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Estimators for model-based passive 
localisation 

E.J. Sullivan, W. Volkmann and S. Bongi 

Executive Summary: Passive localization techniques have not been re- 
ally effective for many years and the aim of this SACLANTCEN work is 
an attempt to improve the situation. Preliminary results of this work have 
shown, for certsin conditions, a radical improvement over the older basic 
methods but much work still remains to be done to show that the method 
remains robust in a variety of practical at-sea conditions. 

The present 'standard' techniques of bearings-only and wavefront curva- 
ture make no use of available environmental information about the medium. 
Measurement of the multipath arrivals (ranging on the vertical) uses some 
of the medium information. However, the newer model-based (matched- 
field) passive ranging, as described in this memorandum, provides better 
localization estimates by using all the available environmental information. 

In this technique, a model is selected that describes the propagation channel 
to a reasonable degree and this is used to make a prediction of the field 
received at an array. This model field is then compared to the measured 
field and a set of source coordinates that provides the best match is taken 
as an estimate of the source position. This can be done in two ways: the 
problem can be inverted and one simply solves for the source coordinates or 
a search can be made over a prescribed set of possible source coordinates. 
For each set of source coordinates, an estimator is computed and used to 
select the best estimate of the coordinaten. 

This memorandum is a status report which studies the effect of four different 
types of estimator using both synthetic and real at-sea data. A comparison is 
made between Bucker's Estimator and three types of least-squares estimator. 
It is shown that Backer's Estimator is, in general, inferior to the other three 
but it is recommended that further work with at-sea data is required before 
one can comment statistically on the optimum estimator. 
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Est imators  for model-based passive 
localization 

E.J. Sullivan, W. Volkmann and S. Bongi 

Abstract:  A comparative study is made of the performance of four differ- 
ent estimators as used in the matched-field technique of passive localiaation. 
The study is based on both real and synthesized data. In the synthesiaed 
data case, a comparison is made of the performance of the estimators for 
various signal-to-noise ratios. The four estimators studied are Bucket's Es- 
timators, which can be thought of as a spatial matched filter, and three 
likelihood-type estimators. The results indicate that the matched-field type 
estimator has a slightly better signal-to-noise performance than the others, 
but rather poor sidelobe behaviour, whereas for the likelihood-type estima- 
tor the sidelobe behaviour is quite good. 

Keywords: inverse problems o matched-field processing o model-based 
signal processing o passive localization o passive ranging 
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1. Introduction 

Model-based passive ranging, sometimes referred to as matched-field processing, is 
basically an inverse problem. A propagation model that describes the propagation 
channel in some acceptable sense is selected, and is used to make a prediction of 
the field received on an array (usually, but not necessarily vertical). This model 
field is then compared to the measured field and the set of source coordinates that 
provide the best match to the measured field is then taken as the estimate of the 
source coordinates. This procedure can be carried out in two different ways. The 
problem can be directly inverted, solving for the source coordinates, or a search can 
be made over a prescribed set of source coordinates in some manner. For each set of 
source coordinates, an estimator is computed and used to select the best estimate 
of the coordinates. In the case of range-depth estimation, this estimator can be 
plotted on a range-depth map such that the estimates can be directly taken as the 
coordinates of some extremum. It is this technique that we are concerned with here. 
In particular, we make a comparative study of four different estimators based on both 
real and synthetic data. The estimators are Bucker's Estimator and three types of 
least-squares estimator. A thorough discussion of the subject of model-based passive 
localization can be found in [l]. 
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2. Theory 

For the layered waveguide model with source on the z (or vertical) axis, the pressure 
field is symmetric about z and is therefore governed by the cylindrical wave equation 
which is given by 

Since in this study a shallow-water range-independent scenario is chosen, Eq. (1) can 
be solved by separation of variables, since the range independence allows a factored 
form for the solutions. Assuming far-field conditions and a harmonic source (see [2] 
for details) the normal-mode model of Eq. (2) obtains: 

Here p is the acoustic pressure, $,(z) is the mth modal function evaluated at z, zo 
is the source depth, r is the horizontal range, km is the horizontal wave number for 
the mth mode, am is the loss factor for the mth mode, and M is the number of 
modes. 

