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Our concern [Refs. 1 and 2J is with the effect of refraction on 

the long range propagation of underwater explosion shock waves. 
Here, as with acoustic sources, ray tracing can be used to predict 
refraction effects. From the divergence or convergence of rays, an 

amplification factor can be calculated. This is defined as the 
square root of the ratio of the cross sectional area between rays 

at a given point assuming spherical spreading to the cross sectional 
area between rays at the same point when the actual sound velocity 
profile is specified. We can then multiply the pressure history 
expected at a given point if no refraction occurred by the 

appropriate amplification factor. This then gives us the pressure 

history expected at that point when refraction is accounted for. 

However, the amplification factor is inversely proportional to 
the square root of the cross sectional area between adjacent rays. 
So as we approach a caustic, where these rays cross, the 
amplification factor reaches infinity, and ray theory is invalid. 
Furthermore, in the shadow zone adjacent to the caustic, ray theory 
predicts zero energy penetration. This is due to the high frequency 

nature of the ray theory approximation. So if we are interested 

in the pressure near a caustic or in an adjacent shadow zone a 
method other than ray theory must be used. 
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In this paper, I will describe such a method for calculating shock 
wave pressure histories in and near caustic regions. This method 
involves the incorporation of various p ropagation effects into a 
Fourier series representation of the initial shock wave from an 
underwater explosion. I will then describe comparisons that have 
bee n made between calculated pressure histories and experimental 
results from ocean and flooded quarry tests. Figure 1 shows a 
typical ray diagram for the ocean case which we have considered. 
Here the source explosion is at a depth of 1000 ft. The convergence 
zone caustic then occurs at 20 mi to 30 mi from the source. If the 
source is deeper, in or just below the thermocline, a thermocline 
related caustic occurs. This shows up at 2 mi to 5 ml and is due 
to upward starting rays. The flooded quarry test that we have 
considered was intended to model this thermocline related caustic. 
For both cases, comparisons will be shown, agreement will be praised, 
and discrepancies will be sullenly discussed. Finally, I will talk 
about the accuracy of ray theory near the caustic, a region where 
it is known to break down . 

A starting point for our work was a solution to the wave equation 
that has been done at various times in slightly different forms by 
Brekohvskikh [Ref. JJ, Tolstoy [Ref. 4J, and in this case, Sachs 
and Silbiger [Ref . 5J, [Fig. 2J. The wave equation is solved for a 
harmonic source and an arbitrary depth dependent sound velocity 
profile. First they arrive at a ray solution, where each term in 
the sum corresponds to an arrival reaching the point of interest 
after leaving the source at a different initial angle. 
any ray solution, this one breaks down on the caustic. 

But as with 
So they do 

a further approximation and arrive at an expression valid at and near 
a caustic for a sinusoidal acoustic source, If we divide this 
expression by the pressure expected at that point assuming spherical 
spreading, we get an amplification factor valid at a caustic [Fig. 3J. 

Most of the quantities in the amplification factor are constants of 
the propagation path. These are determined once the sound velocity 
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profile, source depth, and point of interest are given . The 
expression also contains the Airy function, a function of both 
frequency through k13 and distance off the caustic through br. 
For a given source frequency, the Airy function, and so the 
amplification factor, falls off exponentially as we move to the left 
of the caustic into the shadow zone. ' As we start moving to the right 
of the caustic, which is located at br=O, the amplification factor 
at first increases. Further to the right we see an oscillating 

function. This is the result of two arrivals interfering in what is 
familiar to us in ray theory as the double arrival region. From an 
asymptotic expression for the Airy function, it can be shown that 
one arrival is approaching the caustic and has been amplified . The 
other arrival is receding from the caustic . It has been amplified 
and also phase shifted by 90°. While thi s information about phase 
shifts and amplitudes is difficult to verify in the resultant signal 
from a sinusoidal source, it 1S more readily seen in the resultant 
signal from a t ransient such as a shock wave. We will see this in 
some o f the figures. 

Now that we have a frequency dependent amplification factor, we need 
to apply it to a shock wave. Our next step is to describe the shock 
wave in a frequency dependent manner. This has to be done in such a 
way that we describe what the shock wave would look like at the range 
of the caustic if no refraction occurred. Then we can incorporate 
our amplification factor into the pressure history in order to 
account for refraction. 

