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ABSTRACT

The method of Riesz [Ref. 1] for the solution of hyperbolic
partial differential equations is applied to the Cauchy problem
for the wave equation. It is shown that the first term in the
Riesz potential function, which is represented in series form,
yields the geometrical acoustics solution when applied to the

problem of radiation from a point source.

THE WAVE EQUATION AND ITS RIEMANNIAN GEOMETRY

We seek a solution to the partial differential equation

R 2., =
Lu = of We-Vu o= £ 5 _ [Eq.
where f is a function of (t,r) €Ryx E® . For simplicity we
shall assume vanishing initial conditions, u(0,r) = ut(O,F)==O.

The local sound speed c¢ 1is assumed to be a function of

r = (x,y,z) only.

Construction of the Riesz potential for the operator L rests
on the Riemannian geometry associated with the operator. The

semi-Riemannian metric is given by the differential form

ds® = ¢? dt® - (dr)? . [Eq.
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A displacement for which ds® >0 is called timelike; one for
which ds® <0 is called spacelike. Let P:(to, r,) and
Q:(t,,r;) be two points of space time. A geodesic joining P
and Q is a curve vy:{[t(g), r(c)] : O<o<o,} such that
[$(0), (0] = (tg, Pyl [Hlo,l)s Plog)] = (6,7, ), and

s(P,Q) = f ds [Eq. 3]
b

is an extremum with respect to all curves joining P to Q.

Let
de.® 5 db® dr,? _
(HE = % (HE) - (EE - B )

Then the geodesic curves are extremum curves of the integral

Og A .
Lr w2 dg . [Eq. 4]

O

The geodesic curves then satisfy the Euler-Lagrange equations

1 1

d (3w? dw?
i Gv) -3 = O LR 2
3 1
d ; 1
T (%%_) - g w2 = 0 s [Eq. 6]
where
t
voe = %g [Eq. 7]
v = %§ [Eq. 8]

If we now choose w to be constant along a geodesic (g is then

a linear function of s) the equations for the geodesics

become
d 2
= (cBvo) = vO ¢ %% = 0 [Eq. 9]
57 2
%g = -(vo9) cvec [Eq.107
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Let w=1-p°., Then po=1 is the equation of the characteristic

cone through P. We have

B
(=) =¢® vo -v = 1 -, : [Eq. 11]

If 0<p<1l ds®>0 and the geodesics are timelike. Since w

is constant along a geodesic
s = o Jl- ¢° . [Eq. 12]

Using the notation introduced by Hadamard we set I'(P,Q)=s®(P,Q).
The region {Q: I'(P,Q0) = 0, t<t,}] is called the retrograde
conoid with vertex P. We see from Eq. 12 that it is also
defined by 0 < p <1, t < t,. The region {Q:1(P,0)> 0, t=t, |

is called the direct conoid with vertex P.

In the theory of the Riesz potential a particular coordinate
system for the conoid with vertex P plays an important role.
This is the Riemannian coordinate system with coordinates defined
by

i i s
X = v (0)g, i =0,1, 2, 3 [Eq. 13]
In this coordinate system the geodesics emanating from the point

P appear as straight lines. It is shown by Riesz [Ref. 1] that

AT = 8 + 29 d%“g‘ﬁ [Eq. 147

where A represents the second order Beltrami operator, or space-
time Laplacian, and a 1is the determinant of the metric tensor,

expressed in Riemannian coordinates. We have
a = J® ¢ [Eq. 15]

t x vy =z .

where J = D( 5wl <& J , the Jacobian transformation from
x0 x! x@ x

the original coordinate system to the Riemannian coordinate

system. Expressed in our original coordinates, t, x, y, z,

we have
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= L1 (L D
AT = c(clt)t,-cv (cvT)
= LT - 9V;me- 9l [Eq. 107
_ d inc
ince 22 -
since 36 0 .
Hence, from Eqs. 14 and 16,
domJd
LT = 8 + 26 e [Eq. 17]

From Eq. 9 we see that c¢®v® is constant along a geodesic.

