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Deconvolut ion by homomorphic  a n d  
W i e n e r  Altering 

P. Nicolas 

Execut ive  Summary :  The demand for more sensitive perception of sub- 
marine signals buried within ocean noise requires statistical methods of 
analysis. A statistical sonar theory is concerned with the development of 
probability models for signals, interferences, and underwater experiment 
conditions, and based on these models the development of methods for the 
detection, identification, and classification of submarines. 

Studies dealing with propagation in shallow water generally model the re- 
ceived signal as  a convolution between a transmitted pulse (or wavelet) and 
the medium response. In this final report of one such study the principal 
aim is to extract more information on the medium - such as backscattering 
effects and multipath structure from a signal received on a point receiver or 
an array at  a lower signal-to-noise ratio - than has been achieved previously. 
This clearly could have a direct impact on future sonar systems. 

The principal advantage of the so-called method is that it does not require 
the usual assumption of minimum phase signals (or that all signals have a 
well-behaved phase structure) and is therefore capable of coping with more 
realistic propagation conditions where, in general, the various signal arrivals 
have a complex mixed-phase structure. 

The performance of the method is demonstrated using both simulated and 
real at-sea data. With the simulated data, deconvolution of the wavelet can 
be achieved down to a signal-to-noise ratio of -5 dB, while the multipaths 
are well separated at a signal-to-noise ratio of 5 dB. Using an explosive 
source and a vertical array receiver a t  sea one can separate the very close 
reflected and refracted paths near the surface in the order of 1 or 2 ms. 
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Deconvolut ion b y  homomorphic  a n d  
Wiene r  Altering 

P. Nicolas 

Abs t rac t :  This study is concerned with deconvolution methods applied 
to underwater propagation in shallow water, whereby the received signal is 
modelled as the convolution between the transmitted pulse and the medium 
impulse response. The aim of the method is to extract information on 
backscattering, travel time delays, boundary reflection and refraction from 
the received signal on a point receiver or an array for both seismic and 
active sonar data. Since experimental data are generally mixed phase, due 
in part to the multiple reflections (bottom and surface), the conventional 
linear filtering which assumes the minimum phase property, loses in efficacy. 
In order to handle this mixed phase characteristic of the data, we proceed 
in two steps. We first apply a homomorphic filter (complex cepstrum) to 
deconvolve the wavelet. Then we deconvolve the medium impulse response 
by means of Wiener Alter. The efficacy of the method is shown on both 
simulated and real data for explosive and active sonar data. 

Keywords: active sonar o backscattering o bottom reflection o 
boundary reflection o complex cepstrum o deconvolution o 
homomorphic filtering o linear filtering o low frequency o propagation 
o receiver o refraction o seismic data o shallow water o surface 

reflection o towed array o travel time delay o wavelet o Wiener filtering 
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1. Introduction 

In many fields of physics, such as geophysics, seismics and sonar, we are faced with 
problems of deconvolution. The observed signal received from a sensor in these 
fields is often considered to be formed by the convolution of the transmitted signal 
with the propagation medium impulse response. The goal of deconvolution filter- 
ing is to recover the medium impulse response from the recorded signal. Different 
methods have evolved according to the type of a priori information included in the 
signal modelling. If the transmitted signal is known exactly, Wiener filtering is con- 
ventionally applied under the assumption of minimum-phase signals1 [l-31. If the 
source signal is not known exactly (which is the case for an explosive) but can be 
modelled by a parametric transfer function, linear prediction methods can be used 
with success [4-61. However these methods require the minimum phase condition. 
In real life the received signal is generally mixed-phase which is the case for seismic 
data. When considering this real constraint, another approach is non-linear filter- 
ing based on the generalized superposition principle proposed by Oppenheim and 
called homomorphic deconvolution [i']. This is based on the separation of the so- 
called wavelet and the medium impulse response in the cepstral domain [8,9]. Here 
we present a method which combines linear and non-linear filtering [lCI]. The aim 
of this method is to extract information on backscattering, travel- time delays, and 
boundary reflection and refraction from the received signal at a point receiver or an 
array-for both seismic and active sonar data. Since no assumption of minimum 
phase is made, we first apply a homomorphic technique (complex cepstrum) in order 
to deconvolve the wavelet .2  The deconvolved wavelet is then taken as the known 
signal, and we estimate the boundary reflections and travel time-delays by means of 
Wiener filtering. 

The report is structured as follows: first, we define the wavelet and the modelling 
of the medium behaviour; second, we advance the concept of homomorphic de- 
convolution and its mathematical formulation; third, we apply Wiener filtering to 
the recovery of boundary reflection and propagation time-delays; fourth we propose 
an improvment of the deconvolution method based on a combination of homomor- 
phic deconvolution and Wiener filtering; and fifth the application to seismic and 
active sonar experiments is illustrated. We present results obtained on both simu- 
lated and field-recorded marine seismic data and active sonar data. We point out 
how the method can be used succesfdly in active sonar to analyse backscattering 
statistics. The important notion of minimum-phase signals, phase unwrapping and 
mathematical investigation of the complex cepstrum through models are expanded 
in appendices. 

The term 'minimum-phase signal' is defined in Appendix A. 
The term wavelet was introduced by among other people, Triboiet [ll], and is defined and 
explained in the first part of the present report. 
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2. Definition of the  wavelet 

This section is devoted to the definition of the wavelet. It will be shown later that 
the wavelet contains information on the probability characteristics of reverberation 
and propagation conditions. The study of the statistical features of reverberation 
presents two points of specific interest: one is the properties of reverberation as 
sonar interference; the other is reverberation as a phenomenon which helps us to 
estimate the properties of the water medium and its boundaries. Reverberation 
can be classified into three types: volume reverberation, reverberation from a layer; 
and reverberation from a boundary. A propagation signal can originate from an 
explosion or can be a controlled pulse transmitted from a point source and received 
on an array of hydrophones (here a vertical array). As it propagates through the 
medium it follows three paths: the direct path; the surface reflected path; and the 
bottom-layer reflected path. Figure 1 represents the case of a source and an array 
closer to the surface as opposed than in Fig. 2, which shows a source and an array 
closer to the bottom. These figures present a simplified propagation model and do 
not take into account the ghosts and multiple arrivals; in a more realistic model 
these can be removed by adaptive linear filtering [12]. 

The backscatterings at the sea surface and at the layer boundary are defined respec- 
tively by the impulse response functions h,(t) and hl(t). The medium propagation 
is defined by the impulse response hm(t). These three impulse responses are ran- 
dom processes. In the first case (Fig. l), the received signal is dominated by the 
direct arrival and the surface-reflected arrival. The layer-bottom reflected arrival 
comes much later and is therefore not included. Assuming that the medium and the 
surface boundary act as linear filters, the signal yl (t)-composed of the direct and 
surface-reflected paths-is given in the time interval [O,T] by 

where z(t) is the transmitted signal and 7, the propagation time-delay along the 
surface path. In the second case (Fig. 2) and under the same assumption, the signal 
y2(t)-composed of the direct and bottom-layer reflected arrivals-is given, in the 
time interval [O,T] , by 

where 71 is the propagation time-delay along the bottom-layer path. 

Because the impulse responses hm(t), hl(t) and h,(t) are random processes, yl(t) 
and y2(t) defined on [O,T] are to be considered as particular realizations of random 
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signals. By taking the fourier transform of both sides of (1) and (2), we have 

where Yl ( f )  and Y2 ( f )  are particular realizations of the spectrum of the signals yl (t)  
and y2 (t)  respectively. Both of the equations (3) and (4) can be factored in two ways 

By definition, the wavelet is given, with respect to the factored expression by 

Hm(f )X(f  (first factored expression) 
H,(f)H,(f)X(f) (secondfactoredexpression), 

Hm(f ) X ( f )  (first factored expression) 
H, ( f )  Hl( f )X ( f )  (second factored expression). 

Depending on the factored expression, the wavelet contains information on only 
medium propagation or on both medium propagation and boundary backscattering. 
In order to separate the wavelet from the other components, we can take the complex 
logarithm of ( f )  and Y2( f ) .  If the surface impulse response is minimum phase 
(definition and details on minimum-phase signals are given in Appendix A), the 
modulus of H,(f) is less than unity and one uses the first factored expression. 

If the surface impulse response is not minimum phase, the module of H,( f )  is greater 
than unity and the second factored expression is used: 

1 
log y1 ( f )  = log ~ , ( f )  log ~ ~ ( f ) ~ ( f ) e - j ~ " f ~ *  [I + r n e j 2 1 f 7 *  l 
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We can do the same for the bottom-layer reflected path. Then, by using an appro- 
priate filter and suppressing the linear phase component when the impulse response 
is not minimum phase, we can extract the wavelet from the received signal. In fact, 
instead of filtering the signal in the frequency domain, we filter the inverse fourier 
transform of the complex logarithm, which is the complex cepstrum by definition 
(see Sect. 3). 

In brief, the wavelet is an artificial transmitted signal in the sense that it represents 
the transmitted signal modified by the propagation and backscattering characteris- 
tics. Depending on the boundary properties, the wavelet carries more information or 
less information (minimum or not minimum phase property). By extracting the im- 
pulse response functions h, ( t  ) , h,(t ) and hl(t), we improve the modelling of medium 
propagation and backscat tering statistics which can be compared to existing theo- 
retical models. 
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3. Homomorphic deconvolution 

3 .1 .  HOMOMORPHIC SYSTEMS 

In reverberation we are faced with the problem of filtering signals that have been 
combined by convolution. It would be avantageous to transform these non-linear 
systems into linear systems by applying the appropriate filtering. This leads to 
systems which obey the 'generalized principle of superposition'. Given two inputs 
let us assume that they are related together by a rule o. If S is a scalar let : be 
a rule to combine S with any of the two inputs. Similarly, we denote o the rule to 
combine the outputs together and a a rule to combine a scalar with an output. If 
H is the system transformation, we state: 

The systems that verify the two preceding equations are said to obey a 'generalized 
principle of superposition' [ g ] .  It can be shown that if the system inputs constitute a 
vector space with the operations o and : corresponding to vector addition and scalar 
multiplication and the system outputs constitute a vector space with the operation o 
and a corresponding to vector addition and scalar multiplication, then all systems of 
this kind can be represented as a cascade of three systems referred as the 'canonical 
representation of homomorphic systems', shown in Fig. 3. 

The first system D ,  has the following property: 

Do[x l  ( t )  o xz ( t ) ]  = D,[xl ( t ) ]  + D 0 [ ~ 2 ( t ) l  = 5 1  ( t )  5 2 ( t ) ,  
D,[s  : x l ( t ) ]  = s D , [ x l ( t ) ]  = s h ( t ) .  

The effect of the system D ,  is to transform the signals x l ( t )  and x 2 ( t )  according to 
the rule o into a conventional linear combination of corresponding signals D,[xl ( t ) ]  
and D , [ x z ( t ) ] .  The system L is a linear system: 

The system D;' transforms from addition to the rule o: 

o i l [ Y l ( t )  + Y2(t)]  = D o 1  [di  ( t ) ]  0 [ i 2 ( t ) ]  = yl ( t )  o y 2 ( t ) ,  

D , l [ s ~ i ( t ) ]  = S D , ' [ # I ( ~ ) ]  = s  y l ( t ) .  
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All the homomorphic systems with the same input and the same output differ only 
in the linear part. Consequently, by choosing the transformations D, and D, we 
are left with a linear problem. 

We are going to apply these results to convolved inputs signals. The rule o becomes 
the convolution *. We choose the output rule o to be equal to the input rule and 
therefore o is also equal to the convolution *. The canonical representation of an 
homomorphic deconvolution system is shown in Fig. 4. 

3.2. COMPLEX CEPSTRUM 

3.2.1. Mathematical representation of the system D, and definition of the complex 
cepstrum 
The system D, is defined by the property that the t- transform (or the fourier trans- 
form on the unit circle) of its output is equal to the complex logarithm of the 
t-transform (or the fourier transform on the unit circle) of its input: 

where x(n) is the nth sample of z(t). According to this definition, the characteristic 
system D, of the homomorphic deconvolution is as shown in Fig. 5. 

The output of the system D,, denoted $(n), is called the complex cepstrum of the 
input signal x(n). This terminology is used by analogy to the power cepstrum defined 
by Bogert, Healy and Tukey. Specifically, the cepstrum of a signal was defined as 
the power spectrum of the logarithm of the power spectrum. 

Remark These quantities are not too far from each other, because the power 
cepstrum is proportional to the even part of the complex cepstrum. 

B 3.2.2. Definition of the complex logarithm 
In this section the complex logarithm chosen as the homomorphic system D, is 
defined. One first sets the definition of the logarithm and then considers more 
particularly the phase unwrapping problem. Its prevalent role and the critical points 
of the different phase unwrapping methods are pointed out. To finish, some examples 
of phase unwrapping are given. 

m 3.2.2a. Definition 
Let be z(n)  a real sequence and X(%) its z-transform, one wants to define the 
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logarithm of X (2).  The complex logarithm is a 'multi-valued function' and therefore 
one must choose a determination for which the logarithm is a continuous function. 
Usually one takes the 'principal value determination' defined by 

where Arg[X(z)] E ( -AT, +R).  

All the other determinations are obtained by adding a multiple of 27r to Arg[X(z)]. 
In our case the sequence x(n) is a convolution of two sequences, xl(n) and x2(n): 

The principal value of the logarithm of the product of complex sequences is not 
always the sum of the principal value of each of the signals. This is in contradic- 
tion with the unicity of the homomorphic system D,, and means that the complex 
logarithm cannot be defined from the principal determination alone. Besides given 
properties of the sequences x(n) one needs another definition of the complex loga- 
rithm. 