We represent the initial shock wave as an abrupt rise to a peak 
p ressure followed by an exponential decay [Fig. 4J · We then write 
the Fourier series for the pulse. This way it is expressed in a 
frequency dependent manner. In this figure, the amplitude of the 
shock wave is normalized to one . In general, we will need both a 
peak p ressure, Pl, and a decay constant, 9, to determine the pulse 
shape and series. We would like these pa r ameters to be characteristic 
of the range of interest and also to take into account the finite 
amplitude effects that are present in the propagation of a shock 

wave . 
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We do this by using the similitude, or scaling, equations which were 
discussed in the companion pape r by Barash and Goertner [Ref. 6J 
(see Sect. 3 of these Proceedings). Since these equations a r e based 
on cube root scaling, they p roperly account for the finite amplitude 
effects on the peak pressure and decay constant. However, they 
have not been verified out to the 30 mi range at which we need Pl 
and e. So we use them to a range where they are known to be valid, 
and the peak pressure is low enough so that we may ignore finite 
amplitude effects beyond that range . The point at which we cease 
to account for finite amplitude effects is the range at which the 
peak pressure drops below 5 psi . From this point to the range of 
the caustic we assume acoustic spherical spreading to find Pl 
and e for our pulse. 

We now have the shock wave in a frequency dependent form with the 
appropriate peak pressure and e. The next step is to incorporate 
our amplification factor into the expression [Fig. 5J. 

The expression at the top of the figure is the Fourier series for 
the pressure history with refraction added. Pl and e are the pulse 
parameters we have just discussed. The function represented by 
the script f to the right of the summation sign is the refractive 

p 
amplification factor. This along with the n/4 added to the 
arguments of the sine and cosine take into account the effect of 
refraction on the propagating pulse near the caustic. This new 
expression, if evaluated as it stands, would diverge. The physically 
unrealizable step discontinuity in the pul.se would lead to an 
infinite spike when refraction was added. However, we have yet to 
take into account the attenuation of acoustic pressure disturbances 
that becomes important for long ranges and high frequencies. Not only 
is it an important effect over the long propagation path to the 
caustic, but it serves to force our series to converge and terminate 
at some finite frequency. The graph in the centre of this figure 
shows the relative strength as a function of wave number, k, of the 
refraction factor f, and an absorption factor ~ . We can see that 
the ocean acts as a filter, damping the high frequency components 
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of the shock wave. Thus by adding absorption, we get the expression 
at the bottom of this figure for the pressure near a caustic. It is 
a Fourier series that now t erminates at some finite frequency due 
to absorption. This limitation shows up as the summation now only 
extends to N rather than infinity. Once we find the range to the 
caustic for the depth of interest, and determine the absorption 
cut-off, N, the expression for the pressure may be thought of as 
being purely a function of ~r, the distance off the caustic. The 
next figures show pulses calculated for various Lr's, along with 
experimental pressure histories from the convergence zone experiment 
we treated [Fig. 6aJ. The pulse on the right is a typical experimental 
record. Those on the left are calculated. For negative ~, we 
are in the shadow zone. Here we see a broad, low amplitude pulse. 
This is a result of the action of the Airy function, which is 
monotonically decreasing with frequency in this region. In the 
caustic region [Fig. 6b], we observe a single arrival with a high 
amplitude and short decay time. As we move away from the caustic, 
the peak pressure at first grows and then starts to decrease . Also 
shown in the figure is the isovelocity pressure history . This is what 
the pressure history would look like at the range of the caustic if 
no refraction occurred. For larger distances off the caustic 
[Fig. 6cJ, there are two arrivals, the resultant of the two arrivals 
from various frequencies. The first has just been amplified and 
has approximately the same decay constant as the isovelocity pressure 
history. The second arrival has been amplified and further phase-
shifted by 90°. This phase shift leads to a much shorter decay 
constant as seen in the figure. Thus, for a shock wave, the effect 
of the phase shift shows up clearly. 

At this point, I have described the method for calculations near a 
caustic and shown qualitatively what to expect. Next, I will show 
the comparisons of calculated pressure histories and experimental 
results that have been made. 

The first such comparison involves an oceanic experiment done by 
the Naval Ordnance Laboratory. 
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The purpose of this experiment was to record pressure histories in 
a convergence zone. Figure 1 showed an average sound velocity 
profile and associated ray diagram for the time period of the 
experiment. During the experiment, one ship set off charges of 
8 lb and 900 lb of TNT in a region from near the surface to 
1000 ft deep. Another ship some 30 mi away used a vertical array 
of more than 100 hydrophones to record pressure histories throughout 
the convergence zone. When the gauge array was placed so that it 
crossed the caustic for a given shot, pressure histories were then 
obtained for the shadow zone, caustic region, and double arrival 
region, simultaneously. 

