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Test ing f lni te  differencing schemes for 
t h e  shallow w a t e r  equat ions  

G. Peggion 

Abst rac t :  The explicit, the semi-implicit, and the fractional step sche- 
mes are tested and compared in the solution of the shallow water equations. 
The explicit finite-difference formulation is the most accurate, but is restric- 
ted by a stability condition which is not suitable for long-term numerical 
simulations. The standard semi-implicit scheme requires the solution of an 
elliptic equation which is also time-consuming. The fractional step method 
results in the least accurate, but computationally the most efficient solu- 
tion. 

Keywords: Courant-Friedrichs-Levy stability condition o explicit 
scheme o fractional step method o semi-implicit scheme o shallow 
water equation 

- iii 

Report no. changed (Mar 2006): SM-202-UU



Contents 

1 . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 
2 . The scheme formulations . . . . . . . . . . . . . . . . . . . . . .  3 

2.1. The continuous and discrete shallow water equations . . . .  3 
. . . . . . . . . . . . . . . . . . . . . . .  2.2. The explicit scheme 4 

2.3.  The semi-implicit scheme . . . . . . . . . . . . . . . . . . .  6 
2.4. The fractional step method . . . . . . . . . . . . . . . . . . .  7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 3 Applications 9 
4 . Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 

Report no. changed (Mar 2006): SM-202-UU



1. Introduction 

The study of ocean and atmosphere dynamics classically develops from setting 
mathematical frameworks. These may be collections of numbers labelled as obser- 
vations or systems of equations, considered as 'truly representative' of the dynalllics. 
Within the limits of the assumptions and approxilnations of the analytical model, 
the numerical technique used for solving the problem may introduce two additio- 
nal distortions into the representation of the solutions: the error inherent from the 
truncated arithmetic and the error created by approximating continuous differential 
equations with discrete algebraic expressions (Grotjahn and O'Brien, 1976). Howe- 
ver, the accuracy of the solutions is not the only requirement to be fulfilled in the 
development of ocean and atmosphere models. At the present stage of technology, 
computer efficiency might be an even more restrictive condition. 

The shallow water equations are the prototype equations for primitive equation mo- 
dels of ocean/atmosphere dynamics. It is well known that numerical techniques ba- 
sed on explicit-time differencing schemes are considerably affected by the Courant- 
F'riedrichs-Levy (CFL) stability condition that controls the high-frequency gravity 
wave motion. Although explicit schemes are always more accurate than implicit, 
the latter are widely applied because they are able to use much larger time steps 
(O'Brien, 1986). In general, fully-implicit schemes are seldom applied, and semi- 
implicit schemes are often applied in ocean/atmosphere models (Hamilton, 1977). 
Such schemes treat the terms that govern the fast gravity waves implicitly and the 
remainder explicitly. 

The implicit/semi-implicit schemes usually require the solution of a two-dimensional 
Poisson or Helmholtz equation. A large number of different solver routines exist for 
such an elliptic equation. However, all these methods are time-consuming and most 
of them are applicable only for particular boundary shapes or boundary condition 
specifications. In order to avoid this problem, Tanguay and Robert (1986) have 
recently proposed an algorithm called the fractional step method, which reduces 
the matrix from the Helmholtz equation to a simple tridiagonal system in each 
of the two horizontal spatial dimensions. Consequently, solutions can be efficiently 
obtained by a special form of Gaussian elimination method (Carnahan et al., 1969). 
The practical advantage is that no additional computer time is required in this part 
of the calculations (compared to the total computation of large-scale dynamics 
models). Although the Tanguay-Robert algorithm is based on a modified version 
of the shallow water equations with the inclusion of an extra nonphysical term, 
the method looks so promising that the main purpose of this study is to verify the 
accuracy of the scheme in long-term numerical simulations. The scheme is therefore 
tested and compared with the explicit and the semi-implicit methods. 
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Section 2 presents the formulation of the different numerical schemes. The schemes 
are compared in Sect. 3,  and the results discussed in Sect. 4.  
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2. The scheme formulations 

2.1. THE CONTINUOUS AND DISCRETE SHALLOW WATER EQUATIONS 

We consider a simplified formulation of the shallow water equations (Pedlosky, 
1979). The equations are referred on a f-plane with a cartesian coordinate sy- 
stem (2, y ) chosen such that in the Northern hemisphere the x-coordinate increases 
eastwards and the y-coordinate increases polewards, taking the form 

' I t  + H(u, + u,) = 0. (2.1.1~) 

The subscripts (z, y, t )  denote partial differentiation; the variables (u, u) are the 
components of the eastward and poleward velocities, respectively. The variable 7 
represents the free surface displacement, g is the gravitational acceleration, fo the 
Coriolis parameter, and H the total depth of the water column. Without a loss of 
generality we assume flat bottom topography. The equations are satisfied in the 
domain D : {(x,y)l 0 < x < L,, 0 < y < L,). 