The complex logarithm will be defined from its derivative. If one assumes a single- 
value differentiable complex logarithm (principal value) and the analyticity of X(z) 
one can derive the phase as follows: 

The evaluation of the complex logarithm on the unit circle z = ejw is performed in 
the following manner: 

d - 1 dz(e jw)  -X(z) = - - 1 dX(ejw) L -- 
dz jz  dw X(ejw) dw jz '  

Given 2 ( e j w )  = RR(eJw) + jZI(ejw), we have 

where the prime indicates the differentiation with respect to W.  
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Hence, 
x ' (e jw)  - [x,(ejw) + jx ; (e jW)][x~(ejw)  - jxI(ejW)] - 
X (ejw ) IX(ejw)12 , 

Since 

we have 

Property of the phase derivative: The phase derivative is an even function of 
W since x(t) is a real function. 

Proof: 
x(erw)  = x(t)e-jWt dt = xR(ejw) + jxI(efW) 

and hence, 
X R ( ~  -jW) = xR(ejW), = - X ~ ( ~ ~ W ) ,  

x;(e-jw) = -xk(ejw), x;(e-jw) = x;(ejw), 

and 
d d - arg[x(ejW)] = - arg[x(e-jw)]. dw dw 

Assumption: both X(%) and z ( z )  are analytic in a region included the unit circle 
X(%) and g(%) have no singularities on the unit circle. Consequently the functions 
xr(ejw ), xR(ejw ), x;(ejw) and x;(ejw) are analytic and the phase derivative is 
analytic in the convergence domain of X( r )  and g (*) .  Let us recall the following 
theorem: 
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Theorem: Let R be a continuum of the complex plane and f a continuous function 
on R. The necessary and sufficient condition for the function f to have a primitive 
is that the integral 

P 

is null for any contour C included in 0. Under this condition all the primitives F(%) 
are obtained by the formula 

where zo is a point of R and K and arbitrary complex constant. f (u)  du is the 
integral of f on any path of R, starting from the point zo and joining the point z. 

As d/dzX(z) is analytic in the convergence domain of X(z) and z ( z ) ,  we have 
according to the Cauchy theorem, 

on any contour C included in the convergence domain. According to previous results 
the phase is defined without any ambiguity on the unit circle to within an integration 
constant : 

" d 
arg[x(ejW)] = 1 arg[x(ejw)] du + K. 

The constant K is evaluated in the following way: the complex logarithm must fullill 
the requirement, given two sequences xl (n) and x2(n), 

log Xl (ejw)x2(ejw ) = log Xl (ej") + log X) (ejw ) 

which is equivalent to 

log [Xl ( e jw)~2(e jw)  l + j arg[Xl (ejw)x2 (ejw )l 

= log 1xl (ejw ) l + j arg[xl (ejw )l + log 1x2 (ej") l + j a r g [ ~ 2  (ejw )l. 

One must have arg[Xl (ejw)x2(ejw)] = arg[Xl (ejw )l + arg[X2 (ejw )l,  or 

To have this equality verified for any sequences xl(n) and x2(n), the constants 
K1, K2 and K12 must vanish. To have the constant K = 0 means arg[X(ejw)l,,o] = 

+m 0; but X(ejW)I,=~ = C,=-, z(n), and so a r g [ ~ i z - o o  x(n)] = 0. 
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3.2.2b. Properties of the phase arg[X(ejw)] and requirements for the signal x(n) 
The determination of the constant K leads to a specific property for the sequence 
x(n): the dc component (polarity) must be positive. 

And the phase has the following properties: 

(1) arg[X(ejw)] is an odd function of W such that 

(2) arg[x(ejw)] is a continuous function of W, 

(3) a r g [ ~  (ej") l = d/dw a r g [ ~  (ejw)] do  = 0 because arg[X(ejw)] is peri- 
odic in W with a period 27r and is an odd function of W. 

Since the phase derivative is an even function of W ,  we have 

And so. 
J r  d a r g x ( e j W )  dw = - 1' $ arg x(e jw)  dw, 

27r -, dw A 

and the previous requirement, for W = 7r, leads to a second property of the sequence 
~ ( n ) :  z(n) must have a zero-mean phase derivative. 

Conclusion: On the space of the sequences z(n) with a positive dc component (po- 
larity) and zero-mean phase derivative, the complex logarithm defines an invertible 
homomorphic system. 

m 3.2.3. Phase unwrapping 

3.2.38. Principle 
The phase unwrapping involves computing a continuous phase from the set of princi- 
pal phase samples. Various techniques have been developed. A basic one is Sehafer's 
Algorithm, which is based on the the following: 
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(1) whenever a jump -27r is detected while unwrapping along the positive w-axis 
a constant 27r is added to the principal value at that point, and 

(2) whenever a jump of 27r is detected while unwrapping along the positive w-axis 
a constant -27r is added to the principal value at that point, with a 'jump' 
defined as the difference between a new principal value and an old one. 

A jump has a threshold defined in terms of the difference between the two principal 
values at adjacent frequencies; below this threshold the jump does not exist. This 
implies a frequency sampling fine enough to set the difference in the principal values 
of two adjacent samples be detected as a jump. However although this algorithm is 
simple to implement it does not provide accurate results in the case of a sharp phase 
curve, since there is only principal value phase information and this is not sdc ien t .  

To overcome this, we have completed the phase unwrapping by a modified Tribolet 
Algorithm, which takes into account the information in the first derivative of the 
phase. Let us recall briefly the principle of the Tribolet Algorithm [l l]. 

One calculates the phase at the frequency w from the mean of the integral 

" d  
argx(ejw ) = 1 arg x (e jW)  dw. 

This integral is approximated by the trapezoidal rule. Assuming that the phase is 
known at the frequency wi, one estimates the phase at the frequency wi+l (wi+1 > wi) 
by 

where Aw = wi+l - wi. 

A phase estimate is called consistent if 

The idea of the algorithm is to adapt the step size Aw until the phase estimate be- 
comes consistent. The algorithm requires a second threshold THLD2 in order to con- 
trol the phase increase between two consecutive frequency samples. The unwrapped 
phase aTgx(ejwi+l) at frequency f is used to estimate the phase at frequency wi+z 
and so on. One recalls that the phase derivative is given by 

d x;(ejw)xR(ejw) - xIp(ejw)x1(ejw) - arg X(eJW) = IX(ejw)12 dw 
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Thus it can be computed very fast using the FFT according that 

xk(eJw)  + jx;(ejw) = - jFFT[nz(n)]. 

This algorithm works well as long as the spectrum does not have any zeros close to 
the unit circle. In this case the phase derivative given by the previous relationship 
and computed by FFT has singularities and presents big spikes. Thus the phase 
increase is no larger controlled. To improve the Tribolet algorithm, an idea has 
been suggested by [13]. It consists of fitting a curve to the phase derivatives before 
performing the numerical integration: one fits cubic splines S(w), having continuous 
first and second derivatives, to the phase derivative. The phase is then given by 

or, according to [l41 

where 

This can be also computed by FFT as 

d2 - arg X(eJW) = 
1 

d2w IX(ejw)14 [ ~ ~ ( e j ~ ) l ' ( x , ( e j ~ ) x ; ' ( e ' - )  

and 
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m 3.2.3b. Examples ofphase unwrapping 

(a) First example 

Let y(n) be a time series which is the convolution of two time series: w(n) which is 
a CW pulse windowed by a Hanning window and r(n)  given by 

The following processing is applied to the time series y(n): 

( l )  compute the spectrum of y(n) by FFT; 

(2) band-pass filter the spectrum around the CW pulse frequency; 

(3) apply the band-pass mapping system; 

(4) compute the first and second derivatives of the shifted and stretched spec- 
trum; 

(5) compute the unwrapped phase. 

y(n) is a 256 time-sample. series. The normalized CW frequency is 0.25 and the 
Hanning window length is 64 time-samples. The time series ~ ( n )  is given by 

The band-pass mapping is defined as in Subsubsect. 3.2.6: 

{:[e(jw)] # 0, for wl < lwl < w2, 
y[e( jW)]= ~ ~ [ e ( j " ) ] # O ,  for lwl=wl,w2, 

otherwise. 

The spectra of w(n),r(n) and y(n) after band-pass mapping are depicted in Figs. 9, 
10 and 11 respectively. The phases of w(n),r(n) and y(n), before unwrapping, are 
represented in Figs. 12, 13 and 14. The first and second derivatives of the CW pulse 
phase are represented in Figs. 15 and 16. The first and second derivatives of the 
medium response phase are represented in Figs. 17 and 18. The first and second 
derivatives of the received signal phase are depicted in Figs. 19 and 20 respectively. 
The unwrapped phase of the wavelet, the medium response, and the received signal 
before removal of the linear phase, are represented in Figs. 21,22 and 23 respectively. 
The unwrapped phase of the wavelet, the medium response, and the received signal 
after removal of the linear phase, are represented in Figs. 24,25 and 26 respectively. 

Remark The band-pass mapping introduces some small instabilities into the phase 
around the cut-off frequencies wl and w2 . The instabilities are well shown on the 
first and second phase derivatives of the wavelet phase. 
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(b) Second example 

Field marine explosive data have been recorded at the output of a vertical array of 
32 hydrophones. The received signal path is composed of a direct path followed by 
a refracted and a reflected path at the sea surface. The bottom interaction comes 
much later and is not accounted for in the present data. One is looking at the output 
of the hydrophone 17. The phase unwrapping is processed on the full frequency band 
(no band-pass mapping) and the results are shown in Figs. 27 and 28. 

m 3.2.4. Properties of the complex cepstrum 
The complex cepstrum has some properties which are useful for the design of filters 
and transmitted signals. Some of these properties are summarized below. 

Property 1: The complex cepstrum of a convolution of two (or more) signals is 
the sum of the individual complex cepstra. 

Property 2: The complex cepstrum y(n) of a minimum phase sequence y(n) is 
zero for n 5 0, and the complex cepstrum of a maximum phase 
sequence is zero for n 2 0. (See the definition of a minimum and 
maximum phase sequence in Appendix A). 

Property 3: The complex cepstrum of a pulse whose spectrum is smooth tends 
to be concentrated around low frequency values, 

Property 4: The complex cepstrum of a periodic impulse train is a periodic 
impulse train with the same period. 

m 3.2.5. Sensitivity of the complex cepstrum to the noise 
The more critical part of the complex cepstrum is the unwrapping of the phase due 
to its sensitivity to the additive noise. In the following discussion we try to show 
how the behaviour of the signal phase depends of the signal-to-noise ratio and the 
noise phase. The received signal plus additive noise can be expressed as 

where y(t) is the convolution of two or more signals and n(t) is the additive noise. 
In the frequency domain this equation becomes 

and 
log S(w) = log[Y(w) + N(w)]. 

Equation (7) can be rewritten as 

log S (W) = log Y (W)  + log 1 + - [ ;;:;l- 
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If we consider a signal-to-noise ratio which is relatively high, we can assume that 

and Eq. ( 7 )  can be expanded into its Taylor series as follows: 

N ( w )  1 N ( w )  
2 

log S ( w )  = log Y ( W )  + - - (-1 +. . . .  
Y ( w )  2  Y ( w )  

If we consider the terms of the series of the second order and higher to be negligible 
the phase of S ( w )  can be expressed as follows: 

where G N ( w )  and a y ( w )  are respectively the phase of the noise and the signal. If 
we now consider that the signal-to-noise ratio is low such that 

Equation ( 7 )  can be approximated as 

Y ( w )  log S ( w )  = log N ( w )  + - 
N ( w )  ' 

and the phase of S ( w )  is equal to 

Equations ( 8 )  and ( 9 )  show that the phase of the received signal s(t)  can become 
unpredictable (random) because of the noise. When the signal-to-noise ratio is low 
(Eq. 9 )  the phase is dominated by the phase of the noise. The part of the noise 
spectrum which is not overlapped by the signal spectrum can be removed by band- 
pass filtering in order to avoid the situation of a low signal-to-noise ratio. 

Remark The use of band-pass filters before the homomorphic deconvolution leads 
to the notion of band-pass systems (see Subsubsect. 3.2.6) .  
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m 3.2.6. Definition of the band-pass mapping system 
In many applications the signals have band-pass characteristics. In general the 
signals are band-pass filtered before being sampled in order to increase the signal-to- 
noise ratio. The homomorphic deconvolution as described above cannot be applied 
directly to the band-pass signal: the logarithmis not defined in the frequency domain 
where the signal vanishes. Before applying any cepstrum analysis one must find a 
system which transforms the band-pass signal into a full-band signal. Such a system 
is called a band-pass mapping system. 

m 3.2.6a. Principle 
This notion of a band-pass mapping system has been introduced by Tribolet [ll]. 
Let z(n) be a stable sequence and x[e(JW)] its fourier transform satisfying 

{ [ e W ] # ,  forw, < w < w 2  
x[e(jW)] = xR[e(jW)] # 0, for I w I  = W I , W ~  

otherwise, 

where wl ,  w2 are the cut-off frequencies. Let BP denote the band-pass mapping 
system operator defined by 

2(n) = BP[z(n)] 

such that the fourier transform of f (n) verifies 

where 

Remark This frequency transformation is a scaling operation that shifts and 
stretches the signal's pass-band to occupy all of the frequency band. 

