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Abstract The use of low frequency active sonar for ASW has repercussions on automated 
detection performance. Input data contain not only target returns, but also noise formed by 
returns from the environment The detector may report a contact that is actually the result 
of environmental noise. Detecting noise is an undesirable behavior in modern sonar 
systems. Noise characteristics such as bottom returns, tonals, and onset of convergence 
zones can produce a multitude of false alarms as well as poorer detection performance and 
reduced operator confidence in the automated system. 

In this study, noise rejection techniques are analyzed using data collected during the 92-3C 
Multistatic Sonar System (MSS) sea trials performed in 1992. Two techniques will be 
described and evaluated. The first is the conventional Bayesian Vector Classifier (BVC) 
method used during the MSS sea trials. The second is a modified BVC approach that uses 
post-sequential detection information. The two techniques are compared and the resulting 
effects on false alarm rate and probability of detection are discussed. 

1. Introduction 

It is important to automatically detect and track target-like contacts for improved 
operability in low frequency active processing. The data input to the information 
processor contain both target returns and noise returns such as returns from the 
environment. Noise can be caused by many things such as bottom features, tonals, and 
onset of convergence zones. Noise results in false alarms, poorer detection 
performance, and reduced operator confidence in the information processor algorithm. 
Detecting noise also produces additional CPU and memory load on the computer 
system. 

One way to avoid detecting noise is to filter out the noise from the measurement data 
before the detector uses them. This process is called noise rejection. Noise rejection 
identifies and removes, on a ping-by-ping basis, nontarget-like sonar signals from the 
sonar data stream. In order to support a tactical system, noise rejection must be 
performed in-situ and in real time. 
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One question that needs to be answered is how to best perform noise rejection. The 
MSS uses a statistical approach to characterizing noise and target returns . There are 
various methods that can be used to obtain samples for the analysis. The at-sea method 
used a random noise sampling approach. Post-sea test analysis concentrated on 
choosing a sample based on the processing characteristics of the detector. Methods 
used are described in section 2 and results of the analysis arc discussed in section 3. 
Recommendations for future work arc presented in section 4. 

2. Method 

2.1 Functional Data Flow 
Figure 1 shows the data flow of the MSS Information Processor system. Solid lines 
represent the real-time data flow . Dashed lines represent the off-line data collection 
mode of the Bayesian Vector Calculator. The Bayesian Vector Calculator computes a 
set of parameters which is then used by the BVC in real time to distinguish between 
noise and targets. The details of the data now arc described below. 
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Figure 1. Infonnation Processor Data Row 

The detector works on data provided by the signal processing subsystem. The Signal 
Processor provides data in the form of threshold crossings (TXMs). TXMs are packets 
of information containing Signal-to-Noise Ratio (SNR) data. The TXMs are further 
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defined in tenns of beam and time of arrival. There are two data paths for the TXMs: 
Hyperbolic Frequency Modulation (HFM) and Continuous Wave (CW). 

Signal Processor input data for the HFM data path contain four channels. The 
infonnation is space (beam number) and time (seconds) ordered . There are 64 beams 
that can handle a maximum of 128 samples per second on each of 4 channels. At 
maximum rate, 32,768 complex samples per second can be output from the Signal 
Processor. Each sample is then compared to a threshold in the Signal Processor. The 
threshold passes a percentage of the data (typically 1 percent of the data based on the 
SNR of the sample) to the Information Processor. This is done so that the Infonnation 
Processor does not become overloaded. 

Since the CW processor does not work on a per second basis, the CW Signal Processor 
input data rate per second is an averaged value . There are four channels for CWo The 
output of the nonnalizer for CW is nominally 17 Hz every 0.5 seconds given that 50 
percent overlap data are used. This yields 34 bins per second. Thiny-four bins for 64 
beams for 4 waveforms yields 8,704 samples per second. IL should be noted that if 75 
percent overlap was to be used, the data rate would be double. For the purposes of this 
paper, only HFM results will be analyzed. 