The analytical solution of Eq. (2.1.1) may have the simple form 

where N is the amplitude of the wave, w the frequency, and tc and f the wave- 
numbers. It can be easily proved that the coefficients U and V as a function of 
amplitude are given by 

The wave expressed by (2.1.2) satisfies the dispersion relationship 

and has a group velocity GV of components 
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where O = d n .  Only positive frequency values are considered henceforth. 

The analytical problem (2.1.1) is numerically approximated on a C-grid. We have 
chosen this grid because it is the one most often used in large-scale dynamical 
models (Gramrneltvedt, 1969). All the terms are centred differences in space, with 
a grid network such that the functions u, v, and r ,~ have the numerical correspondent 

where j, m and n are the indices relative to the variables z, y and t, respectively. 
However, we will suppress the indices when not incremented. With the above 
assumptions and notations, the solution (2.1.1) is discretized as follows: 

where + indicates values to be computed for different schemes. The schemes are 
illustrated in the following sections. 

2.2. THE EXPLICIT SCHEME 

With the explicit scheme, Eqs. (2.1.1) are written as follows: 

where [. . .] indicates the average over the four closest points. 

This scheme is affected by the CFL stability condition, which requires a time step 
At such that 

1 1 at2[f; + gH(= + 5 1. (2.2.2) 
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Relative to the solutions (2.1.5), the scheme gives the following values: 

- sin nAx sin IA y 
UE = = 2  - iA- 

-E - A2 AX AY 

where 

A = fo cos SAX cos IAy, 

sin2 SAX sin2 IAy 
+ Ay2 1 

The components of the vector group velocity are symmetric, so we will consider 
only one of them, namely the eastward component. Unfortunately, the mathema- 
tical representation of the computational group velocities might be quite complex, 
and although intriguing would add no significant information about the associated 
numerical distortions. Thus it is only the group velocity values for non-rotational 
flows (viz. fo = 0) that are presented henceforth: 

gH sin 2nAx 
GVE = x r J( i  - At2r2) 2Ax ' 

We recognize a formal similarity between Eqs. (2.2.3) and (2.1.3) in the sense there 
are the 'computational wavenumbers' sin nAx/Ax and sin LAy/Ay corresponding 
to the 'true wavenumbers' K, and I, and the 'computational Coriolis frequency' A 
corresponding to the 'true Coriolis parameter', fo. These computational terms 
are independent of the explicit treatment of the Eq. (2.1.2). They are a direct 
consequence of the centred-in-space h i t e  difference approximation, and the C-grid 
(i.e. the 4-point average), respectively. Besides these computational variables, there 
are the additional computational frequencies, ZE, and WE. While the frequency ZE 
is the result of the centred-in-space finite difference scheme, the frequency WE is in- 
trinsic the explicit formulation. Thus we take WE to be the effective 'computational 
phase frequency' of the explicit scheme. 

It is easy to verify that all the computational variables converge and will converge to 
the corresponding analytical values as the increments At, Az, and A y tend to zero. 
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It generally follows that the representation is fairly good for long waves (i.e. those 
resolved by several grid points), but poor for shorter waves, particularly those with 
wavelengths less than 4Ac, 4Ay a wavelength 4Az corresponds to KAZ = n/2 
(Grotjahn and O'Brien, 1976). 

2.3. THE SEMI-IMPLICIT SCHEME 

The semi-implicit treatment of the shallow water equations is written as follows: 

where bt, and 6,, by are the centered finite difference operators in time and space 
respectively. With the use of incremented index variables, Eq. (2.3.1) are written 
as 

where Q1, Q2, and Q3 contain the remaining terms evaluated at time step n or n- 1. 
Substitution of (2.3.2a)-(2.3.2b) into (2.3.2~) leads to the numerical Helmholtz 
equation for qn+', when all the variables at time step n are known: 

where 

Once the surface elevations are determined, the velocity field can be updated from 
Eqs. (2.3.2a)-(2.3.2b). The scheme is still affected by the CFL stability condition 

With respect to the analytical solution of (2.1.1), the scheme gives the following 
conlput ational values: 

gN cos(osrAt) sin KAZ sin eA y 
Usr = - iA- 

- A2 AY 
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gN c,os(wsrAt) sin lAy + iA sin nAx Vsr = - 
- A2 Ax A) , (2.3.3a) 

1 h2 + r2 
w.1 = - At arctan (At/-) 1 - At2A2 ' 

gH sin 2nAx GV.1 = r ( l  + At2r2) 2Ax ' 
where ZsI is formally identical to ZE. 