Tribolet has verified that this band-pass mapping is an invertible homomorphic 
operation with convolution as input and output operations. The inverse operation 
is defined by 

I - W2 - W1 l 
W = w 1 + w  , W1 I W I w2, 

K 

xl[(e(jw)] = { [ e ]  f o r  2 W \  5 w2, 
otherwise. 

From Eq. (10), we have 

~ ' [ e ( j " ) ]  = x[e(jW)], for W = W', 
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and thus 
X' (n)  = x(n). 

The block diagram of the band-pass complex cepstrum system D, is illustrated in 
Fig. 6. The band-pass mapping system is illustrated in Fig. 7 using simulated data. 
The received signal is the convolution of a Hanning-windowed CW pulse with three 
Dirac. 

m 3.2.6b. Implementation of the band-pass mapping system 
Let x(n) be a N (power of 2) samples sequence and X(n)  the corresponding DFT 
sequence. One may suppose the sampled spectrum to be symmetrically band-pass 
filtered around the normalized frequency 0.5, which corresponds to the frequency 
sample )N; the sampled cut-off frequencies are )N - NI and )N + N ~  .The band-pass 
mapping operation can be decomposed into the four following phases: 

(I) shift the band-pass spectrum to 0, 

(2) compute the 2N1 + 1 inverse DFT of the sequence X(n) for +N - N1 < n < 
+ N1 in order to get a 2N1 + 1 time series, 

(3) zero-pad this new time series to get a time sequence of N samples, 

(4) compute the N inverse FFT. 

Operations 2, 3 and 4 correspond to the stretching of the spectrum (spectrum in- 
terpolation). 

The inverse band-pass mapping operation can be broken down into the four following 
phases: 

(1) cut the N samples deconvolved sequence at the first 2N1 + 1 samples; 

(2) compute the 2N1 + lDFT of the 2N1 + 1 sequence; 
(3) shift the spectrum to the )N - N1 frequency sample; set the spectrum value 

X(n)  at Ofor 1 < n <  +N - NI - 1 and :+ N1 + l  < n <  +N; 

(4) compute the N inverse FFT. 

m 3.2.7. Normalization of the signal before applying the complex cepstrum 

m 3.2.7a. Principle 
When the time series i ( n )  does not fulfill the requirements that its dc component 
(polarity) is positive and its mean phase derivative is equal to zero, the input se- 
quence i ( n )  must be normalized in order to be able to apply the complex cepstrum. 
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We recall that if z (n)  has a mean phase derivative no null, 

- 
arg x[e(jw)] dw = T, 

The first part of the normalization consists of multiplying z[e(jw)]  by e(-jwT). 

The second part of the normalization consists of multiplying z[e(jw)] by the polarity 
32 

3.2.7b. Restoration of the linear phase components 
Consider a signal z(t) which is the convolution of two signals z l ( t )  and z2( t )  and 
the respective spectra for which are given by 

where Xlnl( f )  and Xznl( f )  are respectively the non-linear phase components of 
X l ( f )  and Xz(f) .  Then take the logarithm of X ( f )  

And then remove the the linear phase component: 

This last relation shows that we get an infinity of solutions comprising all the signals 
with the same non-linear phase components. Assuming that we are able to separate 
Zlnl and itnl in the cepstral domain, we must restore the proper linear phase to 
each of the deconvolved signals 21n1 and x2,1. This task becomes infeasible if we do 
not have a priori information on the original signals zl  (t) and z2(t).  For example, 
if we assume that one of the signals has no linear phase component, let us say z2(t) ,  
then ~2 equals zero and the global linear phase is restored to il (t). At this point it 
is more a matter of experimental conditions, as we can see in the example treated in 
Appendix B. In the results concerning the active sonar simulation, the deconvolved 
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wavelet is rescaled in time by computing the cross-correlation with the transmitted 
pulse. 

The same problem arises for the signal polarity. 

The global complex cepstrum deconvolution system is depicted in Fig. 8a. 
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4. Deconvolution of t h e  medium response by Wiener Altering 

The goal of this section is to provide a method of deconvolving the medium impulse 
response. Since the honlomorphic deconvolution was not the best one for estimating 
the medium response (see Appendix B) in the presence of additive noise, we use 
a digital Wiener filter. It belongs to the class of linear time-invariant filters with 
a criterion of minimization of the mean quadratic error [27,28]. It attempts to 
optimdy transform a given signal to another, here the received signal, into the 
medium impulse response. It is stressed that the estimation of the length and 
the lag of the Wiener filter are not treated here; those are discussed in [16]. The 
Wiener filter assumes that we know the wavelet, and therefore we can use the wavelet 
deconvolved by the complex cepstrum as the input signal of the filter. We derive 
two different but complementary filters: a causal Wiener filter which assumes a 
minimum phase wavelet and an anti-causal filter which assumes a maximum phase 
wavelet. This section considers (a) the assumptions about the signals and (b) the 
derivation of the Wiener filter. 

4.1. ASSUMPTIONS ABOUT THE SIGNALS 

We recall that the received signal has the following form: 

where 
~ ( m )  = r(m) * w(m). 

w(m) and r(m) are respectively the wavelet and the medium response. The station- 
arity of the signals and the noise is assumed up to the second order. We know the 
second-order statistics E[r(m)2] and E[r(m)s(m)], or equivalent statistics-as we 
will see further on. Under these assumptions we estimate the medium response by 
using an estimator which is a linear function of the observation s(m) and is given 
by 

+(m) = s(m) * h(m). 

The Wiener filter characterized by h(m) is defined by the minimization of the mean 
quadratic error 

where E indicates the expected value. The filter h(m) is characterized by its length 
P and the located interval [-L, P - L + l] : h(m; P, L). P and L are respectively 
called the order and the lag of the filter. 
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4.2. DERIVATION OF THE WIENER FILTER 

m 4.2.1. Derivation of the zero-lag Wiener filter, for minimum phase signals 
The zero-lag Wiener filter characterized by h(m, P)  is defined by the minimization 
of the mean quadratic error 

The filter h(m, P )  is characterized by its length P and the located interval [ O ,  P - l ] .  

Derivation of the normal equations Let us define the prediction error e l  by 

P-l P-l 

e1 = E h ( k ) ~ ( m  - k )  + E h(k)n(m - k )  - r(rn), m E [0,  P - l ] .  
k=O k=O 

Then we have 
e2 = E (eFel) 

Let H be the matrix 
[h(O), h( l ) ,  . . - , h(P - l ) ] ,  

Y the matrix 
[y(m),  y(m - l ) ,  . . . , y(m - P + 111, 

and N the matrix 
[n(m),  n(m - l ) ,  . . . , n(m - P + l ) ] .  

The mean quadratic error can be rewritten in the following form for each m: 

If we assume that the sequences y(m) and r (m)  are uncorrelated with the noise 
n(m) and if one expands the r.h.s. of this equality one gets 

R,,, R,, and R,, are respectively the autocorrelation matrix of the sequence y(m), 
the autocorrelation matrix of the noise n(m),  and the correlation vector of the 
sequence y(m) with the scalar r (m) .  We denote R,,(k), Rnn(k)  and RVy(k)  respec- 
tively the quantities E[y(m+l)y(m+l+k)],  E[n(m+l)n(m+l+k)],  E[r(m)y(m+k)].  

Report no. changed (Mar 2006): SM-203-UU



If we assume a white noise, R,, is a diagonal matrix R,,(O)I, where I is the unit 
matrix and the mean quadratic error e2 is given by 

Now we want to minimize the mean quadratic error and, classically, e2 has a global 
minimum if the two following conditions are fulfilled: 

(1) vHe2 = 0, 

(2) v H ( v H e 2 )  is positive definite , 

where v H e 2  and v H ( v H e 2 )  are respectively the gradient and the hessian of the 
mean quadratic error e2. 

The first condition leads to 

and the second condition requires the matrix R,, + R,,(O)I to be positive definite. 
Thus the minimum is reached when 

The linear system (11) is called the set of normal equations for the Wiener filter 
h(m, P), and explicitly the set of normal equations is 

P-l 

C h(k, P)[Ruu(m - k )  + Rnn(O)d(m - h)] = &,(m), m E [0, P - l]. (12) 
k=O 

Remark 1 If the matrix R,, + R,,(O)I is positive definite, one can directly find 
the solution, and e2 can be expanded into a quadratic form as follows: 

e2 vanishes if and only if H-Rru(Ruu+Rnn(0)I)-l vanishes and the filter coefficients 
are given by the exact solution 
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In Eq. (12) we cannot access the correlation matrices Ryy and Rry, and so we replace 
them by well-known second-order statistics. 

If we take the z-transform of both sides of Eq. (12)) we get after some straightforward 
derivations 

According to the Blackman and Tukey definition of the Power Spectral Density, one 
gets 

P-l 

C h(k, P ) Z - ~  (ryy(z) + Rnn(0)) = rry(z), (13) 
k=O 

where ryy(z)  is the power spectral density of the sequence y(n) and r ry(z)  is the 
cross-spectral density of the sequence r(n) with the sequence y(n). 

If the sequence r(n) is uncorrelated 

and 
ryy(z) = rrr(z)rww(z) = Rrr(O)rww(z), (15) 

where r,,(r) and I',,(z) are respectively the power spectral density of the sequences 
r(n), w(n) and R,, the correlation function of r(n). 

Then Eq. (13) can be rewritten 

Coming back in the time domain, Eq. (16) assumes the form 

P-l 
Rnn(o)6(m - k)) = W(-m), m E (0, P - l]. (17) 

k=O 

In this new set it does not matter if we do not know the autocorrelation Rww exactly 
as we can estimate it-through w(t) being the wavelet deconvolved by the complex 
cepstrum. However we do not know Rnn(0)/R,,(O), and so we have to estimate it. 
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Estimation of Rnn(0)/R,,(O) The principle of this estimation is the eigenvalue 
decomposition of the correlation matrices R,, + Rnn(0)I [26] and R,,. According 
to classical linear algebra these matrices can be decomposed into the following forms: 

in which E is the diagonal matrix diag (al , a2 , . . . , ap) ,  with a; the eigenvalues of 
R,, + Rnn(O)I. 

Rww = ~ w ~ w u , T ,  

C ,  is the diagonal matrix diag ( a l ,  a z ,  . . . , a p ) ,  where the ai are the eigenvalues 
of R,, . The columns of U, are the orthonormalized eigenvectors associated with 
these eigenvalues. In our case the eigenvalues are given by 

with X i  the eigenvalues of the correlation matrix R,,. At this point let us assume 
that the rank of R,, is smaller than P. Because of the equality (15)  the eigenvalues 
X i  and ai are linked together by the relation 

Thus the rank of the matrix R,, is equal to the rank of the matrix R,, . The previous 
assumption is equivalent to assuming than the order of the wavelet is smaller than 
P. On the basis of this assumption the estimation procedure is as follows: 

(1) estimate the correlation matrix R,, + Rnn(0);  compute the eigenvalues ai 
and the eigenvectors of this matrix; 

( 2 )  estimate the correlation matrix R,,; compute the eigenvalues ai and the 
eigenvectors of this matrix; 

(3) estimate the rank Q of the correlation matrix R,,; 

( 4 )  estimate Rnn(0) b y  taking the average of the P - Q smallest eigenvalues ui 
(the eigenvalues are arranged in decreasing order): 

( 5 )  estimate the eigenvalues X i  from Xi = Ui - Rnn(0).  

( 6 )  estimate R,,(O) by means of R,,(O) = Q-' c P = ~  &/a i .  

( 7 )  compute Rnn(O)/Rrr(O). 

The rank Q is estimated by applying the AIC Akaike test to the correlation matrix 
R,, + Rnn(0)/  R,,(O)I [15].  One recalls that this test consists of estimating the 
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order of a model at the minimum of the function 

(number of free parameters) 
f(9)  = -@(g) + N 

where @(g) is the Maximum Likelihood Function of the order q , N is the number 
of observations and P the order of the correlation matrix. In our case the function 
f (g) is (see Appendix C) 

Figure 29 represents the eigenvalues of the correlation matrix Rww for different 
transmitted pulses of 16 time-samples length (in these simulations, the wavelet was 
exactly the transmitted pulse): 

r CW signal windowed by a rectangular window, 

e CW signal windowed by a rectangular window, 

CW signal windowed by a half-cycle sinusoidal window, 

r CW signal windowed by a Hanning window, 

e CW signal windowed by a Hamming window. 

In Fig. 30 we present the eigenvalues of Rww(0) for the same pulses but of 64 time- 
samples length. 

In Figs. 31 and 32 we present the Akaike functions f(q) applied to the matrix 
R,, + Rnn(0)I for pulse lengths of 16 and 64 time-samples respectively. 

In Figs. 33 and 34 we present the estimate of R,,(O)/R,,(O) for the four windows 
mentioned above for respectively 16 and 64 time-samples length. These results shows 
that the Hanning window is the one which is best at discriminating the eigenvalues 
corresponding to the wavelet and the eigenvalues corresponding to the noise. 

Solution of the normal equations Taking into account the Toeplitz form of R,, + 
Rnn(0)/R,,(O), the normal Eqs. (17) are solved by the Levinson Algorithm [16]. 

Stability of the filter Since the wavelet w(n)  is minimum phae, Eq. (15) ensures 
the stability of the Wiener filter defined by h(k,  P). 
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m 4.2.2. Derivation of the zero-lag Wiener filter for maximum phase signals 
The derivation is similar to the derivation for minimum phase signals. This time, the 
filter h(m, P) is characterized by its length P and the located interval. [-P + 1,0]. 