We selected five of these shots to test the method just described. 
We will show representative pressure histories from four of these 
shots. 

In order to do the calculations, we must know the depth of the 
gauge string with respect to the caustic. For these shots, this 
was determined from an analysis of the experimental pressure 
histories. In Fig.7, the position of the gauge string for each 
shot is indicated on an enlarged view of the upper region of the 
convergence zone. We notice that there is a reflected branch of 
the caustic resulting from surface reflection, as well as the 
direct branch. Gauges at various positions will record different 
pressure histories due to their proximity to both branches of 
the caustic. For the first two shots considered, due to lack of 
complete data, we will only consider the contribution from the 
direct caustic. 

We will first consider shot 151 [Fig. 8J, an 8 lb shot where the 
gauge string was relatively deep. For shot 151, we first specify 
the gauge of interest, for example, the gauge near the top of the 
gauge string, Then we calculate the parameters needed for the 
amplification factor on the caustic at that depth using the given 
sound velocity profile and source depth. Then from this figure we 
determine 6r, the horizontal distance from the gauge to the 
caustic, and the final parameter needed. 
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Figure 8 contains this calculated p ressure history, and the 
experimental record from this gauge in the shadow zone in the upper 
left-hand corner, Next to it is a comparison in the caustic region, 
and at the bottom of the slide are two comparisons in the double 
arrival region. In all cases the experimental record is a solid 
line, while the calculated record is a dashed line . In all three 
regions, the calculated pressure histories adequately match the 
experimental records. In the upper right-hand corner we have also 
plotted the isovelocity pressure history . This again is what the 
pressure history would look like at all four gauges at the range 
of the caustic if no refraction occurred. 

Also of interest is the good agreement for relatively long times 
after the peak pressure. Th e caustic solution used in our pressure 
history retains some of the high frequency limitations of ray theory. 
This would suggest that for each arrival we could only make valid 
predictions near the peak pressure where high f re quencies predominate. 
Yet these calculations yield good results beyond the point where the 
pressure history drops below zero and flattens out . This indicates 
a reasonably good description of the low frequency content of the 
pulse . This is probably due to the relatively small sound velocity 
gradients in the ocean which make the caustic solution valid for 
relatively low frequencies on the order of 100 Hz or less . This low 
frequency validity should extend to ray theot'y as well, despite the 
often made remark that ray theory is valid for high frequencies only. 

The next shot we consider is shot 82 [Fig , 9J, an 890 Ib explosion 
at 1000 ft . The same general agreement between experimental records 
and calculated pressure histories is evident . In the records closest 
to the caustic, [Figs. 9b & 9cJ, gauge case ringing is very severe 
and interferes somewhat with the comparisons. 

Now we will consider the two s hots where both the direct 
and reflected ar r ivals were recorded . A gauge at the bottom of the 
gauge string for shot 120 is in the double arrival region of the direct 
branch caustic and in the shadow zone of the reflected branch caustic. 
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Hence, we would expect arrivals due to both branches. From ray 
geometry we can calculate the arrival time difference, or time 
delay, between these arrivals from different branches. We further 
assume that the surface acts as a perfect reflector for the 
reflected arrivals, causing only a phase reversal. We then combine 
the resulting pulses with the appropriate time delay to find 
the pressure history. 

Figure 10 shows comparisons of these calculated pressure histories 
and experimental records from the top, middle, and bottom of the 
gauge string. In the bottom record, the pressure history starts 
with a direct double arrival, which is then followed by a negative 
shadow zone pulse from the reflected caustic. Again the general 
agreement of peak pressure and wave forms is good. 

As the last of the oceanic comparisons, we calculated pressure 
histories for shot 119, an 8 lb shot [Fig. llJ. This differed 
from the previous shot in that it is a smaller charge weight, and so 
we are dealing with pulses with a much shorter decay time. This means 
there is proportionately more high frequency energy. By treating 
records with reflected arrivals in them, we are able to test the 
method for considerable distances off the caustic. in Fig. 11, the 
reflected arrival is approximately 1600 ft horizontally into the 
shadow zone, and the direct double arrival is approximately 2400 ft 
horizontally from the direct caustic. So with one record we gain 
information about a region 4000 ft wide. 

