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ABSTRACT 

A theory has been developed that enables estimates to be made of 

beam bending, beam spreading and loss of spatial coherence. In this 

paper we concentrate on the loss of spatial coherence due to 

scattering. Using a minus two power law as representative of 

horizontal tow data the solution predicts that the law of coherence 

of a signal received by a horizontally positioned line array behaves 

I ·exp(-Ek512zs312 ). · · · · E · as Here I 1s the s1gnal 1ntens1ty, 1s an 

environmental parameter, k is the signal wave number, Z is the 

range and S is the separati~n distance between receiver hydrophones. 
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INTRODUCTION 

A propagation model for long-range, low-frequency ocean acoustic 
experiments should ultimately incorporate the effects of diffraction, 
refraction and both volume and boundary scatter. In this paper we 
discuss a model that includes the first three of these factors. The 
large loss of energy for the portion of an acoustic signal that 
interacts with the ocean bottom would lead one to suspect that the 
effects of bottom scatter would be suppressed in a long-range 
experiment.* Surface scatter effects, however, could be significant 
and need to be incorporated in an extended model. In applying our 
model we shall assume that we can isolate, and then suppress, the 
portion of the acoustic signal that interacts with the surface. 

The volume scatter effects incorporated in the model arise due 
to fluctuations in the sound speed, which are caused by mixing of an 
inhomogeneous temperature field by dynamic ocean processes; e.g., by 
internal waves or by ocean turbulence. 

The sound field measure in which the model is formulated is the 
mutual coherence function, which is defined for cw signals according 
to ~ 

1 rt;;,', ~~) ~) J = £ P(-!'~ v> ''"(~)) >J 
(1) 

where~{~,,)) denotes the complex acoustic pressure field;~, the 
signal frequency; an asterick, complex conjugation; and the braces, 
an averaging. The information of interest in the mutual coherence 
function can be summarized as follows: 

i) The collapsed coherence function in which the two points are 
coincident gives the averaged intensity field, which enables our 
estimating transmission loss. 

ii) 
(phased) 
Thus, it 

The averaged power output of the linear sum of outputs of 
array of hydrophones is given by the coherence function. 
enables the estimation of array signal gain. 

an 

iii) The directional decomposition of the energy flux received 
by an array is directly given by a spatial transform of the coherence 
function. Thus, it enables an estimation of the loss of resolution 
due to volume scattering. 

Introducing z to denote the range coordinate, the propagation 
model is expressed in terms of the coherence function measured at 
two points in the same range plane; i.e., 

* This need not be true if the receiving array is bottom-mounted. 
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"' j ~ -1o~, I) [ r( y,, ~.~.., ri!.) = l fo(~~ -4) p r"!:~, r1)J J (2) 

where ~~~ ~~ denote transverse coordinates. (We henceforth suppress 
explicit dependence on ~ in our notation). The form of the model is, 
then, written 

Rate of Change of / P} with Range = 

Diffraction Term 
+ Refraction Term 
+ Scattering Terms 

Specifically, the mathematical model is given by the partial 
differential equatioL _ 

:?.!N= ~~> {o~ +;J~)!N 
~ij~(!J,-#~j.z)- re-~p)·~>Jlr} 

-1 ~ ~; "1;rJ/fi~,~=~ e~)j - Uf(o;P,J·~)l r} 
(3) 

In writing Eq. (3), we have introduced the average and difference 
transverse coordinates; i.e., 

s = x-'", - x.~,, 
(4) 

- ""' "" ""' Further, 4(:,,~) denotes the (ensemble) averaged signal wavenumber; 
i.e., J7T"'iJ/{Cj ; which can vary with range and depth. Also, 
(A(~)) denotes the average of~ taken over the depth. The 

fluctuations in the sound speed are described by ~a,~ ~) , which 
is given in terms of the correlation function defined o~ the 
fluctuating wavenumber by joe> L 1 .,.} 

G; (!
1 
~~ ~):: (~)Y~.,J t!H( #; -;; 

. o (Js~)'h. , 

!eo rr/.s. ~' S. ., D .1)ds,' \ q'~ 
(-.... J':/I~)r;:/1 ,1/ 

ft() 

(5) 
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The statistics of the sound speed fluctuations can also be range and 
depth dependent. 