A cluster is a collection of TXMs from the Signal Processor which are viewed as 
belonging together. TXMs are grouped together based on proximity in beam, time, 
and Doppler space (for CW only). The clusters represent energy in a 
beam/time/Doppler area. Calculations are perfonned to quantify the clusters in tenns 
of time of arrival, beam and bearing, and Doppler (CW only) for the cluster. By using 
clusters, the data rate is reduced ('or downstream computation. Other processes perfonn 
calculations in cluster space viz. TXM space. Figure 2 shows the distinguishers 
calculated in the clustering process for the HFM waveforms. 
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Figure 2. HFM Cluster Distinguishers 
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Due to environmental and processing effects on the incoming sonar data, TXMs from a 
physical object (in space) may be noncontiguous. This causes gaps to occur between 
the TXMs from an object. The clustering process must allow for the gaps or objects 
will be broken into multiple clusters. It is undesirable for a target to be broken into 
more than one cluster since this affects characteristics, such as extents. Improper gap 
sizing may cause some of the target clusters to be removed as noise clusters. To be 
able to handle gaps, the clustering process uses gap parameters. Parameters are 
operator adjustable for time gaps, beam gaps, and Doppler gaps (CW only). 

Noise filtering is performed once clustering has occurred. Clusters that have the 
characteristics of noise are removed from the data path . To accomplish this, clues are 
used that attempt to distinguish between target returns and noise returns. The BVC, as 
used during the MSS sea trials of 1991 and 1992, contains four clues for distinguishing 
targets and nontargets. The clues are defined below. Table 1 presents the B VC clue 
equations . 

1) Energy Density - A measure of the total energy (amplitude) per beam/time 
area in the cluster, 

2) Effective Time Duration - A measure of length of time extent of the 
cluster, 

3) Crossing Density - A measure of the number of TXMs (threshold 
crossings) per beam/time area in the cluster, and 

4) Effective Beamwidth - A measure of the bearing extent of the cluster. 

The BVC is the process which decides which signals are target-like and should be 
passed on, and which signals are nontarget-like and should be removed from the sonar 
data stream . The BVC Calculator and extraction tools are ofF-line programs that allow 
an experienced operator to create a feature vector and covariance matrix. The BVC 
calculator creates a file called the B YC parameter set. This file contains the feature 
vector and covariance matrix used to statistically separate target sonar data from noise 
data. 

A feature vector and covariance matrix are created based on predefined clues for 
historical signals using the clue equations shown in table 1. Separate feature vectors 
and covariance vectors are created for both target and nontarget signals. A cumulative 
density function (CDF) is plolled for the target and nontarget signals (see figure 3). A 
classification feature score is chosen at the desired noise rejection / target acceptance 
level. A typical level would be setting a score based on a 90 percent rejection of noise 
clusters. At this level, figure 3 shows a loss of 20 percent of the target returns. Given 
these settings the BYC score would be 0.1. This score is then used by the on-line BVC 
for classifying signals as target-like or noise-like . If the signal exceeds the threshold, it 
is declared to be target-like and passed on. If the signal is below the threshold, it is 
declared to be noise-like and removed from the data. 
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Target 
Discriminanl Symbol 

Name 

Energy 
Density E 

Effective 
Time 

Duration a 

Crossing X Density 

Effective 
Beam-
width y 

1.0 

0.90 

0.20 

0.0 
-1 -.5 

Table I . BYC Clue Equations 

Definition Where: 

In = number of threshold crossings in cluster 
n A = amplitude of threshold crossing 

e = ( ~ A)/( 0. '( b) 0. = Effective Time Duration 1 ty = Effective Beamwidth 
b = degrees of bearing per beam for the cluster 

a~J 1( I- n n = number of threshold crossings in cluster 
t )2 A) / ( ~ A) A = amplitude of threshold crossing 