Assuming a vertical receiving array, Eq. (2) can be conveniently written in matrix 
form as 

Pn = Mn,m~m (3) 

where P, is the pressure at the nth hydrophone of the vertical receiving array with 
N hydrophones, and 

The estimation algorithm proceeds as follows: 

(1) Given the sound-velocity profile (SVP), the ocean depth and the bottom 
boundary conditions, compute $,(zn), 4,(zo), km and am for all desired 
values of zo. 

(2)  Compute the model pressure vector {P; (xo , r )) for a given set of values of 
r and zo, from Eq. (3). 
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(3) Compare {P;) to the data vector {P:) over the prescribed ranges of a 
and r. 

It is the third step that we are concerned with here. Historically the estimator used 
for step 3 for the forward modelling procedure was based on the inner product of 
{P:) and {P:) [3]. This we will refer to as Bucker's Estimator. The form we use 
is written as 

Dsu = I C P: pf*12/( lpD12 IpM12), 

where IpDI2 and lPMI2 are the squared magnitudes of the data and model vectors, 
respectively. We note that if one computes the expected value of Dsu,  Eq. (4) 
becomes 

where RmI1 is the covariance matrix of the data. In Eq. (5) the normalization has 
been ignored for simplicity; however in this study we will use the form expressed by 
Eq. (4). One then seeks the values of r and zo that maximize DBu. 

The second estimator that we consider is the least squares fit of pM to PD,  i.e. we 
seek the minimum of 

N 

The data and model vectors are normalized to a reference hydrophone. 

The third estimator is the incoherent form of DLS. That is, we fit the hydrophone 
powers in a least-squares sense. Thus we seek the minimum of 

The fourth estimator is based on an inversion of Eq. (3), and since this equation 
is linear in X,, it can easily be solved by the method of least squares, under the 
assumption that N > M. This results in 
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where M' is the transpose of M .  The expression ( M f M ) - l  M' is sometimes referred 
to as the pseudo-inverse of M. Naturally, this reduces to M-' when N = M .  
Equation ( 8 )  actually constitutes a modal filter, thus allowing modal selection in 
the solution. This turns out to be important in our case. The estimator we use for 
this approach is based on the least-squares fit of XI to the prediction of XI by the 
model. That is, we seek the minimum of 

where ML refers to maximum-likelihood in order to differentiate this estimator from 
DLS , and K refers to the number of modes used. Here, as in the case of DLS , the 
model and data vectors are normalized to a given complex amplitude. 
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3. Data characteristics 

As mentioned in the introduction both real and synthetic data were used in this 
study. The synthetic data were generated by the SNAP model [4]. An ocean depth 
of 103 m was selected with a winter Mediterranean sound velocity profile (SVP). A 
point acoustic source of 190 Hz was taken to be at a depth of 50 m and a range of 
7.4 km from the receiving array. 'This situation supported 9 modes. The receiver 
was a vertical array of 32 point hydrophones with a spacing of 2 m. The topmost 
hydrophone was located at a depth of 30 m. The bottom was composed of 2.5 m 
of sand over a rock sub-bottom. These complex synthetic data were then modified 
by the addition of a complex noise term that was taken from a random number 
generator with gaussian statistics. The signal-to-noise ratio at each hydrophone was 
taken to be equal. 

The real data were taken at a depth of 103 m in the region north of the island of 
Elba in the Mediterranean. The SVP and bottom conditions were those used for the 
generation of the synthetic data. The source and receiver coordinates, as well as the 
frequency were also the same as for the synthetic data. The data were preprocessed 
by performing a 256-point FFT on a 2 S data record. The frequency line at 190 Hz 
was then taken as a 'snapshot' of the complex amplitude. The SIN ratio of these 
data was 30-40 dB. 

