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ABSTRACT 

Acoustic propagation problems which are solved using ray theory 
require certain input data. In particular, the source and receiver 
locations, sound-velocity field and bottom and surface conditions 
are required. Frequently, this data is known only to within certain 
confidence limits. Ray calculations are performed assuming that 
the input data is known to the required accuracy. A theory is presented 
which indicates the sensitivity of the calculations to small 
variations in the input data. The ray equation is characterized 
by a second-order ordinary differential equation; the intensity can 
be calculated along the particular ray directly. The necessity of 
having twice continuously differentiable velocity, surface and 
bottom profiles is clearly demonstrated in the theory. Specific 
examples are provided for specialized velocity profiles. 

INTRODUCTION 

The entire field of geometrical acoustics is expressed mathematically 

by the solutions associated with the first-order term in the 
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asymptotic expansion of the wave equation, where the expansion 
parameter is proportional to the inverse powers of the wavenumber , 
k. Inherent in any expansion procedure is an error analysis which 
will describe the range of applicability for the expansion. Ray 

theory provides an accurate approximation to the exact solutions 
of the wave equation so long as: 

[Eq. lJ 

This expression indicates that the solution of the eikonal equation 
will be an excellent approximation to the wave equation if the 

fractional change in the velocity gradient over a wavelength is 
small compared with 1. It is clear that this condition will be 
satisfied if the frequencies are sufficiently high and, for 
present acoustic systems operating throughout the world, this 
condition is met with ease. Other problems can arise in using an 
approximate theory which are not themselves dependent upon the 
analytical techniques required to derive the theory; namely, the 
possible sensitivity which the theory has to errors in input data 

or boundary conditions. Any problem in underwater acoustic 
propagation requires a speed of sound curve, or velocity profile, 
as input. This velocity profile may be simple or complicated; 
the ray paths will behav~ accordingly. The question which must be 
posed and, in fact, which we have addressed ourselves to is: if 
there are errors in the description of the velocity profile, how 
will these errors affect the original solutions? Extremely simple 
models, which are characterized by linear differential equations, 
generally can be considered to have the following characteristics: 
small changes in the model or in the inputs will produce small changes 
in the results. With the more complicated models which are now 
available in underwater acoustics, this is not necessarily the case. 

Ray theory requires the specification of a source and receiver point 
as well as the specification of the initial ray angle, 8 0 , This 
angle may only be known to within certain limits. This will clearly 
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show up under both long and short ranges as an error in the 
transmission loss, phase, ray path, etc. It is our purpose to present 
here a simplified theory which will allow the calculation of errors 
due to input conditions given a technique to calculate the original 
"error free ll solutions. 

Section I will deal with various types of velocity profiles. 
Section II will present a technique to obtain the necessary 
information to generate the data analysis . Section III will develop 
a general model for calculating the sensitivity of the original 
error free model to variations in input data. 
present the conclusions. 

I. DISCUSSION OF VELOCITY PROFILES 

Section IV will 

Present models incorporate a number of analytical techniques for 
describing velocity profiles. In general, the use of certain of 
these functions gives rise to at least one engaging characteristic 
the ray paths connected with the velocity profiles can be 
calculated from analytical functions. Specifically, velocity 
profiles have been described using the following te chniques~ 

Constant Velocity 

If the velocity is assumed to be constant, then the ray paths are 
straight lines. Errors could arise by assuming that the velocity 
1S a different constant than originally specified. The time delay, 
or phase, will be in error, but the straight lines which are, in fact, 
the ray paths are dependent only upon the initial angle and source 
position and, therefore, are not dependent upon the numerical value 
which is selected. However, there can be errors introduced by 
incorrectly assigning values for source and receiver depths as 
well as initial ray angle. 
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Linear Velocity Profile 

Linear velocity profiles lead to ray paths which are circular arcs. 
There are two errors which can arise in describing linear velocity 
profiles. They are, of course, the slope and the intercept. 
The ray paths will again be in error due to the error in initial 
ray angle and source placement. Phase arrival times will be in 
error. 

Higher Order Velocity Profiles 

Curvilinear velocity profiles can be characterized by hyperbolic 
cosines, parabolas and the Epstein profile, to name a few. All these 
profiles have a number of parameters which enable them to fit 
actual data; for example, the Epstein profile is a five-parameter 
profile each of which can be adjusted to give the best fit to actual 
data. Once these parameters are specified, then the ray paths 
are also known, since they are a function of the parameters of the 
velocity profile [Refs. 1 & 2J. 

It is clear that all the above-mentioned cases have certain 
difficulties associated with them. Generally, they are incapable 
of predicting certain variations in the velocity profile. For 
example, the Epstein profile has difficulty predicting surface ducts. 
Surface ducts are, of course, characterized by a local maximum in 
the velocity profile some distance beneath the surface. Another 
difficulty is that they are merely a best fit to the data and do not 
easily provide a technique for generating an error analysis. 

