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The method of Riesz [Ref. lJ for the solution of hyperbolic 
partial differential equations is applied to the Cauchy problem 
for the wave equation. It is shown that the first term in the 
Riesz potential function, which is represented in series form, 
yields the geometrical acoustics solution when applied to the 
problem of radiation rrom a point sourc-e. 

THE WAVE EQUATION AND ITS RIEMANNIAN GEOMETRY 

We seek a solution to the partial differential equation 

Lu = = f [Eq. 1 J 

where f is a function of (t, r) E R X ES • For simplicity we 
shall assume vanishing initial conditions, u(O,r) = ut(O,r) = o. 
The local sound speed c is assumed to be a function of 
r = (x,y,z) only. 

Construction of the Riesz potential for the operator L rests 
on the Riemannian geometry associated with the operator. The 
semi-Riemannian metric is given by the differential form 

[Eq. 2 J 
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A displacement for which ds2 > 0 i s called timelike; one fo r 
which ds2 < 0 is called spacel i.ke . Let P: (to' ro) and 
Q: {tl , r l ) be two points of spac e time. A geodesic joining P 

and Q is a curve y : I[t,{o ), r{ o )] : 0..:: 0 ~ 0 0 \ such t ,hat 
[ t{O)"r{O ] - (to, ro), rt, (oo )' r{ o o)] = (tl,rl ), and 

s (p,Q) = J ds [ Eq. 3 ] 
y 

is an extremum with respect to all curves joining P to Q. 
Let 

ds 2 (-) do = = w 

Then the geodesic curves a r e extremum curves of the integral 

SO o 1 
w2 do [ Eq. 4] 

o 

The geodesic curves then satisfy the Euler-Lagrange equations 

1 1 
d ow2 ~ 

do ( ov o ) = 0 
d t [Eq. 5J 

1 
d Qw2 1 

do (av ) - 'Y w2 = 0 [Eq , 6 J 

where 

V o = ot 
00 [Eq 0 7 J 

- .QE. v = 00 [Eq. 8 ] 

If we now choose w to be constant along a geodesic (0 is then 
a linear function of s) the equations for the geodesics 
become 

d (c2 V o ) 
2 .Q.£ 

do = V O c = 0 [Eq. 9J ot 

dv 2 

do = -(vo ) c'Yc [Eq.IO] 
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Let w == 1 - p2. Then p == 1 is the equation of the characteristic 

cone through P o We have 

== [Eq. 11 J 

If O-;;;:p~l ds2 > 0 and the geodesics are timel i k e. Since w 
is constant along a geodesic 

s == (J J1 - 2 
P [ Eq. 12J 

Using the notation introduced by Hadamard we set r(p,Q) == S 2 (p,Q). 
The region ! Q: r (p, Q) ~ 0, t s:: tl \ is c aIled the retrograde 
conoid with vertex P. We see from Eq. 12 that it is also 
defined by 0 ~ P s:: 1, t ~ t l . The region 
is called the direct conoid with ver tex P. 

\ Q : r (p ,Q) :? 0, t ~ tl \ 

In the theory of the Riesz potential a par ticular coordinate 
system for the conoid with vertex P plays an important ro1eo 
This is the Riemannian coordinate system with coordinates defined 
by 

1 == 0, 1, 2, 3 [ Eq. 13 J 

In this coordinate system the geodesics emanating from the point 
P appear as straight lines. It is shown by Riesz [Ref. l J that 

8 + 2 (J d 2;n ,Ja 
d (J [Eq. 14J 

where 6. represents the second order Beltrami ope r ator, or spac e-
time Laplacian, and a is the determinant of the metric tensor, 
expressed in Riemannian coordinates. We have 

[Eq. l5 J 

where J - D (t x. Y Z) the Jacobian transformation from 
- xO X l X2 x 3 

the original coordinate system to the Riemannian coordinate 
system. Expressed in our original coordinates, t, x, y, z, 
we have 
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6I' 1 ( ~ I't) t 1 (c'VI') = - - - 'V . 
c c 

= LI' - 'V em c . 'VI' 

= LI' + 20' d .0n. c -d(J 

since oC = 0 ot 

Hence, from Eqs. 14 and 16, 

LI' 8 + 20 d em J = dO 

From Eq. 9 we see that c 2 V O is constant along a geodesic. 
Letting the constant be - Co = - c (p) , 

dt 
d o 

dt:: 
d O' 

dv 
d O' 

Moreover, 

= 

= 

= 

from 

Cv (0)]2 

-V 

2 
Co 
7 

Eq. 