Derivation of the normal equations Here, the prediction error el is defined by 

and we want to minimize the mean quadratic error 

Using the same derivations that for minimum phase signals, we get to the set of 
normal equations which define the Wiener filter h(m, P) 

If we assume that the sequence r(n) is uncorrelated and by means of derivations 
similar at the minimum phase case, Eq. (17) becomes 

The estimation of Rnn(0)/ R,,(O) is identical to the estimation for minimum phase 
signals. Since R,, + Rnn(0)/R,,(O)I has a toeplitz form, the solutions of Eq. (20) 
are obtained by the Generalized Levinson Algorithm. Since the wavelet w(n) is 
maximum phase, Eq. (20) ensures the stability of the Wiener filter defined by h(k, P). 
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5. Combination of homomorphic 
deconvolution and Wiener Altering 

As we saw in Sect. 4, the Wiener filter is well defined for a minimum or maximum 
phase input sequence, but it is rather unstable for a mixed phase sequence. Since 
the received signal and the wavelet are mixed phase in real life (see Appendix B), 
and idea is to factorized the received signal and the wavelet into their minimum and 
maximum phase components. Then, in order to improve the deconvolution method, 
we can apply a zero-lag causal Wiener filter to the minimum phase component and 
an zero-lag anticausal Wiener filter to the maximum phase component. This idea 
has already been used by Oppenheim et al. [10], using a linear predictor instead of 
a Wiener filter. (Note that we do not present any results here on the combination 
of homomorphic deconvolution and Wiener filtering.) 

5.1. FACTORIZATION OF THE MIXED PHASE SIGNALS 

Let us assume, as in the previous chapters, that the received signal y(t) is the 
convolution of the wavelet w(t) with the medium response r(t) 

or in the z-domain 
Y(z) = W(z)R(z). 

If we assume that Y(z) is a rational transfer function, W(z) can be factorized as 
follows: 

W(%) = Wmin ,(z)Wmax ,(z), 

where Wmin ,(z) and W,,, ,(z) are respectively the minimum and maximum phase 
components of W(%). In the same way, R(%) can be factorized as follows: 

where Rmin , ( z )  and R,,, ,(z) are respectively the minimum and maximum phase 
components of R(%). Therefore, Y (z) can be rewritten in the following form: 

Y (z) = [Wmin ,(z)Rmin p(z)I[Wn,ax P ( z ) R ~ ~ x  P(')I, 
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where 
Ymin p ( % )  = Wmin p(%)Rmin p ( % ) ,  

Ymsx p ( % )  = Wmax p(%)Rmax p ( % ) .  

In the cepstral domain, the previous equations become 

According to the properties of the complex cepstrum recalled in Sect. 3, ymin p ( t )  is 
equal to zero for the negative frequencies and ymax p ( t )  is equal to zero for the posi- 
tive frequencies. Then, by applying the complex cepstrum, we are able to factorized 
y( t )  and w ( t )  into their minimum and maximum phase components. 

5.2. PROCEDURE TO DECONVOLVE THE WAVELET AND THE MEDIUM 
RESPONSE 

We first apply the complex cepstrum to the received signal y( t ) .  We filter the com- 
plex cepstrum y(t)  by means of two rectangular windows. The first window is defined 
for the positive frequencies in order to extract the cepstrum ymin p ( t ) .  The second 
window is defined for the negative frequencies in order to extract G,,, ,. Then, we 
low-pass filter ymin p ( t )  to separate ~ m i n  p ( t )  and +,in p ( t ) ,  and we high-pass filter 
ymax p ( t )  to separate W,,, p ( t )  and +,,, ,( t ) .  Thus we get both the minimum and 
maximum phase components of the received signal and the deconvolved wavelet. 
The next step of the procedure consists of simultaneously applying a causal Wiener 
filter hmin ( t )  to ymin p ( t )  with wmin p ( t )  in input and an anti-causal Wiener filter 
h,,, ( t )  to ymax , ( t )  with W,,, , ( t )  in input. 

The medium response r ( t )  is estimated by the inverse filter hmi,( t )  * h,,, ( t )  as 
follow: 

+ ( t )  = hmin ( t )  * hmax ( t )  * ~ ( t ) .  

The deconvolution procedure is shown schematically in Fig. 8b. The system D, is 
nothing other than the complex cepstrum as defined in Sect. 3. 
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6. Results 

6.1. RESULTS OBTAINED BY SIMULATIONS 

The results presented in this section relate to active sonar reverberation. They are 
summary-type representative results, proving the feasibility of the methods, but also 
pointing out their limitations. The transmitted signals are windowed CW pulses and 
the reverberated signals are received on a horizontal towed array. 

W 6.1.1. Reverberation in active sonar 
We assume that reverberation is measured in deep water with a low-frequency om- 
nidirectional source and a towed, horizontal array. We are looking at reverberated 
signals after beamforming. The simulations try to be an accurate copy of the exper- 
iments carried out for backscattering studies in active sonar (surface, volume and 
bottom-layer backscat tering). 

The simulations are described in terms of two models. 

m 6.1 . la.  First model 
The scenario is depicted in Fig. 35. Remember that it is the simulated signals after 
beamforming that are simulated. The simulation does not take any beamforming 
processing into account. 

Description of the signals 

nansmitted signal The transmitted signal is a Hanning-windowed CW pulse. The 
pulse length is taken as a parameter of the simulation. The sampled CW pulse is 
modelled in time as 

where L is the pulse length expressed in time-samples and fo is the normalized 
frequency of the CW signal. The CW pulse is represented in Fig. 36. 

Medium impulse response The reverberation model has three paths: the direct 
path, the reflection on the surface and the reflection on the bottom. We do not 
model the transfer function of the surface, nor the bottom transfer function. The 
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travel times along the three paths are three parameters of the simulation, and de- 
pend on the source depth and its distance from the array, and the array and wa- 
ter depths. TD,TS,TL are respectively the arrival times for the direct path, the 
surface reflected path, and the bottom-layer reflected path. The three discrete- 
time paths are modelled as three Dirac at the time-samples n o ,  n s  and nL(where 
TD = nDAt, ss = nsAt, TL = nLAt; At is the time sampling interval) and is given 
by 

~ ( n )  = -r6(n - no) + r26(n - ns) - r36(n - nL) 

Additive noise The noise is characterized by its spectrum and the signal-to-noise 
ratio, and is defined as the response of a linear filter to an input white gaussian noise 
(random normal sequence). Because of the frequency step feature of the complex 
cepstrum, we are interested in the SNR at each frequency. Hence, three SNRs are 
defined. One of these, called SNRT, is the transmitted signal-to-noise ratio and 
another, called SNRR, is the received signal-to-noise ratio. These two SNRs are 
~rocessed in the full frequency band as follows: 

where X (f ), S( f ), and N ( f )  are respectively the spectrum of the transmitted signal 
x(t), the received signal s(t), and the noise n(t); B is the frequency band. We recall 
that the normalized Hanning CW pulse bandwith is given by the well-known relation 

The third signal-to-noise ratio, called SNRF, is defined at each frequency of the 
filtered bandwith as follows: 

Description of the processing An observation time of 256 time-samples has been 
used and the pulse length is equal to 64 time-samples. The normalized frequency 
fo of the CW signal is equal to 0.25. First of all the received signal is band-pass 
filtered in frequency with a rectangular window defined by the lowest normalized 
frequency fmin and the highest normalized frequency f,,,. These two frequencies 
are given here as fmin = 0.222 and fma, = 0.277. Then we apply the band-pass 
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mapping and the complex cepstrum to get the deconvolved wavelet. The medium 
impulse response is deconvolved by both complex cepstrum and Wiener filtering. 

Results and their interpretation For a given pulse length and multipath configu- 
ration, we first look at the effect of the noise on the deconvolved signal accuracy. 
The results are summarized in Table 1 (the pulse length is 64 time-samples, the 
delays TD, 75, TL are respectively equal to 80, 110 and 170 time-samples). 

Table 1 
Classification of the results with the number of the corresponding figure. Active sonar 
simulation: Hanning CW pulse with 3 multiples 

Deconvolved Deconvolved 
SNRR Received Power Deconvolved medium medium 
(dB) signal spectrum wavelet response response 

(cepstrum) (Wiener) 

13 Pig. 38 Fig. 39 Fig. 40 Fig. 41 Fig. 42 
8 Fig. 43 Fig. 44 Fig. 45 failed Fig. 46 
3 Fig. 47 Fig. 48 Fig. 49 failed Fig. 50 

- 1 Fig. 51 Fig. 52 Fig. 53 failed failed 
- 6 Fig. 54 Fig. 55 Fig. 56 failed failed 
- 11 Fig. 57 Fig. 58 Fig. 59 failed failed 

We conclude that the wavelet is rather well deconvolved up to a SNRR of -6 dB 
and seems relatively insensitive to additive noise. The wavelet can be rescaled by 
correlation with the transmitted pulse. The correlation function of the deconvolved 
wavelet with the CW pulse for a received signal-to-noise ratio of 15 dB is depicted 
in Fig. 37. On the other hand, the medium impulse response suffers more from the 
additive noise, as we can see in Fig. 41. The complex cepstrum cannot deconvolve 
the medium response at lower signal-to-noise ratio. These results agree with the 
mathematical derivation in Appendix B, where it is shown that the medium impulse 
response deconvolved by the complex cepstrum is more affected by additive noise 
than the wavelet is. The Wiener filter, with the original pulse as input, can accept- 
ably separate, the three multipaths shown in Fig. 42. It does so successfully up to a 
SNR of 3 dB (the corresponding SNRF values are given in Table 2). In Figs. 42, 46 
and 50, we see that the Wiener filter resolution is not 'optimal', as a consequence of 
the fact that we add a 'white noise' parameter to the zero-lag element of the auto- 
correlation matrix in order to stabilize the computation of the inverse [24]. Here, the 
white noise parameter is equal to 0.005. The ill-conditioned problem arises because 
the order of the received signal is smaller than the order of the linear system, as 
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shown by the Akaike test in the Sect. 4. Another reason is the non-minimum phase 
characteristic of the transmitted pulse. 

Table 2 

Signal-tenoise ratio of the received signal at each 
frequency of the bandwidth: Hanning CW pulse 
with 3 multiples 

Normalized frequency SNRF 
(dB) 

SNRT = 10 dB SNRR = 3 dB 

m 6.1 .l b. Second model 

Description of the signals 

Tkansmitted signal The same transmitted pulse described in the previous section 
is used. 

Medium impulse response Five equi-spaced multiples defined by the time delays 
r,, r2, r3, r4, and Q,  with values, respectively, of 80, 110, 140, 170 and 200 time- 
samples. 
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Additive noise The same characteristics as that  in  the previous section. 

Description of the processing The same processing as that  in the previous section. 

Results and their interpretation The results are summarized in Table 3. 

Table 3 
Signal-to-noise ratio of the received signal at each frequency of the bandwidth: Hanning 
CW pulse with 3 multiples 

P- - 

Deconvolved Deconvolved 
SNRR Received Power Deconvolved medium medium 
(dB) signal spectrum wavelet response response 

(cepstrum) (Wiener) 

16 Fig. 61 Fig. 62 Fig. 63 Fig. 64 Fig. 65 
11 Fig. 66 Fig. 67 Fig. 68 Fig. 69 Fig. 70 
6 Fig. 71 Fig. 72 Fig. 73 Fig. 74 Fig. 75 
1 Fig. 76 Fig. 77 Fig. 78 Fig. 79 Fig. 80 

- 4 Fig. 81 Fig. 82 Fig. 83 failed failed 

Table 4 
Location of the poles of HO(x)  given in polar coordinates 

Pole Radius Angle Pole Radius Angle 
(no.) (dg) (no.) (dg) 
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We conclude that the wavelet is well deconvolved up to a SNRR of 0 dB. The 
deconvolved wavelet can be rescaled by correlation with the transmitted pulse (as 
in the previous model). Figure 60 depicts this correlation function for a SNRR of 
15 dB. The deconvolutions of the medium impulse response by the complex cepstrum 
and Wiener filtering are equivalent, and successful up to 0 dB. The time delay in the 
medium response deconvolved by the complex cepstrum is due to the linear phase 
not being recovered properly, but the relative positions of the multiples are correct. 

6.2. RESULTS OBTAINED WITH EXPERIMENTAL DATA 

m 6.2.1. Reverberation in active sonar 

Experiment configuration The purpose of the experiment was to measure rever- 
beration with an activated towed array at low frequency. The geometrical configu- 
ration is depicted in Fig. 84 [23]. The towed array has 32 hydrophones spaced at 
one half-wavelength (1.96 m for the measurements processed here). The array depth 
was around 100 m and was separated from the towship by 900 m. The water depth 
was around 3500 m. 

Signal characteristics The transmitted signal was a Hanning-windowed CW pulse. 
Its duration was 2 s at a frequency of 370 kHz. The signal received on the array 
is beamformed and band-pass filtered in frequency. The sampling frequency at the 
beamformer output was 70 Ha, and the observation time was 3.65 S (256 time- 
samples). The resolution in time provided by this transmitted signal is 

1 
t -  ' - bandwidth ' 

or in this case 

The blocks of recorded data are characterized by the number of the beam, the 
number of the ping, and the range. 

Description of the processing The processing was the same as that for the simu- 
lated data of Subsubsect. 6.1.la. 