In all four comparisons, the calculated pressures are in reasonable 
agreement with the experimental values from the oceanic test. Just as 
important, the entire waveforms are in good agreement. So for the 
oceanic convergence zone case, the method is a reasonable approximation 
for the various phenomena involved in propagation to a convergence 
zone. 

We also tried matching pressure records from a test conducted by 
Woods Hole in a flooded quarry [Fig. l2J. As I have said, this type 
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of test models the thermocline related caustic that may occur at 
2 mi to 5 mi. For the quarry case the solution to the wave 
equation is not clearly valid for the frequency domain of our pulse , 
Not only are the sound velocity gradients 1000 times larger in 
the quarry than in the ocean, but the caustic is much closer to 
the turning points of the rays. This could tend to restrict the 
validity to the higher frequencies in the pulse. 

Also, we have to modify the pressure expression since absorption 
is no longer the high frequency cut-off mechanism as it was in the 

ocean. Here the gauge response restricts high frequencies more 
than absorption, so the gauge response as a function of frequency 
is used in the pressure expression instead of absorption. 

Pressure histories were then calculated near the caustic and in 
the double arrival region for a 56 lb charge detonated at 50 ft 
[Fig. l3J. The dashed lines are the calculated pulses, the solid 
lines are the experimental pressure records. While the exact 

agreement of the peak pressures is no doubt fortuitous, good 
agreement between experimental and calculated peak pressures has been 
obtained for similar quarry data during the course of this analysis. 
However, it is also apparent from this figure that the decay from 
the peak pressure is much too steep. 

If the solution to the wave equation is indeed valid only for high 
frequencies for this case, it may explain why our calculations only 
appear reasonable near the peak pressure where high frequencies 

predominate. Also, it is possible that a propagation mode other than 
the pure refracted one contributes to the pressure at a thermocline 
related caustic. For example, a lateral wave type of propagation 
could be occurring at the interface of the almost-isovelocity upper 
layer in the flooded quarry. This would be energy at relatively low 
frequencies which would affect most the decay from the peak. Or it 
1S possible that the surface boundary is influencing the propagation 
of energy in a way not accounted for by ordinary ray theory. If this 
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were the case, a modified ray t,heory such as that described by 
Mur phy and Davis in these Proceedings might be necessary for this 
type of situation. Whatever the reason, the calculation of the 
decay of the pulse for the quarry case remains the aspect of thi s 
wo rk that requires the most improvement . 

Finally, I would like to discuss the validity of ray theory near 
the caustic. Qualitatively we know that ray theory predicts an 
increasing intensity as one approaches the caustic from the double 
arrival region. This intensity, which is the same for all 
fr e que n cies , reaches infinity on the caustic, a line of zerO width. 
The caustic solution that we are using yi e lds a different picture. 
For this solution, the caustic is a region of finite thickness in 
betwee n the shadow zone and double arrival region. The lower the 
frequency of the source, or the la r ge r the charge for the transient 
case, the wider the caustic region is. Inside the caustic region, 
the solution yields one arrival that slowly increases in amplitude 
as one moves away from the shadow zone boundary at [:;r = O. For large 
distances off the caustic, the expression yields two arrivals in the 
p ressure history. This is the double arrival region as expected 
from ray theory. However, since the caustic solution was derived 
to b e valid near the caustic, it i s not obvious that it should yield 
reasonable results far from the caustic in the double arrival region. 
So really there are two quest ions to be answered: How different are 
ray theory and the caustic solution in the caustic region where ray 
theory is supposed to b e breaking down ? and How do ray theory and 
the caustic solution c ompare in the double arrival region, where the 
caustic s olution was not originally intended for use? 

Referring to Fig . 14, for reasons of simplicity, calculations were 
done for a harmonic source rather than the pulse sources we have 
been treating. Fo r the figure we have assumed a 100 Hz harmonic 
source and the convergence zone sound velocity profile previously 
shown. In the caustic region, we have combined the two ray arrivals 
in order to compare the resultant to the caustic solution we have 
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been using. As expected, as we approach the caustic, the two 
solutions diverge as the ray solution increases rapidly. It should 
be remembered that this figure holds true for the particular 
convergence zone profile treated. We have examined others where 
the caustic region was narrower, and some where the caustic region 
was up to three times as wide as this one is, Also shown in the 
figure is the double arrival region. Here we can resolve two 
arrivals in the caustic solution . It turns out that each one 
has the same amplitude, which falls off as the fourth root of 6r. 
We have plotted this amplitude along with those of the two ray 
arrivals. If we combined the caustic solution arrivals at the 
caustic region boundary , the resultant would match the caustic 
region solution at the caustic r egion boundary. However, what is 
most striking is the agreement between ray theory and the caustic 
solution far into the double arrival region. This explains why our 
calculations of pulses in the double arrival region were in good 
agreement with the experimental pulses. While in the double arrival 
region, one would tend to trust ray theory more, this figure 
indicates that it is not a bad approximation to continue using the 
caustic solution that was use d in the shadow zone and caustic region. 

