti c 
properties of the water when encountered by metre wavelengths, and 
so the problem reverts to that of the effect of conglomerates of 
such bubbles of scale sizes of a wavelength or larger.) 

One can state the problem ln a somewhat more restricted fashion by 
asking how one can retain the advantages of using ray tracing 
to deal with large-scale irregularities when medium-scale 
irregularities are also present . I eventually want to discuss 
the effect of medium-scale irregularities on the sea surface, 
ln the depth of the thermocline and in the medium everywhere. But 
it is useful to start with the rough surface. 

EXAMPLE OF SURFACE ROUGHNESS 

After a more-or-less tortuous path, some of the rays leaving the 
source will strike the surface [Fig . lJ. A straightforward 
extension of the ray tracing concept would be to say that each ray 
is reflected in the local specular direction. But there are two 
objections to this course: (1) 
large-scale irregularities and 

this idea is only valid for 
(2) a hideously large number of 

ray tracings would have to be made in order to obtain a satisfactory 
statistical ensemble. 

An alternative approach, and the one I shall advocate, is to use ray 

tracing to just below the surface; then to employ statistical 
diffraction theory to accoun~ for the effect of the statistically 
rough surface; and then to employ ray tracing again to describe 
the subsequent progress of the field. This gets over the two 
disadvantages I mentioned in connection with the first approach: 
(1) since diffraction is taken into account the validity of the 
method is not restricted to large-scale irregularities, and (2) the 
ensemble averaging is performed at the surface and so a single ray 
tracing suffices to describe the subsequent reflected field. 



I shall give more details of this in a moment. But first, I must 
describe more clearly how one can make the transition from rays 
to fields and back again. 

RAYS AND PLANE WAVES 

Dating from Rayleigh's treatment of the problem of reflection from 
a corrugated surface [Ref. lJ, the expansion of acoustic fields 
in terms of plane waves travelling in different directions has 
become increasingly popular. Intuitively, one expects there to 
be an equivalence between such plane waves and the purely 
geometrical concept of rays;that equivalence will now be 
demonstrated. 

Uniform Medium 

The pressure field p (x, y, z) in the half space z ~ 0 can be 
represented [Ref. 2J by the plane-wave spectrum F(~, e) , such 
that 

00 

p(x,y,z) Sf F (o:,~) exp \-jk o(a:x + Sy + yz) 1 dct d~ [Eq. lJ 
_00 

where (o:,~,y) are the cosines of the angles formed between the 
direction of a single plane-wave component and the three rectangular 
coordinate axes (x,y,z), and ko is the phase constant (wave-
number) of the medium. 

Assuming the acoustic source to be at the origin, at a large 
distance r from the source, such that kor» 1, it can be shown 
by applying stationary phase methods that the pressure field is 
asymptotically 

p . il F ( ) -jkr J o:,~ e . r 
[Eq. 2J 



Thus the angular plane-wave s pectrum F(n,~) is proportional to 
the directivity pattern of the source. 

The associated intensity is 

I=lE..L= 
2Z 0 

where Zo is the characteristic impedance of the medium. It 
will be useful later to refer intensities to the "intensity at 
unit distance!!, which is 

[Eq . 3J 

Layered-Inhomogeneous Medium 

When the acoustic properties of the medium change with z, then 
the angular spectrum F(a,~), which describes the field at the source 
level z = 0, no longer deE/cribes the field for any other z. 
However, by writing the angular spectrum as a function of z, 
namely F(Q;,~,z), it can be supposed that all plane waves emanating 
from the source follow the ray paths prescribed by geometrical 
acoustics, provided the irregularities in the medium are of scale-
size very large compared to the acoustic wavelength. Hence [Ref. 3J, 

00 

p(x,y,z) = JI F(Q:,~,z) expl-jko(ax+ ~y+ JZ qdz) \ do: d~ [Eq. 4 J 
_00 0 

where q=ncos 9, the refractive index n=n(z) = c(O)/c(z) is the 
ratio of the sound speeds, 
of the ray path [Fig. 2J. 

2 2 2 _ r.l2 
q = n -Q; '" 

and 9 is the local angle to the vertical 
From Snell's law it is obvious that 

[Eq. 5J 



The W.K.B. solution [Ref. 4J for a plane wave travelling in a 
layered-inhomogeneous medium yields 

F(Il,~,z) ~ (::cC::o:°e)'f' F(Il , ~) [Eq. 6J 

whe re P = p(z) 1S the density, and the subscript 0 refers to 
the source level. (Note that Z = Pc is the characteristic 
impedance at the level z). 