Results Figure 85 depicts the transmitted pulse in time. The received signal 
corresponding to beam 6, ping 9 and range 8 is represented in Fig. 86. The wavelet 
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deconvolved by means of the complex cepstrum is represented in Fig. 87. When we 
compared the deconvolved medium response for two different inputs of the Wiener 
filter (the deconvolved wavelet and the transmitted pulse). The results depicted 
Figs. 88 and 89 were obtained. The results are similar in both figures, except that 
we get a better resolution with the transmitted pulse (Fig. 89). The deconvolved 
wavelet looks like the transmitted pulse, which is a promising result. However, the 
pulse length reduces the credibility of the results significantly, is obviously not the 
type of signal one should use to study reverberation. (In order to measure surface, 
volume and bottom backscattering, the transmitted pulse must have a significant 
bandwidth, and instead of using CW pulses of 2 s it would be more sensible to 
transmit pulses of 0.1 S, for example.) 

6.2.2. Explosive data 

Experiment configuration The data come from an acoustic propagation experi- 
ment made by the Centre's Environmental Acoustics Group in the Tyrrhenian sea. 
The aim of the experiment was to estimate the transfer function of the ocean over 
a broad acoustic frequency range. The broadband signal arising from an explosive 
source was recorded (a) at a range of 4.5 km with a vertical array of 32 hydrophones 
spaced at 2 m, and (b) close to the source with a portable array of 4 hydrophones. 
The experiment configuration, with its various geometrical parameters, is presented 
in Fig. 90. Before any kind of processing one can expect at least four arrivals: one 
direct, one by reflection and one by refraction at the sea surface, and later one by 
reflection at the seabed. Since it is a deep water environment, we do not consider 
the bottom reflection. 

Signal characteristics The explosive is a broad band source. The power spectrum 
of the signal received on hydrophone 17 of the vertical array is depicted in Fig. 93. 
The sampling frequency was 6 kHz. Therefore, according to Fig. 93 the received sig- 
nal bandwith was almost 2.5 kHz. The time series at the output of each hydrophone 
is represented on Fig. 91. 

Description of the processing The observation time was 170 ms (or 1024 time- 
samples). We ~rocessed the full frequency band (no band-pass mapping). The 
wavelet was deconvolved by the complex cepstrum, and the paths reflected and 
paths refracted at the surface were resolved by Wiener filtering. 

Results The received time series for hydrophones 4 and 17 are depicted on Figs. 92 
and 94. The deconvolved wavelets are presented in Figs. 95 and 96. The minimum 
phase property of the wavelet can be studied in Fig. 97, which shows the partial 
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energy of the two deconvolved wavelets. The partial energy is defined as follows 1221 

The two deconvolved wavelets carry the same quantity of energy. The wavelet for 
hydrophone 4 has more energy at the beginning; the wavelet for hydrophone 17 has 
more energy at the end. Their power spectra are identical, as we can see in Figs. 98 
and 99. It seems that some poles or zeros of the transfer function of the wavele has 
been transferred outside of the unit circle. We can see that the wavelets are not 
minimum phase, most definitely for the wavelet corresponding to hydrophone 17. If 
we compare the results to a theoretical wavelet, it seems the original shot has been 
perturbed by the propagation medium and perhaps also the layer conditions (the 
sea-surface was flat during the experiment and introduced only a time-delay). If we 
use the deconvolved wavelet in order to resolve the reflected and refracted paths, we 
have no success. Therefore, we use the first arrival as the input of the Wiener filter. 
The deconvolved reflected and refracted arrivals corresponding to hydrophones 4 
and 17 are presented respectively in Figs. 100 and 101. The results for the entire 
vertical array are presented in Fig. 102, with the direct arrival taken as the time 
origin. 

These results confirm the hypothesis of three main arrivals, one direct, one refracted 
and one reflected. The assumed propagation model is depicted in Fig. 102b, which 
also shows the mean sound-velocity profile estimated from the measurements. 
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7. Conclusions 

The study carried out in this report has pointed out the importance of the phase 
information in the understanding of propagation and reverberation mechanisms. 
Since the phase behaviour is rather complicated due, in part to its randomness, we 
need some accurate signal processing methods to perform the analysis. By modelling 
the propagation medium, the bottom-layer, and the surface as linear filters one may 
apply techniques such as deconvolution and identification methods. 

The complex cepstrum used to deconvolve the wavelet does not postulate a minimum 
or maximum phase characteristic for the signals, and therefore is very useful in 
propagation and reverberation application, for which the signals are mostly mixed 
phase. Although the complex cepstrum requires a relatively high signal-to-noise 
ratio, because of the phase unwrapping, its application to seismic and active sonar 
reverberation is meaningful. The results obtained and presented in Sect. 6 with 
simulated data are quite satisfactory up to a signal-to-noise ratio of -5 dB for the 
wavelet, but only up to 5 dB for the medium response. These results confirm the 
derivation made in Appendix B, proving that the complex cepstrum does not succeed 
in deconvolving the medium response as well as it does for the wavelet, due to the 
presence of additive noise. We have seen that the deconvolved wavelet carries a 
lot of information on the medium and a further focus would be to fit a parametric 
model and control its behaviour with the propagation conditions. This can be done 
by using autoregressive (AR) or autoregressive-moving average (ARMA) modelling 
of the wavelet . 

The results shown in Sect. 6, on explosive measured data, emphazise the impor- 
tance of the phase. We have seen that the deconvolved wavelet at two separate 
hydrophones of the vertical array can have the same power spectrum but not the 
same energy distribution (shown by the partial energy curves). The transfer function 
treated in Appendix A is an example of how an all-pass filter can modify the energy 
distribution inside a signal, transforming it from a minimum phase signal to a mixed 
phase signal. This can arise when the transmitted pulse goes through a layer which 
has an all-pass-filter transfer function (Appendix B). In this environmental technique 
like the power cepstrum method is not powerful enough. One deficiency underlined 
in this report, concerning the complex cepstrum technique, is the restoration of the 
linear phase once the different components have been deconvolved. In the described 
simulations in Sect. 6, this equipment has been solved by computing the crosscorre- 
lation between the deconvolved wavelet and the transmitted pulse. However, some 
more attention has to be put on this particular but significant part of the complex 
cepstrum. 
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The combination of homomorphic deconvolution and Wiener filtering is well adapted 
to reverberation studies in that it capitalises on the individual advantages of both 
the techniques. The homomorphic deconvolution handles the mixed phase char- 
acteristics of the wavelet while the Wiener filter provides high resolution of the 
medium response, as, for example time-of-arrivals estimation. Some results using 
this promising mixed technique will be the subject of a subsequent report. 
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Appendix A 
Minimum-phase signals and their properties 

The notion of minimum-phase signals is of considerable importance in signal process- 
ing [g]. In this section it will be shown that the fourier tranform of a minimum-phase 
signal can be recovered from its magnitude or its phase. Because most of the digital 
filters are defined in term of magnitude, it is important to know the phase in order 
to design stable filters. The minimum-phase condition gives some nice properties to 
the complex cepstrum [8] and allow us to design inverse filters [16]. 

Before giving the definition of a minimum phase signal, let us recall the definition 
of a causal signal in order to make an analogy between the complex cepstrum of a 
minimum-phase sequence and a causal signal. 

A.1. DEFINITION OF A CAUSAL SIGNAL-PROPERTY OF ITS FOURIER 
TRANSFORM 

The values of a causal signal x(t) are null for the negative values oft.  We can always 
write x(t) as a sum of an odd function xodd(t) and even function xeven(t) : 

where 

For the positive values of t we have 

and for the negative values 

and we can rewrite 
xodd (t) = sig(t)xeven (t), 
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By taking the fourier transform of both of the sides of the equality (Eq. A.l) and 
calling respectively X,,,, ( f )  and X (f ) the fourier transform of X,,,, (t) and x(t) , 
we have 

By taking the fourier transform of both the sided of Eq. (A.2) and calling Xodd(f) 
the fourier transform of xOdd(t), we get 

If we take now the fourier transform of (A.3) we have 

ourier transform[sig( t)] * X,,,, ( f ), Xodd(f = f 
1 1  = -up(-) * iImX(f), 
ai f 

where up(l/ f )  is the Cauchy principal value of ~ T z ( l / f )  df. 

Then 

ReX(f) = -up dv = hilbert transform[Imx( f )l. 

Lf we take the fourier transform of (A.4), we have 

= inverse hilbert transform[Re(X ( f )l. 
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By performing the inverse process we show that if ImX( f )  and Re X(  f )  are related 
through a hilbert transform, the signal z(t) is causal. 

Therefore a causal signal is characterized by the fact that the real part and the 
imaginary part of its fourier transform are related through a hilbert transform. 

The z-transform of a causal sequence z(n) converges in the domain 

but this necessary condition is not sufficient to steady the causality of x(n). A 
necessary and sufficient condition is given by the following theorem. 

Theorem: X(%) is the z-transform of a causal sequence x(n) if and only if X(%) is 
bounded when z reaches the infinity. 

A.2. DEFINITION O F  A MINIMUM-PHASE SIGNAL 

W A.2.1. Definition 
Let z ( r )  be defined by 

g ( z )  = logX(z) = log IX(t)( + i argX(z), 

and let 2(n) be the inverse z-transform of B(%);  i ( n )  is by definition the complex 
cepstrum of x(n) [see Sect. 31. 

The minimum-phase condition is that the complex cepstrum 2(n )  is causal or, ac- 
cording to the previous section, that 

log JX(z)( = hilbert transform[arg X(%)]. (A.5) 

For a minimum-phase signal z(t), the phase of X( f )  is uniquely dehed  from the 
magnitude log (X(  f ) l .  Another condition is that there is causal, stable inverse system 
X-'(2) such that 

X-I (%)X(%) = 1. 

There is a consequential a property of the minimum-phase sequences z(n): the poles 
and the zeros of the z-transform X(%) are inside the unit circle. 

m A.2.2. Justification of the terminology 'minimum-phase signal' [22] 
Let X(z)  be the z-transform of any signal x(t). X(%) can be written as a product 
of two functions 

X(.) = Xo(z)G,.,.(z), (A.6) 
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where Xo(z) is the z-transform of a minimum-phase signal zo(t)  and G,.,.(%) the 
transfer function of an all-pass filter. The role of G,.,.(%) is to transfer M zeros of 
Xo(z) outside the unit circle without modifying the magnitude response (Xo(z)(  and 
X ( % )  can be rewritten in the following form 

where zm are the M zeros of X ( % )  outside the unit circle. To render the terminology 
'minimum-phase' explicit, let G,.,. (z)  be an all all-pass transfer function of order 
one with only one real zero. G,.,.(z) is given by 

G,.,.(z) has a zero ( Z )  at zl = - E  and a pole (P) at z2 = +. The zero-pole diagram 
of G,.,.(%) is presented in Fig. 103. 

The phase-lag angle of G,.,.(%) is given by 

where and GP(%) are respectively the angles of the vectors ~3 and 
with the axis 0,. For the normalized frequency f in the range [0, $1 the phase-lag 
is always positive. Let @ X ( % )  and Sx0(z)  be the phases of X ( % )  and Xo(z),  and we 
have 

@X(.) = *x',(z) - *(z) 

and therefore the phase-lag angle of the function X ( z )  is always greater than the 
phase-lag angle of the function Xo(z).  The all-pass transfer function G,,,.(z) can 
be decomposed into a product of M all-pass transfer functions of order ane, and 
consequently following (A.7) the phase-lag angle of any function X ( z )  is always 
greater than the phase-lag angle of the function Xo(z), which is why zo(t) is called 
a minimum phase-lag signal or by abreviation minimum-phase signal.. 

Remark Given two functions X l ( z )  and X2(z) ,  one has 
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Hence for a given magnitude J X  (z) ( = (X1 (2) 1 = 1x2 (z) 1, the phase-lag is not defined 
uniquely. It is uniquely defined if xl (t)  and 2 2  (t) are minimum phase. 

Now, let us consider examples of minimum-phase and mixed-phase signals. Let 
Xo(z) be the z-transform of a minimum-phase signal xo(t). Xo(z) is represented by 
an all-pole model of order 20 as follows 

where Pi represents the poles of the B-transform located inside the unit circle. Their 
positions are shown in Fig. 104 and the exact values given in Table 4. The signal 
xo(t) is represented in Fig. 107. Let xl(t) be the signal obtained by applying an 
all-pass filter to xo(t). The all-pass filter is defined by its transfer function in the 
z-domain by 

7 
(. - Pi) 

i= l 

The all-pass filter moves the seven f i s t  poles of Xo(t) outside the unit circle. The 
~ o l e s  of Xl (z) are represented in Fig. 105; the signal xl ( t )  is represented in Fig. 108. 
Let x2(t) the signal obtained by applying to xo(t) the all- ass filter defined by 

This all-pass filter moves the ten first poles of Ho(z) outside of the unit circle. The 
poles of X2(z) are represented in Fig. 106; and x2(t) in Fig. 109. The partial energies 
of the three signals are compared in Fig. 110. We recall that the partial energy of a 
signal x(t) is defined by 

m 

The minimum-phase signal is the one which has the energy concentrated at the 
beginning. 

Thus the all-pass filter can partially model some bottom-layers and incidentally show 
their influence on a propagating wavelet. 
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A.3. RELATION BETWEEN THE POWER CEPSTRUM AND THE COMPLEX 
' CEPSTRUM 

We recall that the power cepstrum proposed by Bogert, Healy and Tukey, is defined 
by 

Z(t) = [fourier transform(1og I X ( f )  1 2)]2 

where X ( f ) i s  thefourier transformofx(t). BecauseX(f) = logX(f)  = logIX(f)l+ 
i a rgX(f )  = g ~ ( f )  + i g I ( f )  we have 

because XR( f )  is an even function of the frequency f 

The integral Sf_m an( f )ej2,ft d f is the even part of the complex cepstrum 6(t), 
denoted by SeVen(t). Consequently we have the relation 

One can always decompose the complex cepstrum x(t) to the sum of its even part 
and its odd part 

g(t) = geven ( t )  + sodd(t)r 

where geVen(t) = i (g(t)  + g(-t)) and xOdd(t) = t ( i ( t )  - X(-t)). 

