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D e t e c t i o n  o f  n a r r o w - b a n d  low-level  s ignals :  

S i m u l a t e d  p e r f o r m a n c e  o f  
h i g h - r e s o l u t i o n  e i g e n s t r u c t u r e  methods 
v e r s u s  c o n v e n t i o n a l  b e a m f o r m i n g  

S. Jesus 

E x e c u t i v e  S u m m a r y :  In many instances, sonar performance and hence 
ASW capability is limited by the sonar's spatial resolution, i.e. i ts  ability 
t o  separate acoustic signals arriving from close angles in order t o  obtain 
both noise rejection and angle of arrival for the  location and classification 
of targets. This limitation is directly related to  the  length of the  array, the  
aperture. 

In the  last two decades a number of signal processing techniques have been 
proposed tha t  increase the  resolution power of a given array without increas- 
ing i ts  length: these are the so-called high-resolution techniques. However, 
although successful in other fields, their adoption in operational sonar sys- 
tems has  been slow. One  reason for this is the  difficulty in determining 
the  detection capability of high-resolution techniques compared with con- 
ventional techniques, due  t o  the  absence of a commonly accepted measure 
of performance that  can be expressed in operatioilal terms. 

T h e  aim of the  present work is t o  improve this situation by showing, with 
a simulation study, tha t  the  use of a n  appropriate high-resolution technique 
niay give a higher, and sometimes much higher, detection performance than 
the  conventional beamformer. Improvement can be obtained especially when 
detecting a low-level target in the  vicinity of one or more high-level interfer- 
ing targets. This situation can occur in many crucial geographic areas where 
the  acoustic noise field is in major part due  t o  the  contribution of individual 
ships behaving as  interfering targets generating ship-induced noise fields. 

T h e  results of this work contribute t o  the  understanding of the detection 
behaviour of the  high-resolution techniques in a number of realistic field 
situations. Such techniques can also be viewed as  an  alternative t o  increas- 
ing the  array length and thereby improving the operational characteristics 
of existing sonar systems. A companion report in preparation shows the  
detection performance of these high-resolution techniques using real data.  

F'urther progress requires improved knowledge of the background noise field, 
its parametrization in a noise model and i t s  inclusion in the  noise source es- 
timation process as a priori information. The  high-resolution techniques 
presented here allow such information t o  be included. The  results may sub- 
stantially improve if this information is correct. 
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Detec t ion  of  na r row-band  low-level signals: 

S imu la t ed  pe r fo rmance  of 
high-resolut ion e igens t ruc tu re  m e t h o d s  
versus  conventional  beamforming 

S. Jesus 

Abs t r ac t :  In this report the detection of narrow-band low-level signals 
by passive sonar is addressed, specifically the detection of a low-level point 
source in a noise field modelled as a large number of high-level source lines 
embedded in white additive noise. This model may give, with a conven- 
tional processor, a measured noise field where the low-level source can be 
masked by high-level sources along similar directions. In this context, high- 
resolution eigenstructure detection algorithms are shown to achieve a signif- 
icantly higher probability of detection than the conventional beamformer. 
The performance of four detection algorithms is compared using synthetic 
data  - a companion report will present real data results. 

Keywords:  detection performance o eigenstructure methods o 
high-resolution o interfering sources 
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1. Introduction 

The objective of an underwater listening system is to detect a signal of unknown 
shape by sensing the received acoustic field in time and space. The sensor output sig- 
nals are then passed through a spectrum analyzer and an array beamformer in order 
to extract the spectral and directional contents of the noise field. Fourier transform 
is still widely used, either in the spectrum analyzer or in the array beamformer, 
in spite of its limited resolution capability. In the case of a line array the spatial 
(angular) resolution is related to the physical length of the array itself (aperture of 
the array). 

In the last two decades a great deal of interest has been devoted to the problem of 
increasing the resolution power without increasing the length of the array. Several 
array beamformers have been proposed which achieve a higher resolution than the 
conventional bearnformer by merely combining the sensor outputs in a convenient 
way [l-51. 

