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ABSTRACT 

Normal mode theory is best suited for the case of 

stratified media. Range dependence of the medium properties 

and of its boundary may nevertheless be taken into account in 

the framework of an adiabatic approximation provided the changes 

with range are sufficiently gradual. We have extended this 

approach and have included possible range variations of the 

boundaries. To lowest order, the solution furnished by this 

method consists of the depth functions of a locally stratified 

medium; in higher order, the range functions satisfy a system 

of coupled equations, with the coupling terms causing an exchange 

of energy between modes. As an application, we have evaluated 

acoustic fields in an isovelocity wedge-shaped ocean (continental 

shelf) using the normal-mode method with adiabatic range 

variation, obtaining good agreement with the exact solution due ~ 

to Bradley- and Hudimac. 
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Normal mode theory of underwater sound propagation, as 

applied in the usual way, is useful for the case of stratified 

media where the wave equation separates. A range dependence 

of the medium properties (sound velocity profile) and of its 

boundaries may nevertheless be taken into account in the frame-

work of an adiabatic approximation, provided the changes with 

range are sufficiently gradual. We have extended this approach, 

which was first indicated by Piercel and by Milder 2 for the 

variable medium, and have included possible range variations of 

the boundaries. To lowest order, the solution furnished by this 

method contains the depth functions of a locally stratified 

medium, whose eigenvalues k at each range point enter in an n 

equation for the range function that replaces the range function 

H (1) 
o (kn~) of the stratified case. To higher order (approach-

ing the exact case), the range functions satisfy a system of 

coupled equations, with the coupling terms causing an exchange 

of energy between modes. 

Starting from the wave equation corresponding to a point 

source in an inhomogeneous medium, 

(1) 

... -where k(r) =w/c(r), one attempts a "separation" in horizontal 
-iI' _ 

and vertical coordinates r = (P,z) of the form 

(2) 
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the "local depth functions" u(z,~) satisfy the usual depth equa-

tion 

(3 ) 

2-7 whose modal eigenvalues k n (f)' determined from the boundary 

condi tions at the boundaries z = z:t (?) , are now range dependent. 

Inserting (2) in (1) leads to a set of coupled range equations 

(4 ) 

This is still an exact system of equations, but the lack of 

separability has led to the appearance of mode coupling terms, 

which will however be small for sufficiently gradual range de-

pendence • . 

For the important special case where range variations 

take place in one horizontal direction only (x, say), the range 

function may be written as a Fourier integral, 
oU 

't(", <?) _1"8"'- 0< J k~) Q t k~ 't d kd /2" (5) 

Inserting in (4) and neglecting mode coupling, one finds the 

range equation 
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We first solved the special case of an isovelocity wedge-

shaped ocean, with the origin at the shore, the source at 

--? 
r = (x , 0, z ), and the ocean floor given by z ~ h(x)=h (x/x ), 
000 + - 0 0 

h being the ocean depth at the source location. We obtained 
o 

the exact solution (without mode coupling) 

¢ (r-) = (Xo/2-i -~o)i0 s-in[(n+~)7r~/R.J 5iYl.-[(~+-f)7[-:z~/~<)J 

·i::TY-n (k)C Xc:..) 1-1 y:i) ( k)( X» ~.;'f (~'k;; '}) dk(f 

where x ~ = max, min (x,x ), and 
o 

x< ' a saddle-point evaluation of (7) gives 

(7) 

(8 ) 

¢ (,r.) = V<o/..£.o r) e)<f (,[ kr ) Jo 51'n[I1« ~)H/t ] 5 in [('1'1 < Vn<!'Ro J 
e'f h ( - i -i 7l Yn.) J;, (k X X Ir-) r . ~ 7 < , 

where r 2 2 ~ = (x,;> + y ) • 

As a numerical example, we chose a free-surface, rigid-

bottom wedge with h /x = 
o 0 

x = 25,{ ,z = (1/3) h • 
000 

0.2, with the source located at 

The acoustic intensity 2 ob-

(9) 

tained from (9) is shown in Fig. 1 in the plane y = 0, plotted 

vs. x/A between 0 and 10. Modes cut off at positions indicated 

by arrows. Contour lines represent intensity variations in steps 

of 3 dB for three contours of highest intensity, and 6 dB other-

wise. The results are compared in Fig. 2 with I ¢ I 2 calculated 

from the exact solution of the same wedge problem, as found by 

Bradley and Hudimac 3 , and likewise evaluated by the saddle point 

method. Small differences can be observed between the lower 
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right portion of the figures, and are probably attributable to 

mode coupling effects. 

