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A n o t e  o n  a t t enua t ion  a n d  dispersion i n  
m a r i n e  sed iments  

J.M. Hovem 

Execut ive  Summary :  Propagation loss is a critical factor for sonar per- 
formance. Low-frequency sound propagation loss is largely determined by 
acoustic attenuation in the sea bottom. 

This menlorandurn is part of an ongoing project where the objective is to 
quantify the bottom loss in areas of operational interest, and to provide 
appropriate methods for acquisition of relevant bottom data. To achieve this 
objective it is essential to understand how sound interacts with sediments 
of different characteristics. This me~norandum summarizes and discusses 
theoretical models of physical mechanisms that govern acoustic propagation 
in marine sediments, in particular the frequency dependence of attenuation 

' and sound speed (i.e. dispersion). 

Theoretical models predict that the most important contribution to intrinsic - attenuation in water-saturated marine sediments is viscous loss caused by 
fluid motion relative to the solid-particle structure. At very low frequencies, 

.. friction of solid particles lnay also be an important loss mechanism. The 
relative contribution from the various factors is dependent on a large number 

I of sediment properties, which are difficult to measure, and it is therefore 
difficult to predict how attenuation will vary with frequency. Fortunately - the dispersion of sound speed will be small in all cases and of no practical 
consequence for sonar operations. 

In a limited frequency interval it may be per~nissible to assume that attenu- 
ation increases linearly with frequency. Extrapolation of attenuation values 
over a large frequency interval is very difficult and it must be concluded that 
attenuation of the sea bed has to be measilred at the actual sonar frequency 
range. This conclusion is an important consideration in the development of 
new techniques for direct and indirect measurements of sea-floor ,acoustic 
paranleters and for the interpretation of the reults. 
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A n o t e  o n  a t t e n u a t i o n  a n d  dispersion i n  
m a r i n e  s ed imen t s  

J.M. Hovenl 

Abs t r ac t :  From the more recent investigations reported ill the literature, 
it can be concluded that solid friction appears to be of lit,tle importance for 
attenuation in partially and fully saturated sedilnents and that the domi- 
nating loss mechanism is due to tlle flow of fluid relative to the solid. The 
colnplete Biot theory describes both the loss associated with the global flow 
of fluid, which is dependent, on tlle permeability of the medium, and the 
local fluid flow caused by the opening and closing of cracks. This last con- 
tribution can be modelled by assuming a viscoelastic frame. The purpose 
of this note is to discuss some consequences of the theory, especially those 
concerning tlle frequency dependence of attenuation and sound velocity. It 
is demonstrated that the Biot theory does not give more velocity dispersion 
than expected from any causal linear systern and that it is extremely dif- 
ficult to  use tlle theory for predicting how the attenuation will vary with 
frequency. 

Keywords :  attenuation o Biot o dispersion o fluidflow o 

permeability o sediments o solid friction o velocity 
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Introduction 

Physical understanding and modelling of acoustic and seismic attenuation in marine 
sediments and rocks are important for predicting long-range sonar propagation. For 
the low frequencies being used in these applications, it is difficult to obt.ain attenua- 
tion values under controlled conditions; and it is, therefore, desirable to extrapolate 
the low frequency values from measurements at higher frequencies. This requires an 
understanding of the physical processes involved and knowledge about the frequency 
dependence of attenuation. The nlodels for attenuation which have been discussed 
most frequently in the literature are the solid friction model and various viscoelas- 
tic models where the attenuation is caused by a flow of a viscous fluid relative to 
the solid. Chemical effects, which are also important in some cases, have not been 
treated in the same detail. A nlajor proble~n with all loss models is that it is difficult 
to determine the values of the parameters by independent measurements. Hence, 
it is difficult to decide which mechanism is the 111ost important and to predict the 
attenuation based on the knowledge of the physical composition of the material. 

The purpose with this note is to comment on solne of the most well-known loss 
models and to point out their   no st important characteristics. The many papers of 
Biot and Stoll on the subject of fluid induced attenuation, as well as the papers b y  
Hamilton, are referenced. Useful reviews of attenuation of seismic waves in rocks 
have been given by Bourbie (1984, 1985), Mavko and Nur (1979), Toksoz et al. 
(1979) and Johnston et al. (1979). 
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Definitions 

The loss models will nor~nally result in an elastic nlodulus M (bulk or shear) being 
a co~nplex function of frequency: 

There are several definitions of the Q-value; here the following definition is used: 

The velocity v and the attenuation a are found by solving the following equation: 

with the solutions 

When the losses are small, good approxinlations to these solutions are 

For linear causal syste~ns there is a relation between attenuation and velocity given 
by the so-called Kramers-Kroning equation (Whit.e, 1983, p. 87; Aki and Richards, 
1980, p. 167; ant1 Futterman, 1962). This ,relation shows that at.tenuation is always 
acconlpanied by velocity dispersion, although the dispersion inay be very weak and 
difficult to determine experimentally. Only a lossless meclium can have a velocity 
constant with frequency. 
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Experimental observation of attenuation in sediments often seems to indicate that 
the Q-value is constant and attenuation is increasing linearly with frequency. There- 
fore, it is interesting to discuss the consequences of the constant Q assuxnption. 