Integrating Eq. 4 by stationary phase methods, asymptotically 

[Eq. 7J 

where (Qo, ~ o ) are the direction cosines at the source which 
satisfy the s tationary-phase conditions . These conditions are that 

x = r z a - J ~ dz [Eq. 8aJ 
o 

and that 

r z a 
y = - J ~ dz 

o 
[Eq. 8bJ 

which are just the equations of the ray path. The quantity 6 is 
a determinant in the general case [Ref. 3J, but in the x-z plane 
reduces to 

r z ::.2 r z ::. 2 ( JI ..2.....9.. dz) (JI .£....9. dz) 
o 00:

2 
0 O~ 2 

[Eq. 9J 

The intensity corresponding to the pressure of Eq. 7 is 

2 

I lEL 
2Z 

[Eq. 10J 
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where, as can be shown by applying Eq. 9 to Eq. 5, 

t::, = 

Then, the 

I 

x SZ sin e dz . 
. 29 3 e Sln 0 0 COS 

final intensity formula 

. 2 e Sln 0 

xcos 9cos 90JZ 
o 

sin 9 
3 COS e 

[Eq. llJ 

is 

[Eq. l2J 
dz 

and is equivalent to the formula developed by Krol [see Session 2 

of these Proceedings] using purely geometrical arguments. 

Thus an equivalence between a ray description and a plane-wave 
description of acoustic fields in a layered inhomogeneous medium 
has been established, which takes care of the effect of large-scale 
irregularities. 

The next step in the argument is to consider how each of these 
plane-wave components, which go to make up the total field, are 
affected by medium-scale statistical irregularities encountered 
either in the medium or at its boundaries. 

STATISTICAL DIFFRACTION THEORY 

Consider the simplest case, shown in Fig. 3, of a plane wave incident 
normally on a "random phase screen". Such a screen alters the 
phase of a wave propagating through it in a random manner, but 
leaves its amplitude unchanged. (The physical mechanisms in the 
ocean which produce such random phase screens will be discussed 
in the next section.) 

If the random phase induced by the screen is a zero-mean, gaussian 
random process of variance a~, then the transmitted field will 



consist of a coherent part and an incoherent part. (Coherence is 
used here in the sense of the phase having a deterministic relation 
to the incident phase.) It can be shown [Ref. 5J that the coherent 
part of the transmitted field is a plane wave, in all respects 
the same as the incident field,except that its amplitude is reduced 
by exp!-! o~}. This can be expressed by saying there is a 
"coherence loss" of intensity of 

exp \_o~ \ or 4. 34 o~ dB . 

But this is not a real, absorptive loss, and the remaining 
transmitted energy is incoherently scattered in a pattern which 1S 

determined by the second-order (i.e., lateral correlation) 
statistics of the phase across the screen. 

In terms of rays: the incident ray suffers a "loss", but apart 
from that continues as though the screen were not there. The lost 
energy is converted at the screen into new, incoherent sources of 
energy whose angular pattern can be determined. Ray tracing can 
be applied to follow the subsequent behaviour of this new source of 
acoustic energy. 

RANDOM MECHANISMS IN THE SEA 

Rough Sea Surface 

For a plane wave incident obliquely on a randomly rough sea surface, 
[Fig. 4J, the simplest (and most common) approach is to ignore 
amplitude effects and to consider only the random phase induced in 
the incident wave arising from the local excess path travelled by 
the wave to and from the surface, compared with reflection from the 
mean surface. Thus the surface is replaced by a random phase screen. 
If the surface profile is a zero-mean, gaussian random process of 
variance o~ the random phase variance is 

2 
(2kcos9) 
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Thus the incident ray is specularly reflected with a coherence 
2 loss of 4 .3 4 0~' and the remaining energy is scattered incoherently 

with an intensity pattern determined by the spatial correlation 
function of the surface roughness. 

Internal Waves 

Figure 5 shows an idealized model of an abrupt thermocline 
boundary separating two regions of the ocean in which the sound 
velocities, and hence the phase constants, kl and k a , are slightly 
different. If the boundary profile is a zero-mean, gaussian random 

process of variance o~, then the same sort of arguments used 
for the rough surface establish the first-order effect on an 
oblique ly incident plane wave of such a boundary as a random 
phase screen with phase variance 

(A similar expression has been used to examine the effect of 
irregularities in dielectric holograms [Ref . 6J.) 

Volume I rregularities 

If a plane wave travel s a distance t [see Fig. 6J through a slab 
of tenuous irregularities in refractive index, then it is 
physically plausible to suppose that the emerging field is randomly 
modulated in phase but unaltered in amplitude. (For a more 
rigorous validation of this approach, see the r~sum~ of the work 
of Fejer and Bramley in Ref. 5. ) Hence the slab of irregularities 
behaves as a random phase screen. If t is many times a typical 
scale size, ~o,of the irregularities, then a crude application of 
the Central Limit Theorem establishes that the emerging phase 
is approximately gaussian, with variance 



where 0
2 is the variance of the refractive index fluctuations. n 

Hence as a ray traverses such irregularities it will suffer a 
loss of 

4.34 k 2 G o0~ dB/unit length 

of its energy to incoherent scatter, the angular spread of which 
will be determined - as in the other examples - by the lateral 
scale size of the irregularities. 
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DISCUSSION 

The author confirmed that these ideas could be applied to a 
surface sinusoid with roughness superimposed, and also to a 
rough and randomly layered bottom - although the latter is more 

difficult. 
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FIG. 3 
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FIG. 4 
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INTERNAL WAVES 

FIG. 5 
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