The assumptions made in developing Eq. (3) and the concomitant re-
strictions on the validity of the model are complex. For details, the 
reader is referred to a series of papers and reports [1-5]. Briefly, 
the ~odel req~ires the validity of the parabolic approximation. (In 
[4], we show that the equation, without the scattering terms, follows 
directly from the parabolic equation on the plane wave amplitude field). 
Thus, the model is restricted to experiments in which the angular dis-
tribution of energy flux is limited to "narrow" angles relative to the 
range direction. Clearly, then, the model requires the scattering to 
be a narrow-angled scattering. This is shown [1] to be the case for 
ocean acoustic experiments so long as the acoustic wavelength is short 
relative to all significant correlation lengths for the sound speed 
fluctuations measured in a horizontal plane. Further, the model requires 
that the effects of scattering, diffraction and defraction are all 
uncoupled over limited ranges. Over extended ranges, the effects are 
of course coupled. In addition, the model requires that the amount of 
scattering over limited ranges be small. This is assured by virtue of 
the weakness of the sound speed fluctuations. Finally, the specific 
form of the scattering terms is intimately related to the details of the 
angular distribution of the locally scattered energy. In the ocean 
acoustic model, which we term an anisotropic model, the sound speed 
fluctuations are taken such that correlation lengths measured in a hori-
zontal plane are orders of magnitude larger than those measured in the 
depth direction. The frequency of the acoustic signal is taken to be 
such that the acoustic wavelenth is of the same order as or larger 
than the significant correlation lengths measured in the depth direction. 
The wavelength, as mentioned previously, is assumed to be small rela-
tive to horizontal correlation lengths. For much higher frequencies, 
the signal wavelength will become small relative to correlation lengths 
measured in the depth direction as well as those in the horizontal plane. 
In this case, the form of the scattering terms changes and the model be-
comes that which has been extensively studied in the optics literature 
[6, 7]. This latter model, we refer to as an isotropic model. It is 
noteworthy that the solutions of the two models are qualitatively dif-
ferent in the multiple scatter region. 

In the remainder of this paper we shall briefly outline some special 
cases in which analytic solutions to the model have been obtained. In 
particular we discuss three situations. 

SACLANTCEN CP-17 

(1) Homogeneous statistics; absence of a sound speed 
profile; plane wave incidence: In this case the 
model is used to determine the spatial correla- . 
tion for distances separated along a horizontal 
line. Detailed calculations are carried out 
for sound speed fluctuations which, when sampled 
in a horizontal plane, obey a minus two power 
spectrum. 
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(2) Homogeneous statistics; a range independent 
sound speed profile; point and finite coherent 
sources: In this case the model is used to 
determine the averaged (taken over the depth) 
spatial correlation for distances separated 
along a horizontal line. Thus, the effect of 
diffraction on the above results is seen. 

(3) We briefly consider a solution algorithm based on 
the model with the scattering term neglected. 
The algorithm indicates the possibility of pre-
dicting beam spreading by appending side calcu-
lations to a ray trace program. It should also 
prove useful for predicting the propagation of 
signals emanating from partially coherent, or 
noisy, sources. 

Plane Wave Source in a Statistically Homogeneous 
Fluctuating Ocean 

For the case of plane wave incidence and a statistically homo-
geneous ocean, the diffraction and refraction terms vanish. Equation 
(3) · thus reduces to an ordinary differential equation in the range 
coordinate, in which the separation coordinates (Sx, Sy) are parameters. 
The solution is readily obtained and is written 

~ '1r~.s.> (- . ) l r(slf, ~, ~) j e .I l : ~, :) et'~ - [ V:.t.c, o) - ~(s~ o) ]*-
~~.K, o) 

(6) 

A 
where I denotes the intensity of the incident plane wave. For studying 
the horizontal resolution of a line array positioned orthogonal to the 
range corrdinate we make use of/ /t{.5Jc, o

1 
~) J which is given by 

(7) 

As indicated in the Introduction, the environment is described 
by the term. In order to obtain a propagation model that 
requires as input, a few easily measured environmental paramaters we 
must make a number of assumptions pertaining to the environment. 
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Included among these are 
eO '' J lr" ('-\-, .s;~ ~) J~' = ~M cr(S, ~ .s.p > 

-.0 

(8) 

The first of these assumption leads to a propagation model in which the 
vertical structure of the fluctuations field is described by a single 
length scale, ~ • The second assumption is that the horizontal 
structure is is~~ropic. Taken together, the environment description 
required is given by horizontal tow data plus a mea~ure of the length 
scale for the vertical structure. 