= 

THE RIESZ POTENTIAL 

2 

'VC 1 (~) = "2 'V c 

11, 

p 2 

[Eq. 1 6 J 

'Eq. l7J 

I. Eq. l8J 

rEq. 19l 

I.Eq. 2ll 

Following Duff ,Ref. 2J we denote by DP the interior of the 
retrograde conoid with vertex P. ' Let S be th~ intersection 
of DP with the initial manifold, t = 0, and let DP be the s 
part of the conoid cut-off by the initial manifold, i.e. the 
intersection of DP with the half-space t> O. For twice 
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differentiable functions u, v, defined on 
Green's theorem 

f (uLv-vLu)dtdxdydz 
nP 

s 

= f 
SUCP 

s 

DP we have by s 

where cP is the part of the characteristic cone (r = 0) s 
cut off by the initial plane t = 0, and (nt,n) is the 
exteri or normal to the boundary. 

The Riesz potential VU(p,Q) is defined as a function of 
points P,Q, in t h e Riemannian space of the wave equation 
and the complex variable u . It satisfies the relations 

and 

lim I f(Q) VU(p,Q) dt dx dy dz = f(P) 
a=tO 

DP 
s 

CEq. 22J 

[Eq. 23J 

[Eq. 24 J 

for any continuous function f. Va is expressed in the form 

00 a + 2k - 4V (p Q) 
s k ' 

H( a ,k) [Eq. 25J = "0 
k=O 

where s = s(p,Q) is the geodesic distance between P and Q. 
The functions Vk(p,Q) are to be determined from the conditions 
23 and 24, while 

H(o:, k) = r(!a) r(!a+k-l) [Eq. 26] 

For sufficiently large Rea, Va is an analytic function of a 
and vanishes on Cp . Thus, for those values of a, and for s 
functions u satisfying the vanishing initial conditions of the 
Cauchy problem [Eq. lJ, we have from Eq. 22 
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f u L y JJ, + 2 dt d x dy dz = 

DP 
s 

r 0,+2 Y Lu dt dx dy dz 
J 
DP 

s 

[Eq. 2 7 J 

Equation 27 remains valid for all values a to which analytic 
continuation is p ossible. From Eqs. 23 and 24, then, letting 
a tend to z ero, we obtain for a solution to Eq. 1 

u{p) = lim 
0,"'0 

J y o, + 2 (p, Q) f (Q) dt dx dy dz 

DP 
s 

[Eq. 28 J 

Equation 28 provides a representation of the solution to the 
Cauchy problem. Determination of the coefficients Yk{P,Q) 
remains. 

F rom the de f inition given b y Eq . 26 and the p r operties o f the 
Gamm a function WA o bt ain t h e r e l ations. 

H{ (j ,k) = 2{!\3+k-2)H{ (j , k-1) [ Eq. 29J 

H{\3 + 2, k) = 2 \3 (! \3+ k -1) H{ (j ,k) I~ Eq. 30 l 

Now 

= [Eq. 31J 

[Here we have used Eq.4.5.19 of Duff (Ref. 2).J Using Eq. 17 
this becomes 

= r\3 L ~ + 4\3r\3-l 1°* + (\3 +l+ -~o dtJ) ~ I. [ Eq. 32J 

Operating with L on y i3 + 2 (p, Q) , 
using Eq. 32, we have 

given by Eq. 25, and 

Lya + 2 
co 

= 6 1 
k=O H (a + 2, k) 

a 14 (I + k - 1) r -Z + k-2 
[Eq. 33J 

[ ( 9:. + k + 1. d 0n J ) Y + dY k J + r ~ + k - 1 L Y 
2 2° do k ° d o k 
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Using Eq . 29 this b ecomes 

.-. 6 
k ==O 

.1 

0, 
l r 7 +k-2 + LVk _1 ! 