Letting the constant be -c, = -c(P),
dt Co
e - [ Eq. 18]
dr -
a—O- = v rEq. 19—|
dv cz Co . ©
v (o] 1 o]
— = = + e Ea. 2
do o8 vC 2 Vv (C ) [Eq 0]

Moreover, from Eq. 11,

[v(0)]2 = p? [Eq. 217

THE RIESZ POTENTIAL

Following Duff [Ref. 27 we denote by DP the interior of the
retrograde conoid with vertex P. '‘Let S be the intersection
of DP with the initial manifold, t=0, and let DZ be the
part of the conoid cut-off by the initial manifold, i.e. the

intersection of DP with the half-space t> 0. For twice
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differentiable functions u, v, defined on Dg we have by

Green's theorem

j’ (uLv - vLu) dt dx dy dz
pP [Eq. 22]

= 1z

: t--vut)nt + (vyu-uygv) ° n d3}
suck

where CZ is the part of the characteristic cone (T = 0)
cut off by the initial plane t = 0, and (nt,ﬁ) is the

exterior normal to the boundary.

The Riesz potential VQ(P,Q) is defined as a function of

points P,Q, in the Riemannian space of the wave equation

and the complex variable o . It satisfies the relations
v (p,0) = VvE(p,Q) [Eq. 23]
and
lim £(Q) V¥(P,Q) dtdxdydz = f(P) : [Eq. 24]
a=0
pP
s

for any continuous function f. V% is expressed in the form

atk-dy (p,0)

-]
o} _ s
A"/ (P:Q) - Z?__O H(G,,k) P} rEq. 251
where s = s(P,Q) is the geodesic distance between P and Q.

The functions Vk(P,Q) are to be determined from the conditions
23 and 24, while

H(a,k) = q 20Tk-1

T(3a)T3a+k-1) [Eq. 26]
For sufficiently large Recx,Va is an analytic function of «a
and vanishes on Cz . Thus, for those values of ¢, and for
functions u satisfying the vanishing initial conditions of the

Cauchy problem [Eq. 1], we have from Eq. 22
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f uivet2 gpdxdyds = Jr vt 2 tudtdxdydz . [Eq. 27]

pP pP
S S

Equation 27 remains valid for all values a to which analytic
continuation is possible. From Egs. 23 and 24, then, letting

o tend to zero, we obtain for a solution to Eq. 1

u(P) = 1im f v T2 (p,0) £(Q) dt dxdy dz . [Eq. 28]
a=0 op
S

Equation 28 provides a representation of the solution to the
Cauchy problem. Determination of the coefficients Vk(P,Q)

remains.

From the definition given by Eq. 20 and the properties of the

Gamma function we obtain the relations.

H(R,k) = 2(3p+k-2)H(B, k-1) [Eq. 29]

H(B+2,k) = 2B (ip+k-1) H(B,k) g [Eq. 307
Now

L(I‘Bxb) = 1P Ly + ¢LTB+4B I‘B'lo% . [Eq. 31]

[Here we have used Eq.4.5.19 of Duff (Ref. 2).7 Using Eq. 17

this becomes

L(I‘Bw) - PBL¢f4BTB-1 {0%+(5+1+%o%£)¢}.[5q. 327

Operating with L on VB'+2(P,Q), given by Eq. 25, and

using Eq. 32, we have

ko H{a+2,Kk) 2 [Eq. 33]
dv Q
o s domJ k S +k-1
[(2+k+§o P )Vk+o do,]+r ka}
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Using Eg. 29 this becomes

[+]
g T2 1 A donJ
LV 1:@:0 MCET P {(@+2k+0=3=5) V,
Wy L rk-2 [Ea- 34]
+ 20—('1?._—' + kaml} ™=

where we have introduced V (P,Q) = 0. Now choose Vk(P,Q)
so that for k=0,1,2,

dv
donJ k =
(2k + o 1 ) Vv + 2GTO"+LV1<-1 = 0 [Eq. 35]
Then, using Egqs. 29 and 30, we have
&+ k-2
a+2 _ & a Z
kY | E-J:o Ha+2, k=-1) 'kT
[Eq. 36]
e 1 %+k—2
- EO H(a,k) Vi T N VCL

Thus requiring Vk to satisfy Eq. 35 results in Ve satisfying

Eq. 23. We may rewrite Eq. 35 in the form

d k.1 1 5
EC;. (0 J2 Vk) = -5 0 J2 ka—l [Eq' 37]