The horizontal tow data is more usually presented in terms of the 
spatial power spectrum, which is given by the Fourier transform of 
q; C/S~1~S~ 1 

). We denote this spectrum by~(p), where p, here, 
denotes the transform variable. Our final assumption is to assume 
that~ (p) obeys a minus two power law over that portion of t~e spectrum 
that contributes significantly to the scattering. It is important to 
realize that a justification for choosing a functional form for~(p) 
requires some knowledge of which length scales defined by the flucfuating 
sound speed field are important. This, in turn, depends on the acoustic 
experiment that is of interest. That is, the justification can only 
be argued1 a posteori. Fo-,: the low frequency experiments for which the 
model was developed, we Have demonstrated [3] that the important length 
scales are moderately large (500-5000 m.), for which the minus two law 
has attained a degree of acceptance. 

With the above assumptions of the environment, we can reduce the 
exponent in Eq. (7) to a simple algebraic form, 

The environment is described for Eq. (9) by a single nondimensional 
parameter, E, which is given in terms of measured data accord~ng to 

(9) 

(10) 

2 where AT is obtained by fitting a ·minus two law to horizontal tow data 
of temperature fluctuations. The units of Af is (°C)2/length. 
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Equation (9) represents a particularly simple expression for 
estimating the loss of spatial coherence due to scattering from large 
scale ocean temperature fluctuations. A comparison has been made 
between predictions made by it and archival experimental data and the 
results are very encouraging. The classification of some of the archi-
val data presents my showing these results at this session. The com-
parison will be available, however, in an article to be submitted to 
JUA [8]. 

Effect of Finite Source Size and a Depth 
Dependent Sound Speed Profile 

We consider next a calculation in which the sound speed is taken 
to vary with depth and the source is taken to have a finite size. 
The fluctuations in sound speed are still taken to be statistically 
homogeneous. The quantity to be calculated is 

)/ 

< l fte. 4-, d)})= ;;Jtr(ff,s.., 1',, o, ~J} d.t::, 
(11) 

(J 

. ~ 

where H is envisioned to span the sound channel. The quantity([l'))is 
interpreted to be an averaged coherence function for two points located 
on the same horizontal line that is orthogonal to the principal propa-
gation direction. Thus, it provides a measure of an averaged loss of 
horizontal resolution~ 

For ~ independent of P , we can average Eq. (3) and obtain the 
following equation on {{Pj)[3J 

(12) 

where(i) is the spatially averaged, mean wavenumber. Equation (12) 
shows that there is no effect of a depth dependent sound speed on the 
averaged (taken over the depth) horizontal resolution. We note that 
the presence of depth dependent statistics for the sound speed fluctua-
tions cannot be treated so easily. 

In [2], we consider solutions of Eq. (12). The "source" for 
these calculations is located in the z=O plane, which is taken to be a 
constant phase plane. The intensity dislribution across the source is 
taken to be Gaussian. We calculated ( [ 1'(0, ~1, ~ )/), which provides an 
estimate of the loss of signal coherence along the beam center. The 
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results differ in the numerical factor in the definition of E. For a 
point source (a Gaussian intensity distribution in which the horizontal 
beam width is zero), the numerical factor is 0.7xlo-5; for a finite 
source the factor is smaller still. Thus, the coherence of a signal 
emanating from a point source decays more slowly than that from a 
plane wave source; the coherence of a signal emanating from a finite 
source decays more slowly than those from either of the two limits. 

<trC?~~,o, ~>J> 
on the averaged intensity measured across the sound channel. This 
enables estimates of the dependence of beam spread on diffraction and 
on scattering. In the limits in which one or the other of these 
mechanisms is predominant, simple analytic results were obtained. 
Thus, for conditions in which diffraction effects are predominant, the 
beam width increases with range as (a2 + z2Jk2 a2) 1/2, where "a" is 
the initial beam width. For conditions in which scattering effects 
are predominant, the length scale for observing variations in intensity 
is of the order of (E2/3 k 2/3 z5/3). For an intermediate case in 
which scattering and diffraction effects are both important, it is 
necessary_ to resort to automatic computation. The interested reader 
is referred to [2]. 