If the complex cepstrum vanishes for the negative values of t, 

$even (t) = 4;i?(t) 

and then 
l*(t)l2 = Z(t). 

We will see that the complex cepstrum vanishes for the negative values of t in the 
case of minimum signals. 

We can conclude that for a minimum phase input sequence, the power cepstrum and 
the complex cepstrum are equivalent. 
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Appendix B 

A n  example derivation of t h e  complex cepstrum 

In this section we consider a two-path propagation model with reflection at the 
bottom and the surface. The backscattering mechanism at each of the boundaries 
is modelled by a linear filter. The objective is to show how the modelling of the 
propagation medium affects the complex cepstrum technique (with regard to the 
fundamental notion of minimum phase signals) and to point out the limitation of 
this technique for deconvolution of the medium response. The propagation model is 
simple and highlights the parameters which have a determining effect on the method. 

B.1. DERIVATION OF THE COMPLEX CEPSTRUM FOR THE TWO-PATHS 
DISTORTION CHANNEL PLUS NOISE 

B. 1.1. Expression of the complex cepstrum 
The general scenario is described in Fig. 111. Here, we consider the case where 
the direct path is not taken into account. In practice, this means that the observa- 
tion time starts with the direct arrival. Under this assumption, the received signal 
assumes the form 

where we recall that hl(t) and h,(t) are respectively the impulse response associated 
with the bottom layer and the surface and the additive noise n(t); 7-1 and T, are the 
reflected time arrivals with respect to the direct arrival. In the frequency domain 
the equality becomes 

Equation (B.1) can be factorized into the following form: 

By normalizing S(w) (removing the linear phase e-jwq and taking the complex 
logarithm of both sides of the initial equality), we have 

H a ( ~ ) ~ - j ~ ( ~ ,  -r , )  + 3(w) = 2(w)  + &(W) + log 1 + - [ H1Cw) H1 (w)X(w) N(w) ejwql * 
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where 

?(W) = log S(w) ,  Z ( w )  = log X ( W ) ,  g l ( w )  = log ~ ~ ( w ) .  

Under the assumption that 

the logarithm can be expanded into its Taylor series and , !?(W) takes the form 

Remark 1 The medium response introduces a linear phase term e-JwTland there- 
fore the mean phase derivative of s ( t )  is not equal to 0. After deconvolution this 
linear phase must be restored to the deconvolved medium response. 

The complex cepstrum is obtained by taking the inverse fourier transform of , !?(W) 
and is given by 

where h2 ( t ) ,  h3 ( t )  and h4 ( t )  are respectively the inverse fourier transforms of 

Remark 2 The expression (B .2)  of the complex cepstrum reveals that the received 
signal is not minimum phase (the complex cepstrum has negative components in- 
troduced by the noise). This illustrates that we must be very careful when we want 
to apply inverse filtering. 
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B.2. DERIVATION OF THE COMPLEX CEPSTRUM OF THE 
HANNING-WINDOWED CW PULSE 

Let us now calculate the complex cepstrurn of the transmitted signal x(t). Here x(t) 
is a Hanning-windowed CW pulse given by 

x(t) = 0.5 (1 - cos 2rtlT)cos wot, 

where wo is the CW pulsation and T is the length of the Hanning window. The 
spectrum X(w) of x(t) is 

where 
sin wT 

Qo(w) = T-, wT 
Alternatively 

The first sidelobe of X(w ) is quite low compared to the principd lobe (X(first lobe)/ 
X(wo) = 0.00843) and thus, one does not make a serious error if one derives the 
complex logarithm of X(w) from only the principal lobes 0.5Qo(w - wo)T and 
0.5Qo(w + wo)T. Under this assumption X(w) is given by 

We now apply the band-pass mapping defined in Subsubsect. 3.2.6. We recall that 
it consists of band-pass filtering the spectrum X(w) followed by the mapping trans- 
formation. Here the spectra is filtered around the frequencies -wo and wo in such a 
way that 

X(w), if 0 I J(w - wo)T( 5 * and 0 I I(w + wo)TJ I r; 
otherwise. 

W B.2.1. Derivation o f z ( o )  for 0 I J(o - wo)TJ 5 r 
For the values of w close to wo , one can assume that the quantity 
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is negligible and write 

A sin(w - wo)T 
X,,(w) = log $T + log 

(w - wo)T 

(This condition is fulfilled when wo is much larger than 1/T.) If one now applies 
band-pass mapping, the frequency w is transformed into w1 by 

and therefore 
w = 2 w l l ~  + wo - KIT. 

The expression of X,,(w) becomes, with respect to wl, 

And then the logarithm can be expanded in series as follows: 

where B, are the bernouilli numbers. 

m B.2.2. Derivation of Z(w) for 0 5 I(w + wo)T1 5 n 
For the values of w close to -WO, one can assume that the quantity 

is negligible and write 

A 

X-,,(W) = log :T + log sin(w + wo)T 
(w + wo)T l 

If one now applies band-pass mapping, the frequency w is transformed into w1 by 

and therefore 
w = 2w1/T - wo + KIT. 
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The expression of X,, (W) becomes, with respect to W', 

Then the logarithm can be expanded into series as follows: 

The sum Z,,(wl) + 2-,,(wl) is called ZBp(wl). 

B.2.3. Inverse fourier transform of ( W ' )  

Let Spe(t) be the inverse fourier transform of ~ B P ( w ' ) ,  given by 

1 1 1  I 
Let I-, be the integral -%-,,(W )eJw dw and I,, the integral dw . 
I-,, is given by 

0 I (-l)n22n-1 Bn I 

I-, = log +T ejW dwl t C 
n(2n)! [=(2wl+ dw . n= l 

And if the variable W' is changed into the variable W = 2w1 + 27r the integral I-,, 
becomes 

I,, is given by 

' (-l)n22n-l 

Bn 6' I,, = log +T 1 e j ~ "  dwl + C 
n(2n)! (2u' - + ) 2 n e j ~ 1 t  dwl . 

n=l 
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And if the variable W' is changed into the variable W = 2w1 - 277 the integral Iwo 
becomes 

I,, = 2ejnt [log +T 

Consequently iiPB (t) assumes the form 

sin(+ *I!) + E (- 1)n22n-1 & 
iipB(t) = 4 cos(+ nt) w2nej~t12 dw 

fn t  n=l n(2n)! 

This can be simplified as follows. When I = w2"ejwtI2 dt is integrated by parts 
it has the following form: 

J 

- L w2nej~t/2 dt i and consequently the integral I, - s given by 

I W - - =2n+l sin(4nt) +- 4n7r2" cos(+nt) - 8n(2n - 1)7r2"-I sin(# nt) 
1 znt $nt t2 znt 1 

- . . . -  (-1)n-2(2n)!22n-1n3 sin(+ nt) (-1)"-1 (2n)!22nn cos( +*t) 
t2n-2 +nt + t2n-1 1 57rt 

And if we define the variables Cn(t) and Dn(t) as 
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The simplified form of 5pB ( t )  becomes 

sin( flrt) + 4 cos(nt) log f T f lr 
tlrt . 

B.3. DERIVATION OF THE COMPLEX CEPSTRUM OF THE BOTTOM IMPULSE 
RESPONSE 

We consider Hl(w)  as the transfer function of one finite-thickness layer given by [25] 

where r is the time delay across the layer and ro(ro < 1 )  is the reflection coefficient 
of the first layer boundary. One must normalize Hl(w)  by removing the component 
- e- j w r  and we end up with the simplified form of Hl(w):  

If one derives the complex cepstrum in the full frequency band, the following ex- 
pression is obtained for hl( t ) :  

Under the assumption that the terms higher or equal to $r i  can be neglected, one 
arrives at the complex cepstrum expression of the second order: 

h, ( t )  = -rO6(t t 2 r )  - ir:6(t  + 4 r )  + r06(t - 2 r )  + i r ;d ( t  - 4 r ) .  

The problem is that the bottom transfer function has been band-pass filtered as the 
Hanning-windowed CW pulse. Consequently the same band-pass mapping must be 
used before deriving the complex cepstrum. We recall that the frequency transform 
is defined by 

( lrw - + l r J T )  for 0 5 [ (w  - wo)T1 5 l r ,  
I 2 ~ l T  
= r w - ( w O ' " / ~ )  

for 0 6 1(w t w o ) T l  5 lr. 27r/T 
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Let us now derive the expression of Hl(wl) around the two frequencies WO and -WO. 

8.3.1. Derivation of Hl(wl) for 0 5 I(w - wo)T( 5 r 
~ [ ( w l )  is given by 

Let us call a the quantity WO - KIT,  and take the logarithm of both sides of the 
equation and expand it into its Taylor series 

r?1(wf ) = - f i e  j(2w1 /T+a)r - Free 1 j2(2w1/T+a)r 
I 

- i r 0 f i e  j3 (2w /T+a)r - . . . + f i e j ( 2 w f / ~  + a)r 
l l 

1 j (2w /T+a)r + IT f i e j 3 ( 2 w  /T+a)r - free 3 0 

+ . . . + f i e - j ( 2 w > ~ + a ) r  + $roe-j2(2w1/~+a)r 

+ $~o&e- j3(2w1 / T + ~ ) T  - . . . - \r roe - j(2w1/~+a)r 

+ IT e-j2(2w1/~+a)r - 1 ~ ~ ~ ~ - j 3 ( 2 w ~ / ~ + a ) r  
2 0 3 + .... 

All the odd terms disappear and the expression becomes 

8.3.2. Derivation of Hl(wl) for 0 5 /(W + wo)TI 5 K 

By the same kin_d oftderivation as in the previous case, one ends up with the following 
expression for Hl (W ): 
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B.3.3. Derivation of the complex cepstrum hl(t) 

Take the inverse fourier transform of f i l (wt )  

and derive the integrals corresponding to the terms r o  of Zi(w1), since the derivation 
of the higher order terms(ro2, r i ,  . . . ) is similar. Define first the function g(t) as 

which gives 

sin ~ ( t  - 4r/T) sin2 kr( t  - 4r/T) + sin(2as) 
r ( t  - 4r/T) i r ( t  - 4r/T) l 
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Now define the functions hl(t + 4r lT)  and h2(t - 4r lT)  as follows: 

cos n (t  + 4r/T) sin2 i n  (t  + 4rlT) 
hl (t + 4r/T) = -2n - sin(2ar) 

n (t + 47/T) i n  (t + 4rlT) 

sin n (t - 4r/T) sin2 i n  (t - 4rIT) 
h2 (t - 4r/T) = 2a + sin(2ar) 

n (t - 47/T) i n  (t - 4r/T) 

The derivations of the integrals of higher order are completed in the same way and 
finally the complex cepstrum assumes the form 

In the second order, the complex cepstrum will have the form 

Let us now discuss the expression for the complex cepstrum with respect to the 
different parameters involved. The most important is the time delay T whose value 
determines whether or not we will be able to separate the bottom complex cepstrum 
from the 'boundary reflections'. T is obviously a function of the layer depth and 
the layer sound velocity (i.e. it depends on bottom composition). Figure 112a, 
[18], represents the sound velocity in the layer function of the porosity of the layer 
components. Figure 112b, [19], shows the dependence of the sound velocity function 
on relative density, porosity and reflection coefficient. Let us consider two relatively 
opposite situations. The first one consists of a layer of low density, high porosity and 
low coefficient of reflection. Let us take the case where these three parameters have 
respectively the values 1.3,80(%) and 0.1. According to Fig. 112b the corresponding 
velocity equals 1400 m/s if one assumes a water sound velocity of 1500 m/s. Let 
the layer depths be respectively equal to 50 m and 100 m. The incidence angle OSb 
being 60°, the time delays T are respectively 0.041 S and 0.082 s.The corresponding 
complex cepstra hl(t) are depicted in Figs. 113a and b. The second case corresponds 
to a layer of high density, low porosity and high reflection coefficient with parameter 
values respectively of 2.1, 32(%) and 0.4. Thus the sound velocity within the layer 
is 1800 m/s, and for the same layer thicknesses and incidence angle as previously, 
the time delays are 0.032 s and 0.064 S. The complex cepstra hl(t) are presented in 
Figs. 114a and b. 

It is meaningful to assume that the time delay 47 is much smaller than and 
therefore hl(t) can be band-pass-filtered. 
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B.4. DERIVATION OF THE SURFACE IMPULSE RESPONSE AFTER BAND-PASS 
MAPPING 

We consider the case of low frequencies and a very smooth surface. Under these 
assumptions the surface transfer function assumes the form (Fraunhofer diffraction), 
1201 9 

iQ H,(w,t) = -e , 
where 

2w = - COS 8,((Rs, t,). 
C 

8, is the incidence angle of the wave with respect to the normal to the surface; 
((R,, t,) is the surface profile at the point of specular reflection. ((R,, t,) is a 
random function of the sea surface elevation (surface roughness). Our purpose is to 
derive the impulse response h,(t) after the band-pass mapping has been applied. As 
before let us distinguish the two cases 0 5 (w - wo)T I < n and 0 L. (w + wo)T I 5 r. 