Due to environmental conditions, mainly currents, the vertical array was not always 
vertical. Hence, it must be assumed that in the case of the real data, there are errors 
in the assumed positions of the hydrophones in the horizontal direction. 
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4. Results 

The four estimators were studied with regard to their performance under various 
SIN ratios in the case of the synthetic data, and also their performance with real 
data. Figures 1 through 3 depict the performance of DBu for S/N ratios of 10, 20 
and 30 dB respectively. Figure 4 gives the results of DBu for real data. Figures 
5 through 8 depict the same series of cases, i.e. 10, 20, 30 dB and real data, for 
DLS. Continuing in this manner, Figs. 9 through 12 show the same four cases, 
respectively, for DpW and finally, Figs. 13 through 16 present these same four cases 
for DML. As mentioned in Sect. 2, we seek the maximum of DBu and the minimum 
of the other three estimators. However, in these illustrations, the likelihood surface 
has been inverted for DLS, DML and DpW so that the extremum that we seek is the 
maximum in all four cases. This was done by dividing all values of the likelihood 
surface into its minimum value for these cases. 

There are several conclusions that can be drawn from these figures. First, we see 
that DBu suffers from a severe sidelobe problem, while at the same time has the 
best SIN performance. Although difficult to see due to the clutter caused by the 
sidelobes, the maximum of DBu occurs at the correct position of r = 7.4 km and 
d = 50 m. In fact, this behaviour holds down to a S/N ratio of 0 dB (which is not 
shown). We note, however, that Dsu failed to indicate the solution in the case of 
the real data. 

Considering next the behaviour of DLS, we see that there is an immediate improve- 
ment in sidelobe performance, but the S/N performance is not quite as good since 
DLS failed to provide a solution at S/N = 0 dB (which case is not shown). We also 
see that DLS does not provide a solution for the real data case. 

Continuing on to Dpw, we find the SIN performance slightly degraded with respect 
to that of DLS, but there is a solution, although badly aliased, in the case of the real 
data. Although not obvious in the illustration, the peak at the correct coordinates 
of r = 7.4 km and d = 50 m is essentially equal to those at 13.5 km, d = 50 m and 
r = 5.0 km, d = 15 m. Thus, the solution is not unique. It should be noted that the 
solution seems to be unbiased. 

Proceeding to the last case, that of DML, we find that the S/N performance is even 
worse than that of DpW. However, again there is a solution with the real data. It is 
biased in depth and, as can be clearly seen, there are two larger erroneous solutions. 
This solution was obtained by using only the f is t  7 modes in the solution. If more 
or less than 7 modes were used, no solution was obtained. 
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5. Discussion 

Generally speaking the performance of DBu seems to be inferior to the other three 
estimators. Although its SIN performance is better than that of any of the others, 
the sidelobe behaviour is so poor, that without a perfect match to the model one 
would expect this advantage to disappear rapidly, since a slight elevation of any of 
the aliased solutions would be disastrous. The sidelobe behaviour could be improved 
in two situations. First more modes tend to lower the sidelobes; therefore a scenario 
with higher frequency and/or deeper ocean depth could improve things. Secondly, 
the array data can be 'bearnformed', i.e. can be passed through some preprocessing 
to provide more spatial selectivity. This is done in [4] where the so-called rnazirnurn- 
likelihood beamformer is used to preprocess the data. 

Since the hydrophone positions were not well known due to the tilting of the vertical 
array, one suspects that the generally poor performance in the case of the real data 
is due to this 'mismatch' between the model and the true situation. Thus one 
could speculate that the phase errors produced by this mismatch are ignored by 
DpW, which is essentially an incoherent version of DLS. Thus at the expense of 
some SIN performance, robustness to mismatch is achieved by DpW. This issue of 
mismatch enters into the case of DML also. Here, as pointed out above, a solution 
was obtainable only in the case of 7 modes. This suggests that the mismatch caused 
unacceptable errors in modes 8 and 9 and therefore the ability to filter them out is 
crucial to a coherent-type estimator. 