Propagation in Nonfluctuating Media 

Equation (3) minus the last two terms serves as the basis of an 
acoustic model for experiments in which volume scatter is not signi-
ficant. In [4], we show the equation to follow directly from a para-
bolic equation written on the plane wave amplitude. Any "randomness" 
of the radiation field for this deterministic medium problem enters 
via the source. Thus, for example, one might be interested in sound 
emanating from a partially coherent, or noisy source. Or, one might 
be interested in sound that has passed through a fluctuating region 
of an otherwise deterministic medium. Problems of stochastic sources 
have received a good deal of attention in treating electromagnetic 
radiation fields. An equation similar to Eq. (3) with no scattering 
terms could be used to formulate the theory of partial coherence as it 
is termed in this latter literature. 

Further, since a deterministic radiation field can be interpreted 
as a limiting case of a stochastic radiation field, in which all mani-
festations of the experiment are identical, Eq. (3) minus the scatter-
ing terms could be applied to a purely deterministic problem. With 
reference to this, however, we note that the dimensions of the space 
on which Eq. (3) is defined are five in number, whereas the purabolic 
equation on the plane wave amplitude itself is defined on a three dimen-
sional space. Thus, in general, it would appear to be easier, in 
treating a deterministic problem, to first solve for the pressure field 
and then, if desired, calculate the intensity field <»:-- the "coherence" 
field. The value of a model based on Eq. (3) for treating deterministic 
fields would then rest simply in the unification that it brings to 
treating a spectrum of problems. As indicated below, however, the value 
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of a model based on Eq. (3) may, for a class of deterministic problems, 
be more extensive than this. 

Consider Eq. (3), with no scattering terms, and introduce an ap-
proximation based on expanding and truncating the k(P ±Sy/z;Z) terms 
appearing therein. A truncat1on after the quadratic term leads to the 
following approximate equation, 

(13) 

In [4], we discuss in some detail the validity of Eq. (13) for both the 
stochastic and deterministic source problems. Briefly, for the former 
the requirement is that spatial extent of the region over which the 
resulting field is coherent must be small relative to the length 
scales on w·hich k (P ) vary. For narrow beamed deterministic signals 
the validity can be afgued on the assumption that the beam width is 
small on the length scales on which k (Py) vary. For broad beamed 
deterministic signals; the validity can still be argued over limited 
ranges. 

To solve Eq. (13), we first introduce a spatial Fourier transform 
of the separation coordinate. Denoting by S, the transform variable, 
the equation on 'ri~J $~)I is then written 

{I l~ }'\01 'I 

--L (i 2.. +f. .2.. ) l ;y 
(l{~)> llt:;)fo ) ~J:, 

(14) 

i- d It,.,) ?.. t rJ 
o1~ tOE 
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This equation is recognized as a first order partial differential 
equation. Thus, a general solution procedure exists for its inversion, 
which requires that we first construct its characteristics. Then, an 
ordinary differential equation (in this case of first order) is written 
on the change of/J'J with distance measured along the characteristic 
and is solved. To determine/i'J requires that we transform back to s 

'\1 
space . Excluding the algorithms required by the transformation into 
and out of s space, the principal numerical task in carrying out the 
above proce~ure is the construction of the characteristics. These, 
moreover, can be identified with the rays of the geometric theory 
suggesting the possibility of appending the needed added calculations 
to an existing ray trace program. In this way, diffraction effects can 
be incorporated in a geometric theory program by carrying along some 
side calculations. The effects of scattering apparently cannot be 
introduced in such a simple manner. 

We have considered a number of problems for which Eq. (13) is 
exact, within the context of the parabolic approximation, and for which 
we could carry out the above described solution procedure analytically. 
The solutions obtained exhibit the qualitative behavior expected; e.g., 
beam bending, beam spreading due to diffraction, beam focusing ~n a 
sound channel, a characteristic oscillatory behavior in the int~nsity 
field in the neighborhood of caustics, etc. These analytic solutions 
are being used to test some of our numerical routines that are nominally 
based on a parabolic .approximation. 
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