B.4.1. Derivation of H,(w) for 0 5 Iw - wo)TI 5 n 
The frequency transform is defined by 

Thus, 

where a = wo - r / T .  

B.4.2. Derivation of H,(w) for 0 5 (w + wo)TI 5 n 
The frequency transform is defined by 

Thus, 
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Take the inverse fourier transform to get h,(t) 

By replacing H. (W') by its values h, ( t  ) becomes 

0 4 cos 9, 
cos(9.)((R8, t.)] J ~ X P  [jwl (t - T((R~,  to))] dwf 

- b 

A 4cosga((R.,t,))] dwl 
+ exp [- j? c o s ( 9 8 ) ~ ( ~ 8 ,  t.)] 1 ~ X P  [jwl (t - 7 

i.e. 
1 - exp [-jn ( t  - (4 cos9./cT)((R8, t,))] l 

1 - exp [ in (t - (4 cos~,/cT)C(R8, t.))] 
j (t -. (4 cos g81cT)6(R,, t,)) 

Finally we end up with 

2a sin [n (t - (4 cos 9,/cT)C(R8, t,))] h.(t) = cos [T cos (9,) ((R., t.)] * ( t  - (4 cos ga/cT)C(Ra , to)) 

2a sin2 [ i n  (t - (4 cos B,/cT)((R,, t,))] + s i n  [- cos (9.) ((R., t.)] n 
C i n  (t - (4 cos 9, /cT)C(R8, 1,)) ' 

Let us assume that the random function ((R,,t,) is described by the roughness 
parameter, which is the random wave height. If h = hob,, where h. is the basic 
wave height and h, is a random number following a normal distribution with zero 
mean and unit standard deviation, and the incidence angle is equal to 60°, the 
surface impulse response shown in Fig. 115 is obtained. 

The problem now is to properly filter the complex cepstrum in order to deconvolve 
the wavelet and the medium response(boundary reflection). If the time delay r, is 
amall with respect to the signal z(t)  length, then i.(t - r,) - ih,(t)  * h,(t - Zr,) 
will be overlapped by i ( t ) ( in  our example the time delay r, is equal to 0.133 S). It 
would thus be reasonable to filter in such a way that 

iw (t) = ~ ( t )  + hl(t), 03.5) 
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i w ( t )  is the band-pass-filtered cepstrum around t  = 0 and represents an estimation 
of the complex cepstrum of the wavelet; i m ( t )  is equal to i ( t )  - i m ( t )  and represents 
an estimation of the complex cepstrum of the so-called medium response (boundary 
reflection). 

Remark 3 The complex cepstrum component corresponding to the medium re- 
sponse is more sensitive to the noise than the wavelet component: in our case the 
noise efect on the deconvolved wavelet is null. 

Let us assume that the complex cepstrum is filtered in such a way that i w ( t )  and 
i m ( t )  are given by Eqs. (B .5 )  and (B.6) .  We now apply the inverse homomorphic 
transform to get the deconvolved wavelet and the deconvolved medium response. 

B.5. DERIVATION O F  THE DECONVOLVED WAVELET 

Take the fourier transform of both sides of Eq. (B .5 )  

gW(w)  = 2 ( W )  + & ( W ) .  

Take the complex exponential of both sides of the previous equation 

Sw(w) = X(w)H1(w).  

Take the inverse fourier transform to get the deconvolved wavelet given by 

3,(t) = z ( t )  * hl(t) .  (B .7 )  
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B.6. DERIVATION OF THE DECONVOLVED MEDIUM RESPONSE 

Before proceding with the derivation, we stress that i m ( t )  is strongly perturbed by 
the noise component n ( t )  (Eq. (B.6)). Since we recall that i m ( t )  is given by 

Take the fourier transform 

H3(w)ejW? - $ ~ ~ ( ~ ) ~ e j ~ ~ ?  can be considered as the Taylor expansion of log[l + 
H3(w)ejw?] to the second order. H2(w)e-jW('"-?) - $H2 (w)2e- jw2(ra-r~)  can be 
considered as the Taylor expansion of log[l + ~ 2 ( w ) e - j ~ ( ~ ~ - ~ a ) ]  to the second order. 
Thus, .?m(w) will have the form 

Take the complex exponential of both sides of the previous equation and reintroduce 
the linear phase component e- jwq 

Let Hp(w)  be the perturbation exp[- H4(w)e- jWTd]  and take the inverse fourier trans- 
form of the previous equation to get the deconvolved medium response before resti- 
tution of the linear phase component 
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B.7. APPLICATION TO PARTICULAR CASES 

We now consider the reflected paths to be solely reflections at the bottom and 
bottom-surface without any modification of the tranfer function of the transmitted 
signal up to a time delay. In other words the bottom transfer function Hl(o) and 
the surface transfer function H, (W) verify 

We also assume that the signal-to-noise ratio is high enough to allow all terms 
containing N(w)/X (W) to be neglected. Under these assumptions the relations (B.7) 
and (B.8) assume the simplified form 

B.8. CONCLUSIONS 

The derivation of the complex cepstrum using this simple propagation model evokes 
two major observations: 

(1) The received signal after reverberation is not minimum phase (Eq. (B.2)). 

The derivation of the layer complex cepstrum shows that it is difficult in 
the cepstral domain to separate by rectangular windowing the transmitted 
pulse from the layer response, because they occupy the same cepstral space 
(Figs. 113a,b and 114a,b). Therefore, what we deconvolve is the wavelet, from 
the boundary reflections, and incidentally obtain some information about the 
layer. 

The location of the source and the array (closer to the surface or closer to the 
bottom) allows us to estimate the bottom impulse response or the surface impulse 
response. 
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Appendix C 

Estimation of the  rank of t h e  correlation 
matr ix  R,, 

C.1. TEST OF AIC AKAIKE 

The method developed in this appendix has been already used in passive array 
processing [29]. The purpose was to estimate the number of sources from the cross- 
spectral matrix measured at the output of the array. 

l 

Let X = (X1, X2 , ..., XN) be a series of independent, zero-mean, gaussian vector 
random variables of order P and variance matrix 

Rxx = aI + R,,. 

Their probability density is given by 

N 
T -1 p(X/o, R,,) = 2r-NP12(det~..)-N12 exp(- $ X, R,.X,). 

n=l 

Let us define the likelihood function by 

-2 
@(X/a ,  R,,) = - lnp(X/a, R,,) - P ln27r N 

N 
= In det R.. + X: R;: X, 

n=l 

= lndet(a1 + R,,) + f t r ( a I +  R , , ) - ~ ~ , ,  

where 

One wants to estimate, in the maximum likehood sense, the two unknowns (a, R,,), 
which is equivalent to minimizing the function @(X/a ,  R,,) 
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C.l . l .  Minimization of the likelihood function 9 (X/a ,  R,,)  
Let us assume that the matrix R,, is of rank Q. R,,  can be expanded into its 
eigenvalues and eigenvectors decomposition 

The inverse of a1 + R,,  is given by 

and then 
n 

Q 
t r ( a I  t R,,)-'R.. = - 

a i= l 

and 
Q 

det(aI  + R,,) = a P - O  n(a + Ai) .  
i= l 

Thus the function 9 (X/a ,  R,,)  will have the form 

To globally the function O(X/a, Xi, U;) minimize one minimizes it for each of the 
three variables with other two fixed. 

C.l .la. Minimization of 9. with respect to ui, i E [ l ,  Q], with Xi, i E [l, Q], and a fixed 
This is equivalent to maximizing the quantity 

One recalls that a quadratic form uk,,uT, ( 1  U 115 1, is maximum if U is the 
n 

eigenvector of R,, corresponding to the largest eigenvalue. Because we have the 
sum of Q quadratic forms, the maximum is reached for the Q eigenvectors iii of 
n 

R,,. Thus the minimum of the function 9 is given by 
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4 

where i E [l, Q], are the eigenvalues of R,, arranged in decreasing order. 

C.l.1 b. Minimization of 9 with respect to X i ,  i E [l, Q], with Gi,i E [ l ,  Q], and a fixed 
Noting that 

X i  - a  - 1 -  
(a + X i )  (a + X i )  

and 

it follows that 

The function is minimum for the gradient equal to zero and the hessian positive. It 
can be easily verified that the hessian is always positive. The gradient equals zero 
when 

1 &i - -0 ,  1 < i L P ,  
( a  + X i )  (a + Xi)2  

which gives us the solution 
ii = di - a .  

The minimum of the function 9 assumes the form 

C . l . 1 ~ .  MinimizationofQ, withrespect t o a , G i , i € [ l , Q ]  with&,iE[l ,Q]fixed As 
previously, 9 is minimum for 

P - Q  1 
P 

--- 
a a2 C i i = o ,  i=Q+1 

and the solution is given by 
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The global minimum of 9 is given by 

where 

C.2. AKAIKE CRITERION, APPLICATION TO THE ESTIMATION OF THE RANK 
OF R,, 

The Akaike estimate of the order of a model at the minimum of the function is 

number of free parameters 
f ( g )  = -G(!!) + N , 

where 9 ( q )  is the maximum likehood function of the model at the order g. In our 
case @ ( q )  is given by Eq. (C.2). Using the Choleski decomposition, we have 

R,, = L L T ,  

where L is a lower-triangular matrix with P  rows and Q  columns. Then the number 
of free parameters is 

P + ( P -  l ) + ( P - 2 ) t  . a . (  P - Q  + 1)  = Q P -  f~~ = Q ( P -  + Q ) ,  

and the function f ( q )  takes the following form 

in which the constant term has been removed. 
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ARRAY 

BOTTOM \ 
Fig. l .  Three-path propagation model (source and array close to the 
surface). 

Fig. 2. Three-path propagation model (source and array close to the 
bottom). 
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I I 

Fig. 3. Canonical representation of a homomorphic system. 

Fig. 4. Canonical representation of a homomorphic deconvolution system. 

P 

Fig. 5. Characteristic system D. of a homomorphic deconvolution. 

Fig. 6. Bandpass complex cepstrum system D..  

m Band pass -~ 
Mapping 

X(.) F -W 
Z .  - L O ~ ( % Z ) )  i1 
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RECEIVED SIGNAL POW 

-- 

IR SPECTRUM 
)I&NtIIMC WINDOW 
LENCW : 66 Y U P L F S  
'.NR(C3J~RCC)- 15.00 
lKR(QECCh€D)- 8 OS 40 

0.0 0.1 0.2 0.3 0.4 0.5 
NORMALIZED FREQUENCY 

RECEIVED SIGNAL POWER SPECTRUM 

- - 
0.0 0.1' 0.2 0.3 0.4 0.5 

NORMALIZED FREQUENCY 

POWER SPECTRUM 
/ A  1 1 

- .  

0.0 0.1 012 
NORMALIZED FREQUENCY 

Fig. 7. Example of band-pass mapping. 
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Fig. 8a. Global complex cepstrum deconvolution. 

..-a- 

' .-. 

Fig. 8b. Deconvolution procedure by combination of homomorhic and Wiener 
filtering. 
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SHIFTED AND STRETCHED POWER SPECTRUM 

0.0 0.1 0.2 0.3 0.4 0.5 
NORMALIZED FREQUENCY 

Fig. 9. Spectrum of the CW pulse after band- 
pass mapping. 

SHIFTED AND STRETCHED POWER SPECTRUM 

0.0 0.1 0.2 0.3 0.4 0.5 
N O W Z E D  FREQUENCY 

Fig. 10. Spectrum of the medium response after 
band-pass mapping. 

0.0 0:2 0:s 0:5 
NORMALIZED FREQUENCY 

Fig. 11. Spectrum of the received signal after 
band-pass mapping. 
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PHASE BEFORE UNWRAPPING(WAVELET) I ErTV :0.25 1 
: LENGTH : 64 SAMPLES 

0.1 0.2 0.3 0.4 
NORMALIZED FREQUENCY 

Fig. 12. Phase of the CW pulse before unwrapping. 

6.28 

A 
3.14 

U 
a 
L 
Y 

0.00 

-3.14 
0.0 0.1 0.2 0.3 0.4 0.5 

NORMALIZED FREQUENCY 
Fig. 13. Phase of the medium response before unwrapping. 
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PHASE BEFORE UNWRAPPING(RECEIVED SIG) 

HANNING WlNOOW 
LENGTH . 64 SAMPLES 
SNR(SOuRCE)= 0 00 dB 
SNR(RECEMO)= 0 W dB 

NORMALIZED FREQUENCY 
Fig. 14. Phase of the received signal before unwrapping. 
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NORMALIZED FREQUENCY 
Fig. 15. First derivative of the phase of the CW pulse. 

Fig. 16. Second derivative of the phase of the CW pulse. 

300 
PHASE SECOND DERIVA-WE (WAVELET) 
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U 
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Y 

-200 - 

-300 1 I I I I 

0.0 0.1 0.2 0.3 0.4 0.5 
, . NORMALIZED FREQUENCY 

. . 

; . . . .  . . . . . . . . . .  . . .  < i . . . .  . . L  !. , L  .......................... 

j J 
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PHASE FIRST DERIVATIVE (MEDIUM) 

-200 I I I 1 I I l 

0.0 0.1 0.2 0.3 0.4 0.5 
NORhdALIZED FREQUENCY 

Fig. 17. First derivative of the phase of the medium response. 