An arbitrary good approximation to a constant Q can be obtained by a colnbination 
of sixnple models with different and staggered critical frequencies, as will be discussed 
later. Kjartanson (1979) found that the physically realisable const,ant.-Q model will 
have the coxnplex nlodulus 

with the sound velocity v and Q-value given by 

where wo is an arbitrary frequency where the sound velocity is vo. The velocity 
dispersion of the constant-Q model is shown in Fig. 1 for some values of Q. The 
dispersion for a x~lediuxli with Q = 30 is, for instance, a total of 5% over a frequency 
band of two decades. 

Fig. I .  Velocity dispersion for t,lle constant-Q lllodel 
for Q = 5,  10, 30, 50. 

If the velocity dispersion is neglect.ed, the time response heco~ries non-causal (Liu 
et al. 1976). As an example, the ilnpulse response of a xtlediuln with constant Q 
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and velocity v after a distance a: is given by 

exp [-lwlx/2vQ] exp[iw(t - x lv ) ]  d o ,  

The response is symmetric about the nominal arrival time t = x l v .  
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Solid friction model 

While the solid friction model is quite widely accepted by acousticians and geo- 
physicists, the model has defects and many investigations have cast doubt on the 
i~nportance of solid friction as a major source of attenuation in saturat.ed and par- 
tially saturated sediments. 

Attenuation caused by friction, mostly in rocks in relation to seismology and seismic 
exploration, has been investigated by White (1966), Walsh (1966), and Johnston 
et al. (1979). Experimental studies have been done by Winkler and Nur (1982) 
and Stewert et al. (1983). A fairly general conclusion from these studies is that 
the Q-value appears to be independent of strain amplitude for strains lower than 
about Measurements in clry materials (rocks) also show very low attenuation, 
typically Q-values greater than 100. 

Solid friction, as for instance that caused by sliding between particles in contacts, is 
normally account,ed for by letting the elastic moduli become complex. In terms of 
the Lam6 paramet,ers X and CL the ordinary parameter is replaced by 

The result is that the elastic moduli (shear or hulk) become conlplex constants 
independent of frequency. This rneans that the attenuation coefficients are increasing 
linearly with frequency and that the wave velocities are constant. 

The solid friction model is simple to use in calculations, and the constant-Q feature 
and the absence of dispersion are clai~ned by lllany to be in agreement with ex- 
perimental observations of attenuation in marine sediments (Ha~nilton, 1972, 1976, 
1980). This statement has, however, been challenged by others (St,oll, 1985). 

Two features of the solid friction model should he noted: 

First, because friction is a nonlinear process, the ve1ocit.y and attenuation 
will in principle be dependent on the a~rlplit~ude and the waveform of the 
st,rain. Strictly speaking, the superposit,ion principle is not valid, and the 
deco~llposition of a time donlain signal into t,he frequency tlonlain by Fourier 
transform is not allowed. For a single frequency and for low strains as noted 
above, this may from a practical point of view not be a serious rest,rict,ion on 
the validity of the model. 
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Secondly, a rnodel with constant Q and no velocit,y dispersion is not obeying 
the causality principle, as discussed before. For a single-frequency component 
this is of no consequence, but it could he important when attempting to 
cornpute the time domain responses in a high-loss~niedium. 
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Viscoelastic models 

In the viscoelastic models it is assumed that not only the stresses and strains are 
involved but also their derivative with respect to time. One model, for instance, 
assumes that the stress s(t  ) is given by the strain e(t ) and its derivative with respect 
to time i ( t )  by 

s ( t )  = h'e(t) + Nl( t ) ,  (13) 
where K is the elastic elenlent and N is a viscous element given hy the fluid viscosity 
and the geometry of the pores and voids of the material. In an equivalent circuit 
description the elastic element is represented by a spring and the viscous element 
with a dashpot. 

a b 
Fig. 2. Viscoelastic elelnents: (a) standard 3- 
parameter model, (b) Voigt model, (c) Maxwell 
model. 