Choosing V,(0) = ¢,, so that v% will satisfy Eq. 24 [Ref. 1],

we have
-
V,(P,Q) = ¢C, J72 [Eq. 38]
since J=1 at P. For k=1 we set Vk(O) = 0. Then

1 _ - i
v, = -437%, x fgk 1 j2 LV, ; do [Eq. 39]
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APPROXIMATE SOLUTION TO THE CAUCHY PROBLEM

Let us now replace Va-+2(P,Q) by the first term in the series

[Eq. 25] in computing the integral [Eq. 28]. Define

.1

[S]

v. T
~ o
ua(P) = Jﬁ f(Q) Ao 120 dt dx dy dz s [Eq. 40]
pP
s

We consider r;;m{ﬁa(P) to be a first approximation to the
solution to iie (auchy problem. In order to carry out the
integration indicated in Eq. 40 we introduce a coordinate system

for Dg based on the geodesics defined by Eqs. 18, 19, and 20.

With v = (v, v¢, v3) we set
vl1(0) = pcoség cosop
v (0) = pcosp sing [Eq. 41]

v8(0) = psing

Then Eq. 21 is satisfied. The geodesic equations provide a
correspondence between points (t,x,y,z) EDE and (0,p,,0).
This correspondence will not be one-to-one in general. If multi-
paths occur a point (t,x,y,z) may correspond to many points
(0,p5¢,8). However, except at exceptional points (t,x,y,z),
each of the points (o,p,m,e) will have a neighbourhood that

is in one-to-one correspondence with a neighbourhood of
(t,x,y,z). At the exceptional points, called caustic or focal
points, this local one-to-one property will not hold. As a
consequence the Jacobian determinant D(:;: zég) will vanish at

such points.

The geodesic Egs. 18, 19 and 20 uniquely define (t,x,y,z)
as functions of (g,p,®,8). Transforming coordinates in

Eq. 40 we have

y n /2 1 B %-1 ,
u (P) = f dep r dg \Jﬁ dp f dg £(t,x,y,2) V, [0° (1 - p?)] D(?p(c};g
0 -1 0 o
: [Eq. 42]
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where ot, = gto(p,m,e) is the value of ¢ for which the geodesic
curve reaches the initial manifold. This will happen at a finite
value since we assume ¢ is bounded. It is well known that if

F(p,€) is a continuous function for 0<p<l, €20, that

1
dim € [ F(p,€) (1-0)¢ "1 ds = F(1,0) [Eq. 437

0

We will write, for continous g(p),
1
Ig(pm(l-p)dp = e(1) . [Eq. 44]
0

Equation 44 is the definition of the generalized function §(1 -1P).
Since H(a+2,0) ~Y4m/a as o= 0 we can apply Eq. 43 to Eq. 42

to obtain

U(p) = 1lim TIOL(P)
a=0 [Eq. 45]
1 ZPﬂ e "L 2 b
_ 1 o _ Xy z
= J dep JF dg j' dpe j‘ do £V, o 8(1-p) D(o 0 © G)
o _m p 0
2

Note that in the latter equation we have assumed f V, D(:;”;gg) to
be a continuous function of  in a neighbourhood of p=1.

The solution to the Cauchy problem is represented approximately
by Eq. 45. Multipaths cause no problem in this representation,

since they are sorted out by the (g,p,9,8) coordinates.
Letting f represent a point source we set

f(t,x,y,z) = S(t) s(x,y,2) [Eq. 46]

where §(x,y,z) dis the 3-dimensional delta function and S(t) is
the transmitted waveform. Although we cannot, strictly speaking,
use Eq. 46 in Eq. 45 directly because it is not a continuous
function, we could replace the delta function by an approximating
sequence of continuous functions. However, the formal manipulations

are perhaps more clear if we are less rigorous. Thus we introduce
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the generalized function defined by Eq. 46 in Eq. 45. In order
to carry out the integration over the delta functions in Eq. 45
it i1s necessary to revert to (pgx,yyz) as variables of
integration. Since we do not in general have a one-to-one
correspondence between (t,x,y,z) and (g,p,p,8) a point (7,0,0,0)
may be covered by many points (g,p,0,8). We assume there are
finitely many. In addition we assume that the origin is isolated
from caustics of Cz - Each of the points (g,p,m,e) covering
(r,0,0,0) then has a neighbourhood U, that has a one-to-one
mapping onto a neighbourhood v, of (r,0,0,0). Then
w(p) = ? j‘j‘f'l’“ S(t) s(x,y,2) Vg 0_2 (1~ p) D((t;;c};g) dg dp dep dp
]
s [Ba. 47]