-400 
-600 
-800 
- i nnn 

I 

0.0 0.1 0:2 
NORMALIZED FREQUENCY 

Fig. 18. Second derivative of the phase of the medium response. 
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PHASE FIRST DERIVATIVE (RECEIVED SIG) 
CW NORMALIZED FR .O 25 
HANNlNG WINDOW 
LENGTH . 6 4  UMPLES 
SNR(S0URCE)- 0.00 dB 
SNR(RECEMD)= 0.00 dB 

-70 ! I 1 I I 1 
0.0 0.1 0.2 0.3 0.4 0.5 

NORMALIZED FREQUENCY 
Fig. 19. First derivative of the phase of the received signal. 

1000 
PHASE SECOND DERIVATIVE (RECEIVED SIG) 

800 - 
600 - S 

400 - - 200 - U 
2 0 

cu' 
(D -200 - 
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-400 - 
-600 - 
-800 - 
-1000 

CW NORMALIZED FR :0.25 
HANNING W ~ N ~ D W  
LENGTH : 64 SAMPLES 
SNR(SOURCE)- 0.00 de 
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Fig. 20. Second derivative of the phase of the received signal. 
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Fig. 21. Phase of the CW pulse after unwrapping (before linear phase 
removal). 
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Fig. 22. Phase of the medium response after unwrapping (before linear 
phase removal). 
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Fig. 23. Phase of the received signal after unwrapping (before linear 
phase removal). 
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Fig. 24. Phase of the CW pulse after unwrapping (after linear phase 
removal). 
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NORMALIZED FREQUENCY 
Fig. 25. Phase of the medium response after unwrapping (after linear 
phase removal). 
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Fig. 26. Phase of the received signal after unwrapping (after linear phase 
removal). 
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Fig. 27. Phase of the received signal (explosive) after unwrapping (before 
linear phase removal). 
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Fig. 28. Phase of the received signal (explosive) after unwrapping (after 
linear phase removal). 
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EIGENVALUE OF 'THE AUTOCORR. MATRIX 

EIGENVALUE NUMBER 
Fig. 29. Eigenvalues of the autocorrelation matrix of the received signal 
(transmitted pulse: 16 time-samples CW pulse). 

EIGENVALUE OF THE AUTOCORR. MATRIX 

EIGENVALUE NUMBER 
Fig. 30. Eigenvalues of the autocorrelation matrix of the received signal 
(transmitted pulse: 64 time-samples CW pulse). 
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order q 
Fig. 31. Akaike function (transmitted pulse: 16 time-samples CW pulse). 
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Fig. 32. Akaike function (transmitted pulse: 64 times-samples CW 
pulse). 
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Fig. 33. Estimate of the noise-to-signal ratio (transmitted pulse: 16 time- 
samples CW pulse). 
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Fig. 34. Estimate of the noise-to-signal ratio (transmitted pulse: 64 time- 
samples CW pulse). 
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Fig. 35. Configuration of the active sonar backscattering simulation. 
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TRANSMlllED PULSE 

TIME SAMPLES 
Fig. 36. Transmitted pulse (Hanning-windowed CW pulse). 

CORRELATION WAVELET-CW PULSE 

TAU 
Fig. 37. Cross-correlation between the transmitted pulse and the decon- 
volved wavelet (Hanning-windowed CW pulse; 3 multiples; r = 80, 110, 
170; SNRR = 14 dB). 
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Fig. 38. Received signal (Hanning-windowed CW pulse; 3 multiples; 
r = 80, 110, 170; SNRR = 14 dB). 
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HANNING WINDOW 

NORMALIZED FREQUENCY 
Fig. 39. Received signal power spectrum (Hanning-windowed CW pulse; 
3 multiples; r = 80, 110, 170; SNRR = 14 dB). 
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Fig. 40. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples; 
T = 80, 110, 170; SNRR = 14 dB). 
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Fig. 41. Deconvolved medium response by cepstrum (Hanning-windowed CW 
pulse; 3 multiples; T = 80, 110, 170; SNRR = 14 dB). 
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MEDIUM RESPONSE-WIENER FILTER 

0 32 64 96 128 160 192 224 256 
TIME SAMPLES 

Fig. 42. Deconvolved medium response by Wiener filtering (Hanning-windowed 
CW pulse; 3 multiples; T = 80, 110, 170; SNRR = 14 dB). 
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Fig. 43. Received signal (Hanning-windowed CW pulse; 3 multiples; T = 80, 
110, 170; SNRR = 9 dB). 
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Fig. 44. Received signal power spectrum (Hanning-windowed CW pulse; 
3 multiples; T = 80, 110, 170; SNRR = 9 dB). 
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Fig. 45. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples; 
T = 80, 110, 170; SNRR = 9 dB). 
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MEDIUM RESPONSE-WIENER FILTER 

0 32 64 96 128 160 192 224 256 
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Fig. 46. Deconvolved medium response by Wiener filtering (Hanning-windowed 
CW pulse; 3 multiples; 7 = 80, 110, 170; SNRR = 9 dB). 
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Fig. 47. Received signal (Hanning-windowed CW pulse; 3 multiples; 7 = 80, 
110, 170; SMRR = 4 dB). 
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Fig. 48. Received signal power spectrum (Harming-windowed CW pulse; 
3 multiples; r = 80, 110, 170; SNRR = 4 dB). 

0 32 64 96 128 160 192 224 256 
TIME SAMPLES 

Fig. 49. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples; 
r = 80, 110, 170; SNRR = 4 dB). 
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Fig. 50. Deconvolved medium response by Wiener filtering (Hanning-windowed 
CW pulse; 3 multiples; T = 80, 110, 170; SNRR = 4 dB). 
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Fig. 51. Received signal (Hanning-windowed CW pulse; 3 multiples; T = 80, 
110, 170; SNRR = -1 dB). 
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10 - RECEIVED SIGNAL POWER SPECTRUM 

Fig. 52. Received signal power spectrum (Hanning-windowed CW pulse; 
3 multiples; T = 80, 110, 170; SNRR = -1 dB). 
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Fig. 53. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples; 
T = 80, 110, 170; SNRR = - 1  dB). 
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-0.50 
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Fig. 54. Received signal (Hanning-windowed CW pulse; 3 multiples; T = 80, 
110, 170; SNRR = -6 dB). 
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LENGTH : 64 SAMPLES 

Fig. 55.  Received signal power spectrum (Hanning-windowed CW pulse; 
3 multiples; T = 80, 110, 170; SNRR = -6 dB). 
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Fig. 56. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples; 
r = 80, 110, 170; SNRR = -6 dB). 
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Fig. 57. Received signal (Hanning-windowed CW pulse; 3 multiples; r = 80, 
110, 170; SNRR = -11 dB). 
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Fig. 58. Received signal power spectrum (Harming-windowed CW pulse; 
3 multiples; T = 80, 110, 170; SNRR = -11 dB). 
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Fig. 59. Deconvolved wavelet (Hanning-windowed CW pulse; 3 multiples; 
T = 80, 110, 170; SNRR = -11 dB). 

Report no. changed (Mar 2006): SM-203-UU



CORRELATION WAVELET-CW PULSE 
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SNR(SOURCE)= 20.00 dB 

TAU 
Fig. 60. Cross-correlation between the transmitted pulse and the decon- 
vohed wavelet (Hanning-windowed CW pulse; 5 multiples; r = 80, 110, 
140, 170, 200; SNRR = 16 dB). 
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Fig. 61. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80, 
110, 140, 170, 200; SNRR = 16 dB). 
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Fig. 62. Received signal power spectrum (Hanning-windowed CW pulse; 
5 multiples; r = 80, 110, 140, 170, 200; SNRR = 16 dB). 
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Fig. 63. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples; 
r = 80, lio, 140, 170, 200; SNRR = 16 dB), 
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Fig. 64. Deconvolved medium response by cepstrum (Hanning-windowed CW 
pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 16 dB). 
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Fig. 65. Deconvolved medium response by Wiener filtering (Hanning-windowed 
CW pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 16 dB). 
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Fig. 66. Received signal .(Harming-windowed CW pulse; 5 multiples; r = 80, 
110, 140, 170, 200; SNRR = 11 dB). 
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Fig. 67. Received signal power spectrum (Hanning-windowed CW pulse; 
5 multiples; T = 80, 110, 140, 170, 200; SNRR = 11 dB). 
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Fig. 68. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples; 
T = 80, 110, 140, 170, 200; SNRR = 11 dB). 

l HANNING WINDOW 
LENGTH : 64 SAMPLES 
SNR(SOURCE)- 15.00 d e  

12 , MEDIUM RESPONSE-CEPSTRUM 

-12 I I 1 I I I I I 

0 32 64 96 128 l60 192 224 256 
TIME SAMPLES 

Fig. 69. Deconvolved medium response by cepstrum (Hanning-windowed CW 
pulse; 5 multiples; T = 80, 110, 140, 170, 200; SNRR = 11 dB). 
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Fig. 70. Deconvolved medium response by Wiener filtering (Hanning-windowed 
CW pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 11 dB). 
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Fig. 71. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80, 
110, 140, '170, 200; SNRR = 6 dB). 
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Fig. 72. Received signal power spectrum (Hanning-windowed CW pulse; 
5 multiples; r = 80, 110, 140, 170, 200; SNRR = 6 dB). 
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Fig. 73. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples; 
r = 80, 110, 140, 170, 200; SNRR = 6 dB). 
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Fig. 74. Deconvolved medium response by cepstrum (Hanning-windowed CW 
pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 6 dB). 
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Fig. 75. Deconvolved medium response by Wiener filtering (Hanning-windowed 
CW pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 6 dB). 
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Fig. 76. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80, 
110, 140, 170, 200; SNRR = 1 dB). 
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Fig. 77. Received signal power spectrum (Hanning-windowed CW pulse; 
5 multiples; r = 80, 110, 140, 170, 200; SNRR = 1 dB). 
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Fig. 78. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples; 
r = 80, 110, 140, 170, 200; SNRR = 1 dB). 
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Fig. 79. Deconvolved medium response by cepstrum (Harming-windowed CW 
pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 1 dB). 
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-0.020 
0 32 64 96 128 160 192 224 256 
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Fig. 80. Deconvolved medium response by Wiener filtering (Hanning-windowed 
CW pulse; 5 multiples; r = 80, 110, 140, 170, 200; SNRR = 1 dB). 
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Fig. 81. Received signal (Hanning-windowed CW pulse; 5 multiples; r = 80, 
110, 140, 170, 200; SNRR = -4 dB). 
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Fig. 82. Received signal power spectrum (Hanning-windowed CW pulse; 
5 multiples; r = 80, 110, 140, 170, 200; SNRR = -4 dB). 
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Fig. 83. Deconvolved wavelet (Hanning-windowed CW pulse; 5 multiples; 
r = 80, 110, 140, 170, 200; SNRR = -4 dB). 
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Fig. 84. Configuration of the active sonar backscattering experiment. 
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Fig. 85. Transmitted pulse: Hanning-windowed CW pulse of 2 S. 

TIME SAMPLES 
Fig. 86. Received signal (beam 6, ping 9, range 8). 

Report no. changed (Mar 2006): SM-203-UU



E 
W 
c;] 
W 

g 
n 
9 
c;] 

S z 

I I I I I I I I I 
0 32 64 96 128 160 192 224 256 

TIME SAMPLES 
Fig. 87. Deconvolved wavelet. 
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Fig. 88. Deconvolved medium response by Wiener filtering with the decon- 
volved wavelet as input 
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Fig. 89. Deconvolved medium response by Wiener filtering with the trans- 
mitted pulse as input. 
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Fig. 96. Configuration of the explosive experiment. 
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Fig. 9 '1. Received signal on each hydrophone of the vertical array. 
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Fig. 92. Received signal on hydrophone 17. 
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Fig. 93. Power spectrum of the received signal on hydrophone 17. 
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Fig. 94. Received signal on hydrophone 4. 
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Fig. 95. Deconvolved wavelet on hydrophone 17. 
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Fig. 96. Deconvolved wavelet on hydrophone 4. 
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Fig. 97. Comparison of the partial energies of the decon- 
volved wavelet on hydrophone 17 and deconvolved wavelet 
on hydrophone 4. 
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Fig. 98. Power spectrum of the deconvolved wavelet on hydrophone 17. 
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Fig. 99. Power spectrum of the deconvolved wavelet on hydrophone 4. 
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MEDIUM RESPONSE-WIENER FILTER 

TIME SAMPLES 
Fig. 100. Deconvolved medium response on hydrophone 17 by Wiener filter- 
ing. 

MEDIUM RESPONSE-WIENER FILTER 

TIME SAMPLES 
Fig. 101. 'Deconvolved medium response on hydrophone 4 by Wiener filtering. 
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Fig. 102a. Deconvolved medium response on each hydrophone 
of the vertical array by Wiener filtering. 
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Fig. 102b. Propagation model. 
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Fig. 103. Zero-pole diagram of the transfer function G, , ( z ) .  

Fig. 104. Zero-pole diagram of the transfer 
function Xo(z). 
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Fig. 105. Zero-pole diagram of the transfer function XI(%). 
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Fig. 106. Zero-pole diagram of the transfer function X2(z). 
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Fig. 107. Minimum phase signal zo(t). 
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Fig. 108. . Mixed phase signal zl ( t ) .  
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Fig. 109. Mixed phase signal x a ( t ) .  
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Fig. 110. Comparison of the partial energies of the signals x o ( t ) , x l ( t )  and 
x a ( t ) .  

0 8 16 24 32 40 48 56 
TIME SAMPLES 

10 poles outslde of 
the unlt clrcle 

1 )  
L 

\ ,i 

I i i 1 I I I 

Report no. changed (Mar 2006): SM-203-UU



Fig. 111. Expression of the complex cepstrum. 
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