A general conclusion then, is that array tilt is a serious problem and the level of 
seriousness can depend on the particular estimator that one uses. One way that 
such problems can be avoided is to eliminate the need for a priori knowledge of 
the model parameters. A means by which this can be done is given in [5] where 
it is shown that knowledge of the horizontal wavenumbers, which can be estimated 
with either a long towed array or a synthetic aperture towed array, is sufficient to 
estimate range. This could have important ramifications for these methods, since 
a recent study [6] has shown that mismatch in the environmental parameters can 
have serious deleterious effect S. 

Finally, it is worth mentioning that although the general SIN performance does not 
seem too promising, the synthetic data were not averaged. That is, the noise was 
directly added as a single realization of a gaussian process. This corresponds to a 
single 'snapshot' of real data with no time averaging. Thus the SIN values should 
be considered as a worst-case situation that would improve with averaging. 
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Fig. 1 .  Contour plot of Bucker's Estimator for the case of synthetic data with a signal-to- 
noise ratio of 10 dB. 

Q'<> Level 

Fig. 2. Contour plot of Bucker's Estimator for the case of synthetic data with a signal-to- 
noise ratio of 20 dB. 
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Fig. 3. Contour plot of Bucker's Estimator for the case of synthetic data with a signal-to- 
noise ratio of 30 dB. 
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Fig. 4. Contour plot of Bucker's Estimator for the case of real data. 
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Fig. 5. Contour plot of the mean-squared error of the pressure field for the case of 10 dB 
signal-to-noise ratio. The data are inverted such that the maximum of the plot corresponds 
to the minimum mean-squared error. 
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Fig. 6. .Contour plot of the mean-squared error of the pressure field for the case of 20 dB  
signal-to-noise ratio. The data are inverted such that the maximum of the plot corresponds 
to the minimum mean-squared error. 
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Fig. 7. Contour plot of the mean-squared error of the pressure field for the case of 30 dB 
signal-to-noise ratio. The data are inverted such that the maximum of the plot corresponds 
to the minimum mean-squared error. 

Fig. 8. Contour plot of the mean-squared error of the pressure field for the case of real data. 
The data are inverted such that the maximum of the plot corresponds to the minimum 
mean-squared error. 
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Fig. 9. Contour plot of the mean-squared error of the hydrophone power for the cam 
of synthetic data with signal-to-noise ratio of 10 dB. The data are inverted such that the 
marimum of the plot corresponds to the minimum mean-squared error. 
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Fig. 10. Contour plot of the mean-squared error of the hydrophone power for the case 
of synthetic data with signal-to-noise ratio of 20 dB. The data are inverted such that the 
maximum of the plot corresponds to the minimum mean-squared error. 
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Fig. 11. Contour plot of the mean-squared error of the hydrophone power for the case 
of synthetic data with signal-to-noise ratio of 30 dB. The data are inverted such that the 
maximum of the plot corresponds to the minimum mean-squared error. 
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Fig. .12. Contour plot of the mean-squared error of the hydrophone power for the case of 
real data. The data are inverted such that the maximum of the plot corresponds to  the 
minimum mean-squared error. 
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Fig. 13. Contour plot of the mean-squared error of the modal amplitudes for the case 
of synthetic data with signal-to-noise ratio of 10 dB. The data are inverted such that the 
maximum of the plot corresponds to the minimum mean-squared error. 

Fig. 14. Contour plot of the mean-squared error of the modal amplitudes for the case 
of synthetic data with signal-to-noise ratio of 20 dB. The data are inverted such that the 
maximum of the plot corresponds to  the minimum mean-squared error. 
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Fig. 15. Contour plot of the mean-squared error of the modal amplitudes for the case 
of synthetic data with signal-to-noise ratio of 30 dB. The data are inverted such that the 
maximum of the plot corresponds to the minimum mean-squared error. 
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Fig. .16. Contour plot of the mean-squared error of the modal amplitudes for the case of 
real data. The data  are inverted such that the maximum of the plot corresponds to  the 
~ninimum mean-squared error. 
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