A formal comparison between Eqs. (2.3.3) and (2.1.3) indicates that the semi- 
implicit scheme affects the amplitude of the wave, introducing also a 'computa- 
tional amplitude' NsI = N cos(wsIAt). Thus, the semi-implicit scheme tends to 
underestimate both frequency and amplitude of the waves. 

2.4. THE FRACTIONAL STEP METHOD 

In order to factorize the Helmholtz Eq. (2.3.2a), the fractional step method substi- 
tutes the continuity Eq. (2.1.1~) with 

where 

Treating the Eqs. (2.1.la,b), and (2.4.1) semi-implicitly, the 9-equation (2.3.2a) 
takes the form: 

where ,, and are the second-order centered difference operators on x and y ,  
respectively, and p = (gHAt2)26:6i17. Since the term p is of fourth order in At, 
the scheme should not introduce any significant error in the solution (Tanguay 
and Robert, 1986). 

The computational values associated to the scheme are 

gN c o s ( u ~ A t )  sin nAx sin LAy 
UF= =2 - in- - n2 AX AY 
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1 A2(1 + At2a2)  + r2 
wF = - arctan (At\/ At 

(2.4.313) (1 + At2a2)(1  - At2A2) 

dl + At2a2 (gX sin 2cAx - Fa sintAy GVF = 1 + At2(a2 + F 2 )  F 2Ax 1 + A t 2 a 2  Ay ~ t ~ g ~  cos KALE) , 

where 
sin %Ax sin tAy 

cr = gHAt Ax AY . 

It is easy to verify that the fractional step computational variables converge to 
the semi-implicit computational variables as 0(At4) .  Therefore for small At incre- 
ments the two schemes should end up virtually identical, confirming the Tanguay 
and Robert (1986) hypothesis. 

The x- and y-symmetry of the operator of (2.4.2) suggests the solution of the 
q-equation using an alternating direction iterative algorithm in which the x- and 
y-operators are inverted at each time step. At each iteration only the boundary 
conditions at two opposite sides are necessary. Let us solve the operator (2.4.2) 
with the following algorithm. 

First, we compute rl,j,, from 

at the inner q mesh points; no boundary conditions are required at this stage except 
for the terms that appear in the righhand side of (2.4.2). Now we compute $2' 
from 

,q = (1 - g H ~ t ~ 6 : ) q  = rl, (2.4.4b) 

using only the boundary conditions at the northern and southern boundaries. At 
the following time step the operator ,, and , are inverted. Subsequently, the use 
of an alternating direction algorithm allows a more accurate application of all the 
boundary conditions. 
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3. Applications 

To verify the accuracy of the schemes fully we now compare numerical results with 
exact analytical solutions of problem (2.1.1). Numerical experiments are performed 
with the following common features: total depth H = 2000 m, total extensions 
L, = 1000 km, and Ly = 1000 km, and grid spacing Az  = 17.4 km, Ay = 
17.4 km. Although the formulas presented in the previous sections are formally 
symmetric with respect to the wavenumbers K and t!, there is a different structure 
to the errors because they contain quadratic terms. Nevertheless, the computational 
frequencies and group velocities of the schemes are depicted in a one-dimensional 
form in Figs. 1-3. For simplicity we consider irrotational flows (i.e. fo = 0) and 
choose the wavenumbers such that KAZ = tAy. The schemes are tested for various 
values of the non-dimensionalized ratio 

Grotjahn and O'Brien (1976) gave an accurate and complete analysis of the di- 
stortions introduced by the explicit and semi-implicit time differencing schemes. 
In general, explicit formulations have the tendency to overestimate the oscilla- 
tions, whereas the implicit have the tendency to underestimate. Although explicit 
schemes are found to be more accurate than the implicit, the accuracy is usually 
incommensurate with the higher computational cost. The same findings apply to 
the fractional step method. As Fig. 3 confirms, the fractional step method intro- 
duces the same distortions of the semi-implicit approximation, but it is slightly 
less accurate. However the errors might well be compensated for the increased 
computational efficiency. 