In passive sonar, the noise field estimation procedure is followed by a detection pro- 
cessor which aims to test the hypothesis that a target is in a particular direction 
at a given frequency (target signature). There is a consensus of opinion that the 
conventional beamformer is the optimal detector for one line source embedded in 
white additive gaussian noise. In the presence of more than one source the con- 
ventional beamformer is no longer optimum. This is mainly due to the interference 
between the array beampatterns of adjacent sources. This is the typical situation 
when measuring the low-frequency noise field which is, in many areas, dominated by 
ship-radiated noise. In this case, the estimated field has a relatively complex struc- 
ture, mixing a number of high-level source lines, due to either close or loud individual 
ships, and a large number of small source lines which are contributions of a variety 
of noise sources (e.g. wind noise, electrical array self noise, distant shipping, etc.). 
In such a noise field, the use of a conventional processor, may lead to a situation 
where a low-level target can be masked by nearby high-level sources. An example 
of such a situation is shown in Fig. 1 where a synthetic noise field of a three-point 
source in white gaussian noise is estimated using a conventional beamformer (a) 
and a high-resolution technique (b). This example clearly illustrates how the reso- 
lution performances of these techniques compare. However, the precise relationship 
between resolution and detection performance is not clear. 

The aim of the present report is to determine the detection behaviour of a class 
of high-resolution detection algorithms based on the cross-covariance matrix eigen- 
structure and the conventional bearnformer on detecting a low-level source in the 
presence of a number of high-level source lines standing in a flat background pedestal. 
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Fig. I .  Estimated power (dB) vs bearing (deg) - conventional 
beamformer with Hann shading (a) and high-resolution eigenstruc- 
ture method (b): three sources at locations -10°, -5" and 0"; 
respective powers 30 dB, 0 dB and 30 dB; number of averages 
N = 200, 16 sensors. 

Si~nulated tests have been conducted with different noise fields for variable relative 
location of the low-level source to the high-level interfering source(s), for variable 
signal-to-noise ratios, for different array shadings (conventional beamformer) and 
also for different observation times ('time-bandwidth products'). In a companion 
report [7] the methods described here are applied to real data and compared with 
previous result S [6]. 
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2. Background 

Passive sonar target detection and classification is generally carried out by identify- 
ing the spectral content of a given data set with known ship and submarine acoustic 
spectral signatures. Source location is achieved by spatial processing to extract the 
directional features of the data. Time and space operations are generally performed 
separately. In this study we will concentrate on the spatial data processing for source 
detection and direction-of-arrival (DOA) estimation. Signals of interest are assumed 
to be of the narrow-band type for which the frequency bandwidth A f is less than 
or equal to the frequency resolution l/To of the fast fourier transform (FFT) used 
for spectrum estimation, A f 5 l/To. 

2.1. DATA MODEL 

The spatial field is sa~npled by a line array of L omnidirectional sensors at a constant 
interval d. To avoid spatial aliasing, d is assumed to be always 5 c/2fmax, where c 
is the sound speed and fmax is the highest frequency contained in the signal. Let 
xl(iTs) be the lth sensor output at a discrete time iT, where the sampling period T, 
is chosen such that T, 5 112 fmax. The signal xl(iTs) is assumed to be stationary 
over a record length T,. This interval T, is then segmented into N equal intervals 
with 2K samples each, T, = 2 N  KT,. Each of the intervals is then passed through 
an FFT. Let 

~~(n,fk)=[~l(n,fk),~2(n,fk),.--,~~(n,fk)], n = l , . . . , N ; k = l , - . . , K ,  
(1) 

he the L-dimensional array complex vector at time 'snapshot' n and for frequency 
fk; T stands for the transpose. N is termed the 'time-bandwidth product', which 
is a compromise between data stationarity and power spectrum estimate stability. 
The spatial processing of y(n,  fk)  will be achieved separately for each frequency fk .  
Keeping this in mind, the frequency index will be omitted in the following for clarity. 