Splines 

Splines are a well known mathematical technique for generating 
smooth curves to fit data points. The technique is simply described 
by Ahlberg et al [Ref. 3J. The simplest non-trivial spline is a 
cubic. The technique is to assume (for example) that a cubic 
polynomial with unspecified coefficients would describe the curve 
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between two data points. Another cubic polynomial with unspecified 
coefficients would be employed between the next two data points. 
At the common data point, the function, its first and second 
derivatives are all required to be continuous. These conditions 
of continuity will be almost enough to provide a unique determination 
of the coefficients of the various polynomials. If there are N 
data poi nts, then there would be N-l cubic polynomials. 

There are two conditions which have yet to be met and these are at 
the end points. Generally, it is assumed that the second derivatives 
outside the range of interest is zero. These two conditions will 
then be sufficient to determine all the coefficients. This is not 
a unique way of specifying the coefficients, but it will serve for 
purposes of e xample . A good property of splines is that they will 
allow for matching all input velocity points exactly. There is no 
"best fitlY . The drawbacks are unfortunate in that cubic polynomials 
lead to elliptic integrals which are not solvable in closed form. 

All velocity profiles discussed already have been assumed to be 
functions of depth only. If it is required that the velocity 
structure be represented as a function of depth and range, then the 
only technique which is readily applicable is the spline function. 
The theory of two-dimensional splines is well known and understood 
and, in fact, is directly applicable to this problem . 

II. DIFFERENTIAL EQUATIONS FOR THE MODELS 

Ray Paths 

A description of the ray paths comes from the solution of the eikonal 
equation. In fact, the ray paths are the trace of the normal to 
the wave front as it proceeds through the medium . Since the eikonal 
equation is difficult to solve, another formulation has been 
employed: Fermat's Principle of Least Time. This leads directly 
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to Euler's equation which implies that the extremals will satisfy 
a particular differential equation. 

d [ dx 
f(x, z) z' J 
./1 + z ,2 

= 
~ 
of 

where f(x,z) is given by: 

f(x,z) 1 
c(x,z) 

, 2 
Z 

where c(x,z) is the velocity field. 

Carrying out the indicated operations leads to: 

z" + , 2 1 z 
f (f -z'f ) z x 

[Eq. 2J 

[Eq. 3 J 

[Eq. 4 J 

The subscript notation for partial derivatives is employed, viz., 

of _ 
~ - f , etc. uz z 

The initial conditions for the path are: 

z(O; zo' 9 0 ) 

z! (0; Zo, 80 ) tan 9 0 

[Eq. 5J 

where Zo and 8 0 are the source depth and initial ray angle, 

respectively. This formulation is described in detail by Solomon 
and Armijo [Ref. 4J. Arc length and travel time can be 
calculated through quadrature. 

Intensity 

Calculation of the intensity is, ln most cases, of primary interest 
in acoustic propagation problems. In general, if variation in 
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intensity is assumed to be only due to geometrical spreading, then 
the intensity is given by : 

I 
x 

cos eo 
cos 8 

I [Eq. 6 J 

where x is the range and 8 1S the local ray angle measured 
with respect to the horizontal. 

The difficulty in calculating the intensity is easily seen to be 
the calculation of the function Oz/o8 0 ' 

If the ray paths are represented by simple functions, then this 
derivative may be calculated directly. In general , however, the 
problems are many and many models approximate thi~ function at 
any range by using: 

[Eq. 7J 

where Oz is the difference zex;zo, 80 + 68 0 ) - zex;zo, eo ) 
calculated from both ray paths at a particular range. This technique 
is numerically acceptable if the two rays remain in close proximity 
to one another and if roundoff errors are negligible. Unfortunately, 
neither requirement is true for either long range calculations or 
rays that reflect many times from the bottom. Furthermore, the 
technique is undesirable because it requires the calculation of an 
extra ray path for each ray which is traced to a neighbourhood of 
the receiver. 

Solomon and Armijo [Ref. 4J have demonstrated that it is a simple 
task to calculate the intensity directly along a ray patTh. In order 
to do so, they show that it is necessary to calculate the partial 
derivative oz/oe o • 

They define the function : 

[Eq. 8 J 
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Differentiating the ray path equation with respect to the 
parameter 8 0 and making the appropriate substitutions yields the 
second order linear differential equation for C: 

C" 

+ 1+ ,2 
[ ; f 

(f -z'f )-z" fZJC • zz xz 

The initial conditions for Eq. 9 are: 

2 sec 90 

[Eq. 9J 

[Eq. 10J 

The c alculation of intensity is now reduced to the problem of 
solving Eq. 4 with the initial conditions of Eq. 5. The numerical 
solution of Eq. 4 is certainly no more difficult than tracing an 
additional ray and the needless approximation of Eq. 7 has been 
removed. The numerical procedures for solving systems of ordinary 
differential equations may now be applied to the simultaneous 
determination of both z and , from the differential Eqs. 4 
and 9. Since both differential equations are second order, the 
combined problem is equivalent to a system of four first order 
differential equations. After employing one of the several 
available numerical techniques to solve this system, the intensity 
may b e calculated anywhere along the ray path from Eqs. 6 and 8. 