A computer program has been developed by us for solving 

the adiabatic range equation (Eq. (4) without coupling) for 

realistic sound velocity profiles with arbitrary (but gradual) 

4 variations in range, and similar variations of the ocean floor ; 

this is now being extended to the system of Eqs. (4) including 

the couplingp The same method is used for the depth equation (3) 

also, in order to apply a unified treatment to all parts of the 

problem. 

To solve the depth equation, we divide the ocean into P 

horizontal layers (p ~ 10 for practical purposes), and linearize 

2 ( ... ) . ~ h' h th the wave number k z,~ at ea.ch range pOlnt 5" so t at ln t e p 

layer 

z 1 being the interface between layers p-l and p.With the p-

new variable in the pth layer 

h 1 · f {3} h' f . 5 t e so utl0ns 0 are t e Alry unctlons 

(lO) 

The boundary conditions at each interface, 
~ 

i.e. u (z,t)} and np r 

du (z,~}/~z to be continuous, permit to evaluate all the np T 

coefficients A , B as follows. At each interface, A and np np np 
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B may be expressed by A 1 and B 1 np np- np- The one condition 
~ 

at the ocean surface z=O, namely unl (O,~) = 0, determines AI' 

while Bl may be fixed by the overall normalization of u. At . n 

the ocean floor, a decaying exponential for unp+l(Bnp+l= 0) 

matched to unP determines Anp+l ' while matching of the derivative 

~ 
furnishes the eigenvalue equation for kn(~). 

The analogous treatment for the uncoupled range equation, 

in the form of e.g. Eq. (6), now linearizes the quantity 

k /. (x) 
n 

k 2 where k (x) is obtained by solving the eigenvalue y , n 

equation at the boundaries x of the range intervals, the sub-
m 

divisions ranging from x_M to x M (with the source at x = Xo = 0): 

(13) 

with the new variable 

(14) 

one again has the Airy function solutions 

(15) 

Boundary conditions in the adiabatic case are again the continuity 

of gnm (x) and dgnm(x)/dx at each interface. At x> IX±M/ ' 
however, one now has a radiation condition which requires out-

going waves only as x ~ + 00 , while in all finite intervals 

in the region x< IX+M\ I the solutions (15) represent both in-

and outgoing waves, so that in contrast to the now-fashionable 
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PE (parabolic equation) method6 , the possibility of backscattering 

towards the source is always present. Modes that have cut off 

by the time they reach x = x , are matched to decaying exponen-+M 

tials, of course. The coefficients of the outgoing or decaying 

exponentials in x > x or x < 
M 

x are denoted by A 1 or A , '-M nM+ n, -M-l 

r espectively . 

If the coefficients of the solution (15) are normalized by 

- A ,Yt1"A. / A n -M- 'l. ") 
I 

) 
(16) 

()n .(.0 
I 

then the mentioned radiation condition determines 

(3 M completely, and by further matching at all n,+ 

eX and n,+M 

successive 

boundaries of segments, all other coefficients are determined 

down to 0( 1 and ,I") n,+ /.)n,+l· Accordingly, the only two unknowns 

left are the common denominators An,M+l and An,_M_l. These 

cannot be determined from the normalization, but from the re- . 

quirements that the solution of Eq. (6), which actually is the 

Green's function of the problem, (i) be continuous at x = 0, 

and (ii) have a discontinuity in slope such that the source 

strength in (6) is reproduced. Satisfying these condition com-

pletely solves the range-dependent problem (in the case of 

x-dependence only). 

This approach is now being programmed by us, together 

with the case of cylindrical-coordinate range variation (? de-

pendence only). The latter solution will be utilized for 
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"patching up" the solution of the PE method in regions where the 

latter becomes unreliable, either due to equivalent ray angles 

exceeding inclinations of rv 200 (i.e. propagation up-slope, 

or over a seamount), or near the source. The j' -dependent case is, 

however, less general than the x-dependent one, since it cannot 

describe e.g. sound propagating up the continental shelf at 

an angle, and being deflected back out to sea. Numerical re-

sults of our range-dependent normal-mode program will be pub-

lished elsewhere. 
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FIG. 1 

FIG. 2 
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