The standard model to represent the observation vector y(n)  with I far-field sources 
is [4] 

y(n) = As(n) + v(n). (2) 
Matrix A is an L X I complex matrix, the columns of which are the mode vectors 

where the ith source wavenumber vei is defined by 

2lr 
vei = - sin Bi 

X 
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with X being the source wavelength and di the angle defined between the ith source 
wavefront and the normal to the array. In this case 

In the standard model (2),  the vector 

is the I-di~nensional signal complex (analytic) vector where 

The real and imaginary parts of s l (n)  are assumed to be uncorrelated, stationary, 
and ergodic gaussian random processes with zero-mean and variance tari. The 
covariance matrix of the signals is denoted 

where H stands for the conjugate transpose. 

Finally, the complex additive noise v(n)  is assumed to be stationary, ergodic, zero- 
mean and with covariance 

E[v( . )v ( . )~ ]  = U;I, (6) 

where I is the identity matrix and U; is a scalar representing the noise power. 
Moreover, the signals are assumed to be uncorrelated with the noise process. 

In a DOA-estimation-only system, one uses the spectrum analyzer output data 
{y(n); n = 1 , .  . . N) to estimate the set of angles {gi; i = 1, .  . . , I ) .  The number 
of sources I is in general not known and also needs to be estimated. This problem, 
when the number of sources is not known, is often called a detection problem. 
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2.2. CONVENTIONAL BEAMFORMER 

Only the case of a linear equispaced array will be treated. Conventional beamforming 
is a common nonparametric and computational efficient technique to combine the 
sensor outputs in this particular array arrangement. The computational efficiency of 
the conventional beamformer is mainly due to the use of a spatial, fourier transform 
implemented by the FFT algorithm [8]. 

The beamformer operates on the array by coherent summation of the L sensor 
outputs with the apropriate spatial delay to steer a 'beam' to a given direction 0. 
Let 

L 

be the complex beamformer output steered to direction 9  at time 'snapshot' n. The 
term W , ( @ )  contains the phase shift imposed to sensor l to steer the beamformer to 
direction 9 ,  

,,,,(g) = e - j ( ' - l ) ~ e d  , 1 x 1  , . . . , L ,  ( 8 )  
where all quantities have been defined above. The factor h, is a spatial weight asso- 
ciated with sensor l; the sequence { h l ;  l = 1, . . . , L) is known as the spatial shading 
function. The periodogram power wavenumber spectrum estimate is obtained by 
summing ( 7 )  over the N time segments, which gives for all beams 

where the matrix W' contains the direction vectors ( 8 )  weighted by the spatial 
function h l .  The matrix RC: is a periodogram estimate of the data cross-covariance 
matrix R,,: 

N 

2.3. HIGH-RESOLUTION EIGENSTRUCTURE METHOD 

This method differs from the previous one mainly in the fact that it explicitly uses 
a model of the data-generating mechanism whereas the other did not. It provides 
much more accurate results if the model is appropriate. This parametrical method 
uses an interpretation of the measured data through time as a sequence of an L- 
dimensional vector moving in an L-dimensional vector space. If the array receives 
a certain number (< L) of coherent wavefronts the movement of the observed data 
vector is restricted to a certain linear subspace of the total L-dimensional reachable 
space. The method relies on the possibility of decomposing the total space into two 
linear subspaces: the signal subspace and the noise subspace. 
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The main properties of the high-resolution eigenstructure technique arise from the 
assumptions made in the data model (Subsect. 2.1) and thus a knowledge of the 
noise cross-covariance matrix [ 5 ] .  Assuming that I < L sources are present in the 
noise field, the observation vector y(n)  is constrained to move in an I-dimensional 
suhspace, the signal subspace, spanned by the unknown I source direction vectors 

{a(Oi);i = l , .  . . , I} .  (11) 

The complementary (L - I)-dimensional subspace is called the noise subspace. The 
eigen-decomposition of the sensor cross-covariance matrix allows us to obtain the 
separation of these two subspaces. Let 

R,, = E [ ~ ~ ~ ]  = A S A ~  + ULI ( l 2 )  

be the sensor output vector cross-covariance L X L matrix. If the sources are un- 
correlated or partially correlated the covariance matrix S is nonsingular therefore, 
as matrix A has full rank (due to array geometry), ASAH is of rank I. The eigen- 
structure of R,, is defined by 

R,, = E A E ~  (13) 

with 

the Xl  and el being respectively the eigenvalues and eigenvectors of matrix R,,, 
such that 

X l ~ X , > . . . > X , > . . . ~ X L > O ,  (15) 

and the eigenvectors satisfy 

It can be shown [4]  that the best estimator of the I-dimensional signal subspace, 
under the minimum least squares, the maximum likelihood or the maximum entropy 
criteria, is the one spanned by the I eigenvectors associated with the I highest 
eigenvalues of R,, , i.e. 