The standard 3-parameter model shown in Fig. 2a is frequently used for representing 
a colnposite nledium. It is composed of a spring in series with a parallel cornhination 
of a spring and a dashpot. The total complex modulus is, therefore, given by 

The Voigt rnodel is obtained when li2 -+ oo: 
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The Maxwell element is the limiting case for lil = 0: 

These ele~nents are shown in Figs. 2b,c. 

In the low-loss case Mi << M, and approximately 

Kl(1c1 + K 2 )  wN 
Q ( w )  = K2 (A) + 77;. 

Figure 3 shows Q-value and velocity as the function of frequency for the standard 
3-para~neter model. At low frequencies the Q is proportional with frequency, and the 
attenuation coefficient is proportional with frequency, squared. At high frequencies 
Q is proportional to frequency and attenuation is constant wit,h frequency. The 
frequency where Q is minimum is given by 

The Voigt model is elastic at low frequency and viscous at high frequency, ancl 
attenuation is proportional to frequency squared. The Maxwell is viscous at low 
frequency and elastic at high frequency, and the attenuation is nearly constant with 
frequency. 

The response e ( t )  to a step in a( t )  at t = 0 is called the creep function (Lomnitz, 
1957). When the height of the step in stress is a0 the creep function for the general 
3-para~neter model is 

go go +( t )  = - + - (1 - exp [ I ( ,  t / N  I )  . 
K2 K1 

It is quite clear that any physically allowed creep function must he a causal function. 
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(o/q,) 
Fig. 3. Q-value and velocity for the standard 3-parameter viscoelastic 
model as functions of frequency. 
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Fluid loss models 

The effect of a pore fluid on wave velocities and attenuation has been investigated 
by Toksijz et al. (1979) and Johnston et al. (1979). Murphy (1982) in particular 
has conducted a most interesting study of the effect of partial water saturation on 
the attenuation and velocity in porous sandstone. He concluded that at saturation 
levels lower than 0.01 (very dry) the energy losses can be at tributed to ~nicro capillary 
hysteresis but that the attenuation is very low. At saturations high,er than 0.02 and 
towards full saturation, different mechanisms take control; and Murphy concludes 
that attenuation then is caused by fluid flow. Since other investigations point in the 
same direction (Stoll, 1985), there is no reason to doubt that the pore fluid plays a 
dominating role in the attenuation of low-a~nplitude acoustic and seisnlic waves. 

There are at least two mechanisnls for viscous dissipation resulting from wave- 
induced pore fluid flow. The first lnechanisnl is caused by the overall motion of 
fluid relative to the skeleton frame, and attenuation depends on the per~neability of 
the nleclium and the geometry and turt,uosity of the pores. This effect is believed to 
be important in highly permeable and coarse materials. 

The other mechanism, known as the squirt or squish, is due to local fluid flow 
caused by the conlpressions of grains and fine capillaries. This effect is thought to 
he inlportant in finer sediruents where t.he pernleability is low even if the porosity is 
high. 

The theoretical foundation for the description of both nlechanisrns was first given 
by Biot in a series of papers, and later Stoll expanded on them and made the theory 
more applicable. The Biot theory is really a viscoelastic theory with the addition of 
the effect of fluid inertia. Since the theory is now well known, it will not be cliscussed 
in detail here; but. certain features that are so~net.imes overlooked will he discussed. 

In his first two papers on the suhject Biot (1956, 1 & 11) presented a theory for 
the viscous attenuat,ion caused by an overall fluid flow. The xilode1 predicts an 
attenuation which is increasing with frequency squared at low frequency and as the 
square root of frequency at higher frequencies. Figure 4a presents one exanlple of 
attenuation of the standard Biot theory for the paramet.ers given in Table 1. This 
particular exa~nple gives a lrlini~rluni Q-value of about 50. Figure 4b shows t.he 
velocity predicted by the Biot theory for the saxne parameters together with the 
expect.ed velocity dispersion of the constant-Q nloclel ( 7 ,  8) calculated for Q = 50. 
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It is evident that the dispersion given by the Biot model is not Inore than expected 
for a linear causal system. 

-5 
0 1 2 3 4 5 6 

Log Frequency (Hz) 

Fig. 4a. Q-value as  function of frequency calculated by 
the Biot model wit11 the parameters given in Table 1. 