In order to put all of these results in their prope r perspective, 
we must keep in mind the assumptions and a pproximations made. 
We assumed that the unrefracted shock wave could be approximated by 
an abrupt rise followed by an exponential decay. We then wrote the 
Fourier series for this pul se. In the oceanic case, we assumed that 
a superposition of finite amplitude effects, spherical spreading, 
and absorption on this series would adequately describe long distance 
propagation in the absence of refraction. Then we added refraction 
effects to find the pressure near a caustic. In the quarry, the 
gauge response was substituted for absorption. Our ability to apply 
these effects separately is no doubt due to the phenomena being 
treated . Finite amplitude effects occur relatively close in where 
pressures are high. Absorption for high frequencies takes effect 
only over long distances . While refraction effects occur throughout 
the path, the major effect is the significant amplification at the 
convergence zone. So while these effects no doubt interfere, their 
major influence is individual. 
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The main thrust of this work has been to describe the effect of 
refraction on the propagation of an underwater explosion shock wave. 
Particularly, we are interested in calculations near the caustic 
where the refractive amplification is greatest. We feel that in 
this method we have a reasonable means of calculating just such 
pressure histories for the oceanic convergence zone. What I also 
hope has been demonstrated by this paper, and the companion one 
by Barash and Goertner [Ref. 6J, is that an underwater explosion 
can be more than just a source of energy at various frequencies 
for acousticians interested in harmonic sources. These transient 
sources can also lead to analyses and information about ray theory 

validity that would be otherwise difficult to obtain. 
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DISCUSSI ON 

Durin g t h e d iscussion the p oint s were ma d e t h at i n a sense one 
was Hsaved by a b sorp tion", t h at t aking mo re terms i n the Fourier 
seri e s expansion would not h e lp , and t h a t t h e u se o f a mix o f 

l i n e a r and non- linear p r ope r t ies , a lthough expedient , may not b e 

v al i d at l arg e di s tances. 
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SAMPLE VELOCITY PROFILE AND RAY DIAGRAM INDICATING 
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PRESSURE HIS~ORY ' WITH REFRACTION 
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ICI Z, : 1074 FT., t:.r : 802 FT.; IDI Z, : 1110 FT., t:.r : 1152 FT. 
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FIG. 8 

SHOT 82, W : 890 LB. COMPARISON OF "DATA AND CALCULATED PRESSURE HISTORIES_ 
IAI ZI : 174 FT., t:.r : 0 FT.; 181 ZI : 221 FT., t:.r : 383 FT.; ICI Zr : 235 FT., 
l>r : 498 FT., IDI ZI : 320 FT., l>r : 1191 FT. 
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SHOT 120, W=870 LB. COMPARISON OF DATA AND CALCULATED PRESSURE HISTORIES. 
IA) Zg = 44FT., ilr 2 = 604FT.; ilr 1 = - 91FT.; IB) Zg = 121FT., ilr 2 = 1219FT. 
ilr 1 = -693FT.; IC) Zg = 202FT., ilr 2 = 1861FT., ilr 1 = -1565FT. 
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SHOT 119, W=8 L8. COMPARISON OF DATA AND CALCULATED PRESSURE HISTORIES. 
IA) Zg=2 FT., 612=428 FT.,611=380 FT.; IB) Zg=59 FT., il12=1062 FT., 
6 '1=-254 FT.; IC) Zg=202 FT., 6 '2=2365 FT., 611=-1565 FT. 
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VElOCITY PROFILE AND RAY DIAGRAM FROM BLACKINGTON 
FARM QUARRY FOR DAY OF WHOI CASE #45 
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WHOI QUARRY CASE NO. 45, COMPARISON OF DATA 
AND CALCULATED PRESSURE HISTORIES 
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COMPARISON OF RAy THEORY AND CAUSTIC SOLUTION FOR 100 Hz 
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