- ZlE L\Ur S(t) 8(x,y,2) Vg 0 8(1-p) dtdx dy dz
n

Now, considering t to be a function of (p,x,y,2z) we write

t = t, - T(p,x,y,2) [Eq. 48]

where T may be interpreted as the travel time along the

geodesic emanating from the point P. Then

~ 1 -2 .

u(P) = - - % j‘f‘ff S(ty-T) 8(x,y,2) Vo 0~ 6(1 - p)Tp dp dx dy dz
Va

1 -2 -

=S Z%‘ %) S(to ""T'n) VO On Tp (]—JO,O:O) rE’q" 49J

where 1 is the travel time along the n-th ray from (x,,y,,2,)

to the origin, and On is the corresponding value of g.

From Eqs. 18, 19 and 20 t and r are determined as functions of

(o,p,cp,e)° We write

I

t t(o,p:tpae) [qu 50]

r = F(O,p,cp,e) 'l,-Eq" 51]
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Then

3t 3T a}

po Sty — - - T LIl . E ° 2

30 “ap = ¥ Bp [Eq. 52]
Now | = t%—T(p,x,y,z) is, for fixed p , an integral surface

of the linear partial differential equation

1 2
P ¢t - (v§)® = constant [Eq. 53]

whose characteristic strips are generated by the geodesic
Eqs. 18, 19 and 20. Comparison with Eq. 11 shows that the
constant on the right-hand side of Eq. 53 must be (1 -p%)/c,?

and gy =v/c, . Hence
"
T= = Eq.

cOv Ye) \—q 54—‘
Thus, from Eq. 52

-, B o a3t , ar , ar

Co 3p Cqo 3p + 3p 30
[Eq. 55]
_ 3L 3T .3
C, ap-+ap v

Now, differentiating Eq. 55 with respect to ¢ we have

d _T %t d°r - . ar v

- (- =) = : . Eq. 56

do (-co Bp) o dp d0  3dp d0o v+ 3 30 [Bg: 50]
Let us temporarily write (c,/c)® =g(x,y,z). Then the
geodesic Egs. 18, 19 and 20, become

t

Cy %E = B [Eq. 57]

3V - 1 Eq. 58

ao- 2VB . [q 5]
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From Eq. 11 we obtain

B—-‘-}z = 1—02

or [Eq. 59]
2

‘7 = B -+ °< = 1

Referring again to Eq. 560 we then have

l —_ > b.I. = - i@ + 4 _a_. ve _a_re 1 —
d0 ( S ap) dp 2 dp (v?) + dp (QVB) o
[Eq. 60]
Hence
T .
= @ %E = 55 [Eq. 61]

since the relation clearly is valid for small g. Thus Eq. 49

becomes

A(P) = - 7w DSt =) Vo /(Co o) [Eq. 627

where V is given by Eq. 38.

o]

The Riemann coordinates involved in the definition of J

[Eq. 15] are given in terms of (g,p,w,e) by

x® = =g/c, [Eq. 63]
XL = gsgcos g cosgy [Eq. 64]
X2 = pgcos g sing [Eq. 05]
X3 = pgsing [Eq. 66]
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Then

D(t Xy z-

J = x0 x! x® x8
o= D<thz)/ D x0 x! x° xﬁ)
opwb/ ‘o p ® 6
[Eq. 67]
= -p(7%Y2)  eo/ (5708 cos 0)
_ Xy z Xy 2
- —COTQD(CCDG) /(p2g3 cosp) = Dhjcpej/ (po® cos 8)
Hence, setting P =1,
5
Xy z\
V, = c, g[cos e/D(Gzrpe)T [Eq. 68]
and Eq. 62 becomes
1
A 2
i) = k3 s, - n) [oon0/(CY7) rsa. 697

This is the geometrical acoustics solution in its generalized

form.
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DISCUSSION

The author confirmed that the signal distortion can be obtained

directly if the source function is bounded.

264