E r  = [el,  e ~ l . .  . , e11. (17) 
The number of sources I can be found be merely looking at the multiplicity of the 
smallest eigenvalue, which should be equal to U: with multiplicity L - I. The I 
source direction vectors are then given by the intersections of the array manifold 
( ~ ( 0 ) )  and the signal subspace Er. This can be done by projecting the vectors 
w(0) onto the signal subspace. In practice, this is accomplished by the hermitian 
form 

h(8) = wH(e)EL-IE;_,w(e) (18) 
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which is equal to zero for all 8 = Oi, i = 1 , .  . . , I  

Given the set of observations {y(n); n = 1 , .  . . , N )  one possible estimate (in fact the 
maximum likelihood estimate) of R,, is (10). Therefore the eigen-decomposition of 
R$ will give only estimated i i  and Pi  values of the eigenvalues and eigenvectors 
of the true cross-covariance matrix. Also, the estimated eigenvalues are all different 
with probability one. Therefore the estimation of the number of sources I is a 
decision problem for which the recommended procedure is based on a likelihood 
ratio test of equality of the smallest roots of matrix R;. This problem is discussed 
in detail in Sect. 3. 

A 

Once an estimate EL-I of the noise subspace EL-I has been obtained, the I source 
DOAs can be found by searching for the local maxima of the functional [4,5] 
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3. Source detection 

Source detection is a difficult problem in underwaterpassive listening due to the 
interrelation between the errors introduced by the technique used for array process- 
ing and the test of signal presence itself. Assuming the data model described in 
Subsect. 2.1 the optimal detector is 

where P is the L-dimensional conlplex matrix 

In practice, the detection characteristics of a receiving array are commonly described, 
in statistical terms, by the probabilities of detection (PD) and of false alarm (PFA) 
for a given signal-to-noise ratio (SNR). These two probabilities are respectively as- 
sociated with the detection of a signal under the two hypotheses 

H1 : signal plus noise is present, or 

Ho: only noise is present. 

Thus, the detection and false alarm probabilities are given by 

If I(y) takes the form (20) the detection processor is said to be optimal (under the 
assumptions of the data model described in Subsect. 2.1). 
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3.1. WITH THE CONVENTIONAL BEAMFORMER 

The standard scenario for testing hypothesis Ho/HI is to consider the possibility of 
presence of a single target in white additive noise. In this case, the received power 
estimate given by the beamformer (9) directed at the source location, say B1, is 

It can be proved that the conventional beamformer output (23) reaches, in this 
particular case, the optimal detector (20). Both (23a) and (23b) are X2 random 
distributed variables with 2N degrees of freedom and mean values at and a:1 + 
a: respectively. From the respective densities i t  is relatively easy to calculate the 
probability of detection P: for a fixed threshold B! depending on a given allowed 
fase alarm rate P!,, (0 stands for zero interfering sources - see e.g. [g]). 

Let us consider now the more realistic scenario of the detection of one low-level point 
source in the presence of a number of high-level interfering sources, all embedded 
in white additive noise. Assume I point sources at locations {Bi; i = 1,. . .,I). The 
beamformer is steered to the direction of the source we want to detect, say source 1 
at  bearing 81. The I - 1 interfering sources with powers {azi; i = 2, .  . . ,I) are 
located respectively at  bearings {Bi; i = 2, .  . . , I ) .  Clearly using (9) 

where the last term represents, in both expressions, the sum of the 'influences' of the 
I - 1 interfering sources on estimating(and detecting) source 1. These 'influences' 
obviously depend on the relative location of source 1 to the interfering source(s). 
The factor ali is 

(Yli = - 

with 
27r f d  

(sin 
C 

. B1 - sin B,). 