1 l = time of arrival of threshold crossing 

'(=2 

o 

l = centroided time of arrival for cluster 
n = number of threshold crossings in cluster 

X = n / ( o.y ) 0. = Effective Time Duration 
tv = Erfective Beamwidth 
n = number of threshold crossings in cluster 

n - n A = amplitude of threshold crossing 
( ~ ( B - B) 2A) / ( ~ A) B = beam of threshold crossing 

1 1 B = amplitude weighted mean beam for 
threshold crossings in cluster 

Noise CDF Curve 

+.5 

Example: Reject 90% Noise 
Lose 20% Targets 

Score is set to 0.1 in BYC 

SCORE 

FitTtJr(~ 1 ('OF ('lIrvC'S 
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2.2 Description of Run Geometries 
The conventional BVe will be compared to a modified BVe by exammmg 
perfonnance during five at-sea runs. The target used for the experiments was an echo 
repeater. The runs used for this analysis are: 

RUN I: The target was two ezs away from the source and one ez away 
from the receiver. All vessels maintained a constant course and speed. 

RUN 2: The target was two CZs away from the source and one ez away 
from the receiver. The target changed course in a zigzag pattern. 

RUN 3: The target was two ezs away from the source and one CZ away 
from the receiver. The target slowly changed bearing with respect to the 
receiver platfonn. 

RUN 4: The receiver ship closed range to the target. The source remained 
two eZs away from the target. The receiver started two ezs away and closed 
to one ez. One hour of data was taken from the two ez area and one hour 
from the one ez area. 

RUN 5: The geometry was unknown during at-sea collection of data. The 
target changed course and speed during the event. 

The ocean location was generally flat with small bottom features. Wind speed ranged 
from 8 to 17 knots. Sea state ranged from I to 2. 

2.3 Conventional EVC Tuning Method 
Conventional BVe training uses 10,000 random samples to estimate the noise 
background statistics. A window is defined around the target region for target sample 
extraction. This window is used to extract clusters in a specified beam and time 
window. The data sets are typically collected from the previous run. As an example, 
the run 1 data set is used for collection of statistics for the run 2 run because run 1 was 
the run previous to run 2. These data are then run through the off-line BVe calculator 
to obtain the BVe parameter set file used for noise rejection. The feature vector and 
covariance matrices were calculated using random noise samples. 

2.4 Post-Sequential Detection EVC Tuning Method 
The second approach to BVe tuning involved using only clusters that had passed 
through the sequential detector. In post-sea test analysis, it was observed that the 
sequential detector can be viewed as a noise filter in the sense that clusters must be 
observed on multiple pings before a track is fonned. If a cluster is seen on one ping 
and then not on a consecutive ping, the sequential detector removes the cluster from the 
sonar data stream. Since the 10,000 random samples used by conventional BVe tuning 
include noise clusters that the sequential detector will reject anyway, the BVe is really 
doing too much "work." It would be more efficient to use the BVe to reject the 
specific noise clusters that the sequential detector would not reject. This would allow 
the BVe to become more discriminating in its definition of noise and target, because 
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only objects that look like noise and that pass the sequential detector would have to be 
removed. It is hoped that better statistical separation between noise and target energy 
could be achieved. 

A file containing only clusters from tracks output from the sequential detector was used 
for training. A window was created for collecting data needed for training the BVe. 
The size of the target window may be set by the operator for training purposes. A 
small window was chosen to capture only the target returns and no side lobe returns. A 
larger window blocks out all echo repeater return clusters including side lobe returns 
for collection of the background noise data. All other clusters outside the large 
window are considered noise and are included in the noise cluster samples. 

In addition, target pings from two separate tests were used. If the BVe set is trained 
solely on data from a specific run, there is a good chance that the values obtained will 
not be applicable to other runs. By combining different examples of target and noise 
values, a generalized BVe set can be created. The performance on a specific run is 
reduced, but the performance across all runs is better. Several different runs containing 
different target and noise data were combined to create a more general B ve set. For 
the purposes of this test, the first 20 pings of data from run 1 and run 4 were used as 
training samples for the post-sequential detection approach. The feature vector and 
covariance matrices were calculated based on post-sequential detection clusters. 