[Eq. 34J 

where W8 have introduced V_1(p,Q) = O. Now choose Vk(p , Q) 
so that for k = 0,1,2, 

Then, using Eq s . 29 and 30 , we have 

LV 0, + 2 

~ 9:.+k-2 
== 6 1 V r 2 

k=O H( o" k) k 
V 

0, 

[Eq. 35J 

[Eq. 36J 

Thus requjr1ng Vk to satisfy Eq. 35 results in vo, satisfying 
Eq. 23. We may rewrite Eq. 35 in the form 

= 
1 

1 k-l J2 LV 
- "2 () k-l [ Eq. 37J 

Choosing Vo(O) == co' so that vo, will satisfy Eq. 24 [Ref. 1], 
we have 

1 
Vo (p,Q) = Co J-2 [Eq. 38J 

since J=l at P . For k >-l we set Vk (0) = O. Then 

1 -k f ()k-1 
1 

Vk 
1 - - J2 LVk _1 d () [Eq. 39J = -"2 J 2 () 

0 
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APPROXIMATE SOLUTION TO THE CAUCHY PROBLEM 

Let us now replace Va + 2 (p , Q) by the first term in the s eries 
[Eq. 25J in computing t h e integr al [ Eq. 28J. Define 

N 

9-. - 1 
V r 2 o 

U (p) a J f(Q) H(a+2 , 0) dt dx dy d z [ Eq. 40J 

DP 
s 

We consider ('llIlh ua (p) to be a fi r st approximation to the 
solution to i fit : (. auchy p r oblem. In order to carry out the 
integration indic at e d in Eq . 40 we introduce a coordinate system 
for DP based on the geodesics defined by Eqs . 18, 19, and 20. s 
With - (v1 , v2 v 3 ) s et v = we , 

v 1 (0) = p cos e cos cp 
y2 (0) = p co s e sin cp [ Eq. 4lJ 

v 3 (0) = p sin e 

Then Eq. 21 is satisfied. The geodesic equations provide a 
correspondence between points (t,x,y,z) E D~ and (o ,p,cp, e ). 
This correspondence will not be one-to-one in general. If multi-
paths occur a point (t,x,y,z) may correspond to ma n y po i n t s 
(0 ,p,cp,8). However, except at exceptional points (t,x,y,z), 
each of the points (o,p,cp,S) will have a neighbourhood that 
is in one-to-one correspondence with a neighbourhood of 
(t,x,y,z). At the exceptional points, called caustic or focal 
points, thi s 10 a lone-to-one property will not hold. As a 

th J b . d t . t D (t x y Z) Wl' 11 vanl' sh at consequence e aco lan e ermlnan ° p cp e 
such points. 

The geodesic Eqs. 18, 19 and 20 uniquely define (t,x,y,z) 
as functions of (o,p,cp,S). Transforming coordinates in 
Eq. 40 we have 

'V 
U (p) a 

~iT iT / 2 
= J dcp S de 

o - I!, 
2 

1 
r d p J 
o 

9:._1 
d f (t ) V [ 02 (1 _ 2 ) J 2 DCtxyZ) ° ,x,y,z 0 p o pcpe 

[Eq. 42J 
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where Oto = oto (p,cp,e) is the value of 0 for which the geodesic 
curve reaches the initial manifold. This will happen at a f i nite 
value since we assume c is bounded. It is well known that if 
F (p, E) is a continuous funct i on for 0 ~ p ~ 1, E ::z 0, that 

1 E 1 
E'-~~ E f F(p,E) (l-p) - dp = F(l,O) [Eq. 43J 

o 

We will write, for continous g(p), 

1 
Jg(p)o(l-p)dp = gel) [Eq. 44J 
o 

Equation 44 is the definition of the generalized function o(l-P). 
Since H (a + 2, 0) ""411/ a as 0. -+ 0 we can apply Eq. 43 to Eq. 42 
to obtain 

~(p) = lim ~ (p) 
a =t 0 a [ Eq. 45 J 

211 11 / 2 1 ° t 
1 r r 0 2 

0(1- )DCtxyZ) dcp d e J d P f d o f Vo -= 
411 0 J p o p cp e J 

0 _Ti 0 0 
'Z 

Note that in the latter equation we have assumed f V 0 D(t x y Ze) to 
o pcp 

be a continuous function of p ln a neighbourhood of p = 1 . 

The solution to the Cauchy problem is represented approximately 
by Eq. 45. Multipaths cause no problem in this representation, 
since they are sorted out by the (o,p,cp,e) coordinates. 