The detector given by (24) is no longer optimal. In effect, with some straightforward 
manipulations it can be shown that if at least one interference source is present, 
i.e. (lli # 0, then the probability of detection in the presence of interfering 
sources, P:, is always less than or equal to the probability of detection with no 
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interfering sources, Pi (for the same false alarm probability P:* = P&). This 
is, of course, due to the beampattern interference when detecting one source in 
a multi-source noise field. Let us recall that the sidelobe impact can be greatly 
reduced by using well-known techniques of sensor weighting (array shading). These 
techniques may improve the probability of detecting 'well-separated' sources with the 
counterpart of a loss in resolution and therefore a loss of detecting 'closely-separated' 
sources (within the beampattern mainlobe). 

In conclusion, the degradation of the detection characteristics of the conventional 
beamformer is due to the array beampattern effect and is therefore related to the 
angular separation between sources and depends on their relative amplitude. We 
will show in Subsect. 3.2 that the detection characteristics of the high-resolution 
eigenstructure techniques do not suffer from any such inconveniences: they present a 
constant detection behaviour for all directions and in particular for low-level sources 
near to strong interfering sources. 

3.2. WITH THE HIGH-RESOLUTION EIGENSTRUCTURE METHOD 

Making use of the high-resolution eigenstructure method outlined in Subsect. 2.3, the 
problem of source detection is equivalent to the problem of estimating the dimension 
of the signal subspace EI (17). The signal subspace dimension is equal to the number 
of highest non-equal eigenvalues of the cross-covariance matrix RYbl (12). 

For a finite observation time, i.e. fmite N , the eigenstructure of the estimated cross- * 
covariance matrix RL (10) based on the observation set (1) is defined by 

The es ti~nated eigenvalues 

are all different with probability one [l01 making it difficult to find the number of 
signals by merely 'looking' at the eigenvalue distribution. 

Two approaches have been proposed to solve this problem - the generalized likeli- 
hood ratio test [l11 and the information-based theoretic criteria [12]: 

m The first approach splits the decision problem into a sequence of yes/no 
answers to a series of questions: 'Is the number of sources equal to k for 
k = 0, . . , , L - l ? '  Under the hypothesis-testing theory, answering 'yes' to 
the question is equivalent to accepting the hypothesis 

Hk: there are at most k sources. 
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Answering 'no' is equivalent to accepting Rk: 
- 
Hk: there are at least k + l sources. 

Starting with k = 0 the test is performed until ak is rejected (equivalent to 
accepting Hk) or k = L - 1, in which case k = L. 

m The second approach treats the decision problem as the determination of the 
rank of the signal matrix which is considered as a model selection problem. 
The selected model is the one that 'best' fits the data under certain criteria. 
Two methods for this approach have been proposed: the Akaike information 
criteria ( AIC) and the minimum descriptor length (MDL). 

All three methods referred to above are ultimately seeking to test for the equality 
of the L - k smallest eigenvalues of the sample cross-covariance matrix. This test is 
known in the literature as 'the sphericity test' [13,14]. 

The assumption that the data is a series of zero-mean statistically independent 
gaussian random vectors leads to an optimum estimation of the model parameters 
provided by the maximum likelihood estimator. It is well known that in this case 
the functional 

T(k) = -210gak, G?7) 

where a k  is the likelihood ratio given by 

is distributed for large samples approximately as [15,16]. This statistic is used by 
the three criteria, the difference being only in the modifications used to approximate 
the asymptotical X 2  distribution for short or moderate sample size. We are not 
attempting to derive the whole underlying theory as this has already been extensively 
covered in the literature referred to above; only the expressions for the criteria are 
given below. 

Generalized likelihood ratio test (GLRT) Following Ligget t [l l] a corrected test 
for moderate sample size would be 

with the multiplying factor p(k) equal to 

-2(N - k - [2(L - k)' + l]) 
~ ( k )  = 6(L - k )  

This test is conducted until 
T G L R T ( ~ )  > t t  
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or k  = L  - 1 .  The detection threshold tk is drawn from a xEk distribution with 
v k  = ( L  - k)' - 1  degrees of freedom for a given significance rlk fixed by the operator 
such that 

~ r o b { ~ ; ,  2 t ; )  = q k .  ( 3 2 )  

Akaike Information Criteria (AIC) From [ 1 2 ] ,  the estimated number of signals is, 
according to the AIC criteria, the value of k  = 0 , .  . . , L  - 1 for which 

T A I C ( ~ )  = - 2 N  log a k  f 2 k ( 2 L  - k )  ( 3 3 )  

is minimum. 