2.5 Effect of Other Parameters on BVe Results 
The same four BVe clues as defined in table 1 will be used during the five runs. It must 
also be noted that other parameters affect the noise rejection process. Parameters which 
affect performance include cluster, detection, and track age parameters. Cluster gap 
parameters affect the size of clusters generated. Separation between target clusters and 
noise clusters is reduced by setting the cluster gap sizes too small or too large. For this 
analysis, all other parameters were set to the same level so that a fair comparison can be 
made. 

2.6 Data Analysis Procedures 
For purposes of developing the training data, the MSS system is run in data collection 
mode. Data are collected and analyzed using the Off-Line Processor. Feature vectors 
and covariance matrices are developed to describe both target and noise returns. The 
at-sea BVe parameter set will be used for the conventional tuning part of the 
experiment. This set was created using the conventional tuning method as described 
below. A separate BVe parameter set will be created using the post-sequential detector 
training method. The BVe parameter sets will then be hosted on the Information 
Processor. The MSS system will be run using both BVe parameter sets. The 
effectiveness of each method will be measured in terms of target detection and noise 
rejection. 

The system will be run first with the BVe turned off and the number of false alarms 
recorded. This is done to measure the maximum performance that can be achieved in 
terms of probability of detection. Environmental and processing losses may cause the 
target not to be seen on every ping. As an example, for 60 pings of data, the tracker 
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may only receive 58 pings with target data. Since the BVe may also reject true target 
returns, running with the BVe off also gives a measure of the best probability of 
detection that can be achieved by the tracker. Turning the BVe off also measures the 
maximum number of false alarms that would be output from the system given that no 
noise rejection measures were taken. 

Two metrics are defined for comparison of the methods - Percent Detected (PO) and 
Temporal Track Probability of False Alarm Rate (TTPFAR). Percent detected is 
defined as the number of pings that had a valid detection divided by the number of 
pings that target energy was available for detection. TTPF AR is defined as the total 
number of tracks the system creates per hour minus the number of tracks which 
represent the target. As an example, if there are 10 tracks created per hour and 2 are 
target tracks, the TTPF AR would be 8 false alarm tracks per hour. 

3. Results 

Table 2 summarizes the results of the study. A total of eight hours of data were 
analyzed. Two hours of ping data were analyzed from run 2, run 3, and run 4 runs, 
and one hour of ping data was analyzed from the run 1 and Run 5 runs. 

For the run 1 test, both the conventional BVe method and the post-sequential detection 
training method yielded similar PD. The TTPFAR for the post-sequential detection 
method was three times that of the conventional method. 

For the run 2 test, both the conventional BVe method and the post-sequential detection 
training method yielded similar PO for the first hour while the post-sequential detection 
method yielded better PO for the second hour. The TTPFAR for the post-sequential 
detection method had six more false alarms. 

For the run 3 test, both the conventional BVe method and the post-sequential detection 
training method yielded similar PO for the first hour while the post-sequential detection 
method yielded slightly better PO for the second hour. The TTPFAR for the post-
sequential detection method had nine more false alarms. 

For the run 4 test, the post-sequential detection training method yielded much higher 
PO. The TTPFAR for the post-sequen~ial detection method was three times that of the 
conventional method. 