Table 1 
Pllysical paranleters used for input to  the Biot theory to produce 
Fig. 4 

Parameter Value Units 

bulk nlodulus of solid, K, 
bulk ~ l ~ o d u l u s  of flnicl, Iir 
bulk modulus of frame, ICb 
shear ~nodulus  of frame, p. 
fluid density, pf 
solid density, p, 
porosit,y, Q, 
fluid viscosity, 7 
permeability, B 
pore size parameter, a, 

P a  s 
lll 
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Fig. 4b. Velocity dispersior~ for the Biot model (solid 
curve) calculated with the parameters given in Table 1 
and for the constant-Q model (broken curve) with Q = 50. 

The transition hetween low and high frequency is given by a critical frequency w,: 

where 7 and pf is the fluid viscosity and density, respectively, and a, is a pore size 
parameter as a characteristic measure of the size of the pores. Biot found that 
for circular pores a, is equal to the radius and for slits equal to 213 t,irnes the slit 
separation. When applying the Biot theory to real sediments, the choice of a, is of 
extreme importance for the frequency dependence of the viscous attenuation curve. 
Which value to use in real cases has been discussed quite extensively in the literature, 
and the consensus seellls to be that a,  should be related tc~ the average size of the 
grains and should also he proportional to the square root of the permeability. 

Since there is only one para~xieter for the pore size in the t,heory, it can be argued 
that it can only he valid in very unifor~tl ~nedia where all the pores have essent,ially 
the same geometry and size. In real media t.here is likely to be a tlistributio~~ of 
pore sizes, and one will expect to have a more linear increase with frequency at. 
least over a li~zlit,ed hand of frequencies. In principle, one coultl modify the theory 
to allow for a distribution of grain sizes and pores antl, in fact, such a mudification 
has been ~nacle by McCann and McC,'ann (1985). With a particular assulned port1 
size distril~ution they obtain, as expect.ed, an essent,ially linear at.tenuation law. The 
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proble111 with the approach is t.hat one needs t.o know the relationship between the 
grain size ancl pore size di~t~ribution and the permeability. This inforlnation is in 
general not available. However, it shows at least that, it is principally and physically 
possible to have a viscous loss increasing linearly with frequency. 

The effect of a local flow of fluid caused by the conlpression of grains and capillaries 
was also considered by Biot. (1962) in an extension of his first t.heory. He proposed 
then that the hulk modulus of the frarne (lib) for the porous nlediu~il can be rnodelled 
as a standard 3-parameter element as discussed earlier: 

Biot showed that a gap representing a pore to a first approximation is purely viscous, 
and he found that a gap of length L and height h has 

Stoll (1979) gave for spherical grains of diameter D in contact with particle separa- 
tion h at points of closest contact,: 

The modulus Ir'O is the stiffness of the solid grains ancl K1 represents t,he stiffness of 
the grain contacts plus the inco~npressibility of the fluid between the grains. Since 
ICo >> I i l  the fralne can with good approximation be lnodelled as a standard Voigt 
elelllent with 

lib = + iw N .  (25) 

In practice there will be spectrum of pore sizes and shapes. 

The colnplete theory as outlined above can then account for the viscous att,enuation 
caused by both the local and the global flow of fluicl. In addition, one can, if one 
wants, add a slnall imaginary const,ant to Kb to allow for solrle frictional loss. 

While the Biot theory gives a good insight into how the fluid is affect,ing sound 
velocity and attenuation, the theory requires input values for a great nurllber of pa- 
ranleters which cannot he obt,ainecl fro111 inclependent, measurenlent,~. It is, therefore, 
difficult to use the theory t,o arrive at a general conclusion as t,o how at,t,enuation 
will vary with frequency. 
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Summary and conclusions 

In this note some of the more conlnlon ~nodels for sound speed and attenuation in 
marine sediments have been discussed:The purpose was not to describe the models 
in full, but rather to point to features that are sometitnes overlooked. 

It can be concluded from the more recent investigations that solid friction appears 
to be of rather little importance for attenuation in partially and fully saturated 
sediments and that the dominating loss mechanism is due to the flow of fluid relative 
to the solid. The cornplete Biot theory describes both the loss associated with the 
global flow of fluid, which is dependent on the permeability of the medium, and the 
local fluid flow caused by the opening and closing of cracks. This last contribution 
can be modelled by assunling a viscoelastic frame. 

It has been demonstrated that the Biot theory does not give more velocity dispersion 
than expected from any causal linear system. 

The theory depends 0x1 a great many parameters that are unknown and for this 
reason it is difficult to use the theory for predicting attenuation and velocity. It 
is also difficult t.o make general statements regarcling the frequency dependence of 
attenuation and even the viscous tern1 can give almost a linear frequency law over 
a limited frequency band of observation. 
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