IV. SENSITIVITY TO INPUT DATA 

Inputs 

All acoustic propagation models are obliged to accept certain input 
data. This model assumes that mean data is provided with some 
estimate of error as well. For example, the input with some 
tolerance could be provided . The model requires, therefore, 
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the following input data: 

1. Velocity as a function of depth (and conceivably range). 

2. Input angles. 

3. Source and receiver positions. 

4. Bottom profile (as well as reflection coefficients). 

General Theory 

The ray paths are assumed to be described by: 

Zll [Eq. llJ 

where 

f(z,x) 1 [Eq. l2J c(z,x) 

Assume that the ambient solution is zo(x) and this is related 
to the ambient speed of sound velocity profile fo(z,x). 

Further, let us assume that 

f(z,x) = fo(z,x) [1+ s(z,x)J . [Eq. l3J 

The error function will be related to the error ln zo(x). That is: 

z(x) [Eq. l4J 

The boundary conditions are at x = 0 

z = zo,/:::' = 0 

z ,= tan 9 0 = z ~ , t:.' = 0 • 
[Eq. l5J 

This is where initial angle error arrives. Clearly zo(x) satisfies 

1 + , 2 
Zo 

[f -zo'f J oz ox [Eq. l6J 
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Clearly, since z(x) s atisfies Eq. 11 and zo(x) satisfies Eq. 16 , 
an equation for 6 (x ) must satisfy some relationship. Substitution 
of Eq. 14 into Eq. 11 and making use of Eq. 16 and assuming that a 
line a r ization p r oce dure is possible , the relationship which 6(X) 
must satisfy is: 

f 2zb 
611 = - 6 '\(1+z62 ) fOX +-f - (f -zbf )l+(e: -zle:) (1+z~2) o 0 oz ox z '" X 

[Eq. l7J 

A similar expansion can be provided for the intensity. 

It will be recalled that C (and Co) satisfy 

, 2 zllf 
C' = [2z' z 11 _ (1 + Z' 2 ) ffx J c' + [1 +t (f - z' f ) - f z J C 

1+z, 2 zz xz 
[Eq. l8J 

with the conditions 

C(o) = 0 

C ' (0) = se c 2 e 0 
[Eq. 19J 

similar ly to the perturbation expansion for 
that C(x) may be written as 

z(x), we will assume 

C(x) = Co(x) + rt(x) [Eq. 20J 

substitution of Eqs. 20, 13 and 14, and expanding, keeping only 
first order terms gives rise to 

rt ll = Aort' +Bort+A1 Cb+B1C o 

where A 0, B 0, A1 , Bl are given 

2z'z" f o 0 
(1+z2, 2 ) ox 

Ao = - ~ 1+ , 2 Zo 

f - z~ f 
(1 + z ~ 2 ) [ 0 zz f - oxz ] 

o 
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11 f Zo oz 
fo 

CEq. 2lJ 

[Eq. 22aJ 

[Eq. 22bJ 



2 
Ii A' Z('l £..; + Z ~ 6" __ --:::-o_o_x 

fo ] 

261Z'f 

. [( 2f - z' f ) - z ~ J oz ox B1 = 8 z fO 

- e: x 

+ e: zz 

zbCl + Zi2
) f OZ _ 6' [(1 + 3Z~ 2 ) f OXZ - 2Z6 

fO fO 

f 
[1+z~2J-€ [z~(1+zb2 )J_6rrfoz xz 0 

[Eq. 22cJ 

[Eq. 22dJ 

It is clear that ~(x) satisfies an ordinary differential equation 
which is non-homogeneous. The non-homogeneous term or forcing function 
is dependent upon the ray path and its perturbations, and the speed 
of sound and its perturbations. It is further seen that finding 
exact solutions to Eq. 21 are extremely difficult. Let us now 
investigate certain special cases. 