For the Run 5 test, both the conventional BVe method and the post-sequential 
detection training method yielded similar PO. The TTPFAR for the post-sequential 
detection method was slightly higher. 
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Table 2 . BYC Tuning Method Comparison 

PO AVG TTPFAR AVG # PINGS 
PO TTPFAR ANALYZED 

BVe SETS TAPE TAPE TAPE TAPE 
1 2 1 2 

RUN 1 
BVe OFF 96.67 154 60 

AT-SEA Bve 90 12 60 
POST SO Bve 88.33 36 60 

RUN 2 
BVe OFF 80 98 .33 89.165 92 78 85 120 

AT-SEA Bve 76.67 85 80.835 18 17 17.5 120 
POST SO Bve 80 93 .33 86.665 20 26 23 120 

RUN 3 
BVe OFF 95 76.67 85 .835 76 114 95 120 

AT-SEA Bve 86.67 61.67 74.17 2 29 15 .5 120 
POST SO Bve 85 66.67 75 .835 9 40 24.5 120 

RUN 4 
BVe OFF 86.67 91 .67 89.17 257 216 236.5 120 

AT-SEA Bve 66.67 73.3 69.985 10 0 5 120 
POST SO Bve 86.67 83 .3 84.985 40 22 31 120 

RUN 5 
BVe OFF 96.67 43 60 

AT-SEA Bve 93.33 2 60 
POST SO Bve 95 7 60 

Total Avgs 8 hrs data 
pd pfa 

BveOFF 90.21 128.75 
AT-SEA Bve 79.1638 1l.25 
POST SO Bve 84.7875 25 

An average was calculated for all the data tested . For the eight hours of data collected, 
turning the BYC off yielded a maximum tracker performance of 90.21 percent PD. It 
should be noted that, with the B YC turned ofT, the maximum amount or data available 
to the detector is being sent to the detector. The value or 90 .21 shows that about 10 
percent of the pings received do not have energy available for target detection . This 
could be due to environmental c!Tects and/or processing losses occurring berore the 
Information Processor. This 90.21 percent should be used for comparisons between 
noise rejection techniques because this is the "best" that they could achieve . 
Conventional BYC tuning vielded a 79 .16 Dercent PD (J 1.05 oercent below Bye off). 
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Post-sequential detection tuning yielded a 84.79 percent PO (5.42 percent below Bye 
off). Overall, the post-sequential detection method has a higher PD. 

The TTPFAR results for Bye off are 128.8 fal se alarms per hour. The TTPFAR for 
conventional Bye tuning was 11.25 false alarms per hour, or a reduction in TTPFAR 
of a factor of 11. The TTPFAR results for post-sequential detection tuning were 25 
false alarms per hour, or a factor of 5 reduction. 

Results showed that there is still a trade-off between false alarm rate and PO even 
between alternate methods. If a higher false alarm rate is acceptable, then a higher PO 
rate can be achieved. Note that the cumulative performance (PO and TIPFAR) of the 
Information Processor is nonlinearly dependent on how the individual processor 
sections and parameters are set. As an example, the Bye was essentially set for an 80 
percent PO and a 10 percent TTPF AR. The overall measured PO was 94.5 percent with 
a TTPFAR of 20 percent (accounting for the fact that with the Bye off, the PO was 
90.21 and TTPFAR was 128). It is di fficult to predict performance based solely on 
eOF curves . The effect of the entire processing string must be measured . 

The post-sequential detection method of tuning the Bye used a single set of values 
across all runs and still achieved good performance. The conventional method had to 
be hand tuned during every run. A lower PO could be achieved by tuning the post-
sequential detector method to the individual run environment. 

4. Recommendations 

The following are recommendations for further study of noise rejection techniques: 

The post-sequential detection technique was tuned with 40 pings of data from two sets 
basically chosen by chance. Beller selection of example target pings is recommended. 
In addition, a larger set of target pings should be used for tuning purposes. 

A comparison should be made between using post-sequential detection tuning on an 
individual run and using the post-sequential detection technique for an average value. 

The systems should be adjusted so that TTPFAR is the same for both methods and the 
resulting PO can be compared for a more definitive conclusion. 

In-situ automatic tuning for background noise in a real-time system should also be 
explored. The run 4 had a much higher background noise noor in terms of TTPFAR . 
The Bye noise estimates used for this test may need to be different from those of the 
other runs. 
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