Minimum Descriptor Length (MDL) Also from [ 1 2 ] ,  the number of signals is equal 
to the value of k  = 0 , .  . . , L  - 1 that minimizes the functional 

T M D L ( ~ )  = - N  log a k  + i k ( 2 ~  - k )  log N .  ( 3 4 )  

Comparing these detection procedures, the first remark is that they are obviously 
independent of the relative location of the sources, in contrast to the conventional 
beamformer. They depend only on the observation time or equivalently on the num- 
ber of samples N .  This is the well-known behaviour of the high-resolution eigen- 
structure techniques which have asymptotic (large N )  infinite resolving power [5]. 
This will be clearly illustrated in Sect. 4  by simulation. 
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4. Simulation resul ts  

For each case the probabilities of detection are estimated as a function of the input 
signal-to-noise ratio (SNRi,) and the relative location (DOA,) of the low-level source 
to the high-level interfering source(s). Two simulated noise fields were generated 
to illustrate the comparative behaviour of the four detection algorithms. In the 
first example the noise field is formed by two line sources in a flat background 
noise: one is the high-level interfering source which is fixed in location and in power 
and the other is the low-level source on which the detection is performed. In the 
second example the low-level source is located between two high-level sources, having 
a fixed power but a variable angular separation. The data has been generated 
according to model (2) with the parameters given in Table 1. In both examples two 
'time-bandwidth products' were tested. Also two array shadings were used in the 
conventional beamformer: uniform and Hann shading. For each case four curves are 
plotted corresponding to the four detection algorithms being tested: 

Conventional beamformer (CVB - curve C). 

Akaike information criteria (AIC - curve A). 

Minimum descriptor length (MDL - curve M). 

Generalized likelihood ratio test (GLRT - curve G). 

4.1. EXAMPLE l: ONE HIGH-LEVEL INTERFERING SOURCE 

The empirical detection characteristics are shown in Figs. 2 to 5. The probability 
of detection, for a constant false alarm probability, is given vs the input signal-to- 
noise ratio in Fig. 2 and vs the relative location in Figs. 3 to 5. The probability of 
false alarm can be controlled in the conventional beamformer but not in the other 
detection algorithms. In this example, the empirical estimation of the false alarm 
rate over 1000 statistically independent draws gave the results shown in Table 2. 
Among the three high-resolution detection algorithms one can note that while the 
AIC algorithm provides the largest probability of false alarm (2.7%), the probability 
of false alarm of the MDL algorithm could not be evaluated with this sample size. 
The mean PFA of all three high-resolution algorithms is about l % ,  which is aprox- 
imately the value for the conventional beamformer; therefore the true comparable 
characteristics are relatively close to the curves shown. 

Comments Observing Fig. 2, one can remark that the CVB performs better than 
all the other algorithms for DOA, = -30' (a), its performance then gradually 
decreases when approaching the high-level source (b )  and (c), and is null for DOA, = 
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Fig. 2a. Estimated probability of detection (%) v s  the input 
signal-to-noise ratio (dB), one interfering source at -10°, N = 50, 
ND = 200, Hann weighting DOA, = -30'. 
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Fig. 2b. Estimated probability of detection (%) v s  the input 
signal-to-noise ratio (dB), one interfering source at - - l o o ,  N = 50, 
ND = 200, Hann weighting DOA, = -18'. 
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Fig. 2c. Estimated probability of detection (%) vs  the input signal- 
to-noise ratio (dB), one interfering source at - 10". N = 50, ND = 
200, Hann weighting DOA, = - 10". 