Special Cases 

Case 1: 

Assume 

fo constant . 
Then: 

Zo (x) x tan 8 0 

6(0 ) 6' (0) = 0 . 
Let us further assume that there is no error in x, thus, 

€ = 0 . x 

And assume that the error ln depth is given by: 

e: = o:z • 

This leads to 
2 

6Cx) = 0:. sec2 80 x2 • 
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[Eq. 23J 

[Eq. 24J 

[Eq. 25J 

[Eq. 26J 

[Eq. 27J 

[Eq. 28J 



The appropriate boundary conditions are at x = 0 

The 

This 

z o(O) 
z(O) 
Mo) 

e rror 

e (0) 
z ~ (0) 

in initial 

= 9 0 +X 

= tan 90 

corresponds to: 

z' (0) = z~(o) 

angle we represent 

+ t:>' (0) . 
Further , 

tan ( eo + X) = tan 9" + t::, ' (0) , 

which leads to: 

t::, ' (0) = t::,~ 

2 t an X (1 - tan eo) 

1 - tan 9 0 t an X 

as: 

[Eq. 29J 

[Eq. 30J 

[Eq. 3lJ 

[Eq. 32J 

[Eq. 33J 

Thus , the correct solution for the error t::,(x) including errors 
1n initial position and ray angle as well as velocity profile error, 
1S given by: 

2 

t::,(x) ax 2 = to + t~x + -2- sec 80 [Eq. 34J 

Utilization of Eq. 21 will allow us to calculate error in calculating 
the intensity. Recall that 

2 
X sec 90 [Eq. 35J 

Then, 

[Eq. 36J 

125 



The boundary conditions on ~(x) 

rt(O) = 0 

~' (0) sec2 (8 0 + X) 2 = - sec 90 

Thus 

~(x) ~6x + 2 ax Sln 

Case 2: 

Assume that 

fo(x, z) = fo(z) . 

Then zc(x) satisfies: 
f 

z~(x)=(1+z6 2 ) ~z 

90 sec 

If we let fo(z) be given by 

7 

are: 

rt~ . [Eq. 37J 

90 • [Eq. 38J 

[Eq. 39J 

[Eq. 40J 

1 
fo(z) = (az)- [Eq. 41J 

then the paths are circular arcs. 

In particular, zo(x) is given by: 

[Eq, 42J 

The error in the ray path 6(x) must then satisfy 

6" (x) [Eq. 43J 

where, 

a o = z~(O), a 2 = -1 . [Eq. 44 J 

The homogeneous solution to Eq. 43 is: 

~(x) = 4- ~ (0) 
Q: 

[Eq. 45J 
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And the total solution is given by: 

6(x) erf (ax) + /:;, . partlcular 

Let us assume that: 

e:(z, x) = e:(z) • 

This assumption leads to: 

e: = 0 . x 

Furthermore, assume that 

e: = constant = ~ . z 

The particular solution is in the form: 

6 = x 2 L: b xn particular n 

The recursion relationship for the coefficients is: 

In particular, the first few coefficients are given: 

"" SAo/2 

where: 
,... 2 
Ao 4 a o + al 

1'1 4al + 4a 2 al 

1.. 2 4a 2 (1 + a 2 ) 
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[Eq. 46J 

[Eq. 47J 

[Eq. 48J 

[Eq. 49J 

[Eq. 50J 

[Eq. 52aJ 

[Eq. 52bJ 

[Eq. 52cJ 

[Eq. 53J 



Thus, the complete solution for 6(x) is given by: 

To sum up, we have solved the special case where: 

e(z) = ~z b(O) = b o 
'X. (I - tan 2 eo) 

(;,' (0) = I - X t an e I';) 

The limiting cases lead to: 

[Eq. 54J 

[Eq. 55J 

[Eq. 56J 

[Eq. 57J 

The procedure for calculating ~(x) is straightforward, but 
rather tedious. 

v. CONCLUSIONS 

This model is presented as a simp~e procedure for attempting to 
understand the effects of error in input data on ray path 
calculations. It is quite clear that these effects are not 
necessarily small nor can they be considered irrelevant. It is 
suggested that this formulation of the acoustic propagation model 
has within it the seeds for a full-scale deterministic model which 
can then predict in a uniquely defined manner the problems and 
effects of errors inputs. Furthermore, this technique may be of 
utility ln attempting to analyse a deterministic-stochastic model 
where the error inputs are provided in a statistical manner. It 
seems clear that this model would be applicable if the means of the 
individual inputs could be considered to be deterministic by 
utilizing our techniques and then using the model; a probability 
density function could be derived by considering the interaction 
of the probability functions of the input. 
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DISCUSSION 

"An Intensity Differential 
To be published in J. Acoust. 

The second author stated that this perturbation method avoided the 
necessity of recalculating the ray path for each perturbation. In this 
way it conformed to standard perturbation techniques. In reply to a 
further question regarding whether the effect of perturbation was more 
marked in areas of low sound speed gradient, he remarked that as these 
methods had not been programmed yet the answer to this and similar 
general queries was still unknown. 
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