Finally we compare the solutions obtained by solving numerically the problem 
(2.1.1) with the exact solution 

where the wavenumber is KO = 7.88 x cm-l, and the frequency is wo = 
1.44 x s-'. The amplitude is N = 20 cm, the velocities U and V are defined as 
in (2.1.3a). The wavenumber KO corresponds to a wavelength X = 50 in terms of the 
grid intervals. To obtain a good resolution of the wave period, the implicit schemes 
used a time step At = 217 s, which implies 20 time-iterations per period, and a 
value T ~ 1 . 2 5  The explicit scheme employ a time step At = 50 s, corresponding to 
a value T ~ 0 . 3 .  
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Fig. 1: The computational frequency (a) and computa- 
tional group velocity (b) of the explicit scheme norma- 
lized by the analytical exact value. The abscissa repre- 
sents the variable &Ax normalized by r.  (I) - r = 0.01, 
or At = 1.75; (11) - r = 0.5 or At = 87. 
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Fig. 2: The computational frequency (a) and computa- 
tional group velocity (b) of the semi-implicit scheme. ( I )  
- T = 0.01, or At = 1.75; (11) - T = 0.5 or At = 87; (111) 
- T = 1 or At = 175; (IV) - T = 10 or At = 1750. 
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Fig. 3: The computational frequency (a), and computa- 
tional group velocity (b) of the fractional step method. 
Same as Fig. 2. 
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Because of the staggered C-grid, the numerical algorithms require knowledge of the 
surface elevation at all the lateral boundaries and of the Coriolis terms foG, and fo5 
at the north-south and east-west boundaries respectively. In order to reduce the 
distortion due to the treatment of the boundary conditions, we force the schemes by 
specifying the boundary conditions from the exact analytical values. The use of the 
leapfrog scheme in time requires knowledge of all the variables at two initial tixne 
steps. Tests have been made to ensure that the given initial conditions do not affect 
the evolution of the solution. No substantial differences have been found after the 
initial adjustment, which is of the order of 1 period. In the following experiments, 
the algorithms are initialized with exact values at two consecutive time steps. 

The evolution of the sea-surface displacement at the middle-point of the basin is 
depicted in Fig. 4. It follows that the explicit scheme is definitely the most precise, 
with virtually no errors. On the other hand, of the implicit approximations, it is 
the semi-implicit scheme that is the most accurate. But the differences are minimal 
with respect to the total distortion. 

6.0 6.5 Y .O 7.5 B A 
cycle 

Fig. 4: The evolution of the free surface displacement 
at the middle point of the basin: (a) explicit scheme; (b) 
semi-implicit scheme; (c) fractional step method. The 
solid line represents the analytical solution. 
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o eat 
Fig. 5: The horizontal distribution of the free surface 
displacement after 8 wave-periods: (a) explicit scheme; 
(b) semi-implicit scheme; (c) fractional step method; 
(d) analytical solution. 
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Fig. 5:  Continued. 
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Figure 5 illustrates the surface elevation distribution over the whole basin after 
8 wave-periods. It is evident that specification of the boundary conditions together 
with the distortion between computational frequency (i.e. the frequency of the inte- 
rior) and exact frequency (i.e. the frequency at the boundaries) affects the quality 
of the solution. In general all the numerical schemes are sensible to this problem. 
High frequency waves that are present at the boundaries, might be removed by 
transforming the boundary conditions into a forcing term for the q-equation. This 
could be achieved by introducing a new function q' = q - g(x, y ,  t) ,  where g is an 
arbitrarily chosen high-frequency function such that q' = 0 on aD, and solving the 
differential problem for ql. In this a way the solution is locally adjusted to the 
short waves, and the distortions between computational and exact frequencies are 
not ably reduced. 
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4. Conclusion 

It has been shown that several alternative numerical schemes are available for sol- 
ving the shallow water equations. Explicit schemes are definetely the most accurate, 
but conlputationally the least efficient. For large time steps, implicit schenles re- 
tain stability by slowing the waves. Generally it is only the longest waves that 
are handled reasonably well. Among the schemes not affected by the CFL stabi- 
lity condition, the fractional step method presents many advantages. The coding 
is easier, and the scheme is computationally more efficient for arbitrary boundary 
shapes and boundary condition specifications. 

Large-scale dynamics ocean/atmosphere models might be considerably affected by 
boundary conditions, expecially in cases where boundary limits and boundary con- 
ditions are externally imposed, rather than directly defined from physical con- 
straints. In this regard appropriate application of the alternating h d  one-direction 
iterative algorithms of the fractional step method might reduce the distortions pro- 
pagating from the boundary to the interior. 

The overall conclusion is that in terms of accuracy, implementation, speed, and 
range of applications, the fractional step method can be successfully applied in 
large-scale dynamics models. 
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