Fig. 2d. Estimated probability of detection (%) vs the input 
signal-to-noise ratio (dB), one interfering source at 10" N -- 50, 
ND = 200, Hann weighting DOA, = -2" 
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Table I 
Input parameters for the simulated tests 

Parameter Symbol Value Fig. no. 

number of statistical draws ND 
number of hydrophones L 
spacing/wavelength a/ A 
noise power (dB) 2 

6, 

time-bandwidth product 

array shading (CVB) 

number of signals I 2 2-5 

signal-to-noise ratio (dB) E [-20,13.5] 2-5 
3 0 2-5 

signal location (deg) 

Example 2 

number of signals I 3 

uf /g: 5,10,15 
signal-to-noise ratio (dB) 622 /U: 3 0 

g; /g: 3 0 

signal location (deg) 

Table 2 
Empirical probability of false alarm, Example 1 

Algorithm PFA (%) 

CVB 1.1 
AIC 2.7 
MDL 0.0 
GLRT 0.7 
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-2" (d). For the same bearing variation the performance of the high-resolution 
algorithms is relatively constant, unless for case (d) where a slight decrease of about 
2.5 dB can be noted. 

In Fig. 3 the improvement obtained by the high-resolution algorithms is clearly seen 
in terms of source location. As expected, the CVB performance is always better than 
that of the other algorithms when the source is far away from the interfering source. 
However, for a low-level source with SNRin = -6 dB (a) the sidelobe decreases 
the CVB performance 19' away from the interference location. Figure 3.b shows a 
similar behaviour for an SNRin = 0 dB: in this figure the influence of the mainlobe 
appears for IDOA,I < 12". 

In Fig. 4 the conventional beamformer performance is shown with uniform shading 
instead of Hann shading. Only one signal-to-noise ratio is shown: SNRin = 5 dB. 
As expected, the detection performance curve of the conventional beamformer has 
a spikey aspect which is directly related with the high-level source beampattern: 
the maxima of detection corresponding to the nulls and the minima of detection to 
the peaks of the beampattern. The main difference, compared to the Hann shading 
results, is the fact that large losses of detection can be obtained even for directions 
'far away' from the interference direction. 

In Fig. 5 the 'time-bandwidth product' was increased to N = 200. The conventional 
beamformer performance (with Hann shading) is approximately the same while the 
high-resolution algorithms behave significantly better. 

4.2. EXAMPLE 2: TWO HIGH-LEVEL INTERFERING SOURCES 

The results of this test are shown in Figs. 6 to 9. In these figures the percentage of 
detection probability is given vs the relative location of the low-level source to the 
fixed high-level source normalized by the separation of the two high-level sources. 
The fixed high-level source is located at DOAil = -10'. The separation of the two 
high-level sources, ADOAi, is variable and takes the following values: 5" (Figs. 6 
and g),  10' (Fig. 7) and 15" (Fig. 8). Thus, the normalized DOA, is given by 

DOA, - DOAil 
DOA, = 

ADOAi 

where DOA, is the location of the signal under detection. 

An empirical estimation of the false alarm rate for the four algorithms gave the 
results summarized in Table 3. One can note that the overall PFA decreased in this 
test and is now situated around 0.7%. 
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Fig. 3a. Estimated probability of detection (%) vs the relative 
location to the interfering source at -10° ,  N = 50, ND = 200, 
Hann weighting SNR,, = -6 dB. 

Fig. 3b. Estimated probability of detection (%) vs the relative 
location to the interfering source at -10'. N SO, ND = 200, 
Hann weighting SNRi, = 0 dB. 
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Fig. 4. Estimated probability of detection (%) vs the relative 
location to the interfering source at -10°, N = 50, ND = 200, 
uniform weighting SNRi, = 5 dB. 

80- 

70 - S 

Comments Figures 6 through 9 show a similar behaviour: the high-resolution al- 
gorithms could achieve some detections (and in some cases a good detection rate) 
whereas the conventional beamfornier did none. As expected, from the results 
of Example 1, higher detection probabilities where obtained for larger SNR's, for 

.- 
W 

8 60- 
5 
D 
is 

I 

larger separationibetwwen the two high-level sources and with maxima at the half- 
separation of the interfering sources. Also, as before, a larger number of averages 
improves the results of the high-resolution techniques (Fig. 9). 