Letting f represent a point source we set 

f(t,x,y,z) = Set) o(x,y,z) [Eq. 46 J 

where o(x,y,z) is the 3-dimensional delta function and Set) is 
the transmitted waveform. Although we cannot, strictly s peaking, 
use Eq. 46 in Eq. 45 directly because it is not a continuous 
function, we could replace the delta function by an approximating 
sequence of continuous functions. However, the formal manipulations 
are perhaps more clear if we are less rigorous. Thus we introduce 
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the generalized function defined by Eq. 46 i n Eq . 45. In order 
to carry out t;he integrat;ion over the delta functi.ons in Eq o 45 
i.t i.s necessary t o revert to (p , x,y , z) as variables of 
integration. 8ince we do n o t in general have a one-to - one 
corres pondence between (t ,x ,y , z) and (o,p,~,e) a point (~,O,O,O) 

may be covered by many points (o,p , ~,9) . We assume there are 
f ini t ,ely many. In addition we assu..rne t hat t ·h e origi n is isolated 
from caustics of Cp . Each of the points s covering 
( ~,O,O,O ) then h as a neighbourhood U n that has a one- to - one 
mapping onto a neighbourhood V of n ( ~, O,O,O)o Then 

li(p) = ~ J SSJ 2 D t x Y Z) 8 ( t) 0 (x, y , z) V ° 0 - 6 (1 ~ p ) ( d o d P dcp de o p cp e 

1 -- 4n 

u n 

J f S J 8 ( t) 6 (x, y, z) Vo 0 _2 6 (1 - p) dt dx dy dz 

Vn 

[Eqo 47J 

Now, considering t to be a funct,ion of (p , x, y , z) we write 

t - to - T(p,x,y,z) 

where T may be interpreted as the travel time along the 
geodesic emanating from the point P . Then 

~(p) = 1 
411 6 

n 
S J f f 8 (to ~ T) 0 (x , y, z) Vo 0 _ 2 0 (1 ~ p) T P dp dx dy dz 

V I 

= 
1 
4ii 

n 

2 

6 8 (to - ~ ) V 0 on T (1 , 0,0,0) n n p rEq o 49 J 

where ~n is the travel time along the n - th ray from (xo,yo,zo) 
to the origin, and a n is the corresponding value of o. 

From Eqs. 18, 19 and 20 
(o,p,~, e ). We write 

t = t(o,p,Cj),e) 

-t and r 
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[ Eq o 50J 

[Eq. 51 J 



Then 

at = _.Q! _ 'V T . .QE. 
op ap op ~ Eq. 52 J 

Now ~ = t + T(p, x,y ,z) is, for fixed p, an integral surface 

of the linear part ial differential equation 

1 2 
~ ~ t - (\I~ ) 2 = constant [Eq. 53J 

whose characteristic strips are generated by the geodesic 
Eqs. 1 8, 19 and 20. Comparison with Eq. 11 shows that the 
constant on the right-hand side of Eq. 53 must be (1 - p2 ) / Co 2 

and \I~ = v / Co . Hence 

Co \IT = 
or 
00 

Thus, from Eq. 52 

-.Q! at - Co = Co + .a£ . .Q!: 
ap ap ap 00 

at + a r . -= Co v op op 

Now, differentiating Eq. 55 with respect to 0 we have 

;v + .aE: • Ov 
00 00 

Let us temporarily write (C O /C) 2 = l3(x,y,z). Then the 

geodesic Eqs. 18, 19 and 20, become 

= 

= 1 2" \1 13 

i Eq. 541 

[Eq. 55J 

[ Eq. 56J 

CEq. 57J 

[Eq. 58 J 



From Eq . 11 we obtain 

or 

Referring again to Eq. 56 we then have 

= 

Hence 

= po 

.Qii+ op 1 ..Q... C:y2 ) + 0 r • ( 0_1 'V R) 
"2 op op I-' 

[Eq. 59 J 

P 
[Eq. 60 J 

[Eq. 61J 

since the relation clearly is valid for small o. Thus Eq. 49 
becomes 

'U:Cp) 

where Vo is given by Eq. 38. 

The Riemann coordinates involved in the definition of J 

[Eq. l5J are given in terms of (o,p,~, 8) by 

= 

Xl = po cos 8 cos ~ 

X 2 po cos e sin cp 

= po sin e 
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[Eq. 63J 

[Eq. 64J 

[Eq. 65J 

[Eq. 66J 



Then 

J = 

= D ( t x y Z) I D (XO Xl ~ X3) 
opcp9 1 \ 0 pcp e 

Hence, setting P = 1 , 

= 

and Eq. 62 becomes 

\1(p) = 1 
4n 

[ Eq . 67J 

= D(X Y e'L, )1 (p 02 cos e) 
o Cp 

[ Eq. 68J 

[ Eq. 69J 

This is the geometrical acoustics solution in its generalize d 
form. 
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DISCUSSION 

The author confirmed that the signal distortion can be obtained 
directly i f the source function is bounded. 