Table 3 
Empirical probability of false alarm, Example 2 

- 
I 1 1  1 1 1 , I l  I l l  

-30.0 -25.0 -20.0 -1 5.0 -10.0 -5.0 0.0 

C 

Algorithm &A (%) 

CVB 0.6 
AIC 1.8 
MDL 0.0 
GLRT 0.6 

I MDL-M 
GLRT-Q 
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Fig. 5a. Estimated probability of detection (%) vs the relative 
location to the interfering source at -10°, N = 200, ND = 200, 
Hann weighting SNR,, = -9 dB. 

Fig. 5b. Estimated probability of detection (%) vs the relative 
location to the interfering source at -10°, N = 200, N D  = 200, 
Hann weighting SNRi, = -6 dB. 
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AIC-A :l g;, 

Fig. 6a. Estimated probability of detection (%) vs the normalized 
relative location to the two interfering sources at -10' and -5", 
N = 50, ND = 200, Hann weighting SNRi, = 5 dB. 

AIC-A 

GLRT-G 

Fig. 6b. Estimated probability of detection (%) vs  the normalized 
relative location to the two interfering sources at -10" and -5", 
N = 50, ND = 200, Hann weighting SNRi,, = 10 dB. 
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AIC-A 

GLRT-G 

Fig. 7a. Estimated probability of detection (%) vs the normalized 
relative location to the two interfering sources at -10' and oo ,  
N = 50, ND = 200, Hann weighting SNRi, = -5 dB. 

Fig. 7b. Estimated probability of detection (%) vs the normalized 
relative location to the two interfering sources at -10' and O 0 ,  
N = 50, ND = 200, Hann weighting SNRin = 0 dB. 
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MDL-M 
GLRT-Q 

Fig. 8a. Estimated probability of detection (%) vs the normalized 
relative location to the two interfering sources at - 10" and So ,  
N = 50, ND = 200, Hann weighting SNR;, = -10 dB. 

Fig. 8b. Estimated probability of detection (%) vs the normalized 
relative location to the two interfering sources at -10' and 5 " ,  
N = 50, ND = 200, Hann weighting SNRi. = -5 dB. 
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AIC-A 

QLRT-Q 

Fig. 9a. Estimated probability of detection (%) v s  the normalized 
relative location to the two interfering sources at -10' and - 5 ' ,  
N = 200, ND = 200, Hann weighting SNRin = 0 dB. 

Fig. 9b. Estimated probability of detection (%) vs the normalized 
relative location to the two interfering sources at -10' and -5', 
N = 200, ND = 200, Hann weighting SNRin = 5 dB. 
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5 .  Conclusion 

The problem of detecting a low-level source in the presence of high-level interfering 
sources has been studied in this report using simulated data. The performance of 
the conventional beamformer has been compared with three high-resolution beam- 
formers based on eigenstructure decomposition techniques. From the simulations 
it has been possible to estimate the probability of detection of the low-level source 
keeping the probability of false alarm approximately constant. As expected, the 
simulation shows that the conventional beamformer performance, although optimal 
in a single-source scenario, is greatly reduced when at tempting to detect a low-level 
source near to high-level interfering sources. 

The detection performance of the high-resolution algorithms is significantly better 
than that of the conventional beamformer for a low-level source located within the 
mainlobe of a high-level interfering source. When more than one high-level source is 
present the performance improvement can be extremely high. In the case of a very 
low-level source the high-resolution techniques can achieve a detection improvement 
even in the sidelobe region. The detection behaviour of the high-resolution tech- 
niques is relatively constant in bearing except for the interference direction; this 
behaviour is improved by a longer observation time. 

Among the three high-resolution detection algorithms, AIC always displayed the 
best performance - together with the highest false alarm rate - and MDL displayed 
the best results - together with the lowest false alarm rate. This is in agreement 
with the asymptotical consistency remarked by [12,17]. 

In conclusion, the results suggest that the high-resolution algorithms can achieve 
a real improvement in detecting low-level targets in ship-induced noise fields. A 
disadvantage of the high-resolution algorithms is their dependence on a knowledge 
of the noise field. Deviations from the assumed noise field, which may occur in 
real data, can lead to a degradation in detection performance. In a companion 
report [7] we present real data-processing results which show the robustness of the 
high-resolution detection algorithms. 
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