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Abstract: Scallering from oceanic basalt affeclS low-frequency active sonar systems in at least 
two important ways: (1) Significant time, angle and frequency spreading reduces target echo levels 
when systems over-resolve the spread; (2) Scattering causes significant reverberation. This paper 
examines time spreading and bistatic reverberation in an environment where rough basalt 
dominates. Both mcasurcmenlS and model predictions will be discussed. 

Me,asuremenlS were made on an array of 64 elemenlS with 1/2 wavelength spacing at 160 Hz, 
towed at a depth of 200 m. Mk-61 SUS charges were deployed at 244 m depth in water 5000 m 
deep. The site was in a thin -sedimented , rough-bollom, abyssal-hill province of the Northeast 
Pacific . Scattering in this environment presents a continuous diffuse return (no coherent 
component). 

To investigate bottom time spreading effeclS, the magnitude-squared envelope of the bottom pulse 
response was analyzed for a single omni hydrophone. Comparisons were made within frequency 
bands from 100 Hz to 300 Hz and over grazing angles from 80° to 10°. Theoretical predictions 
were generated using Kirchhoff theory in the high-frequency limit with two different slope density 
functions: (1) the measured slope density function derived from Seabeam bathymetry at the 
measurement site, and (2) a slope density function taken from Deep Tow bathymetry, not at the 
measurement site but insil'..ad at the crest of the East Pacific Rise. The Seabeam slope density 
function was unable to explain the long-duration, low-level tail of the acoustic time sprc.ad 
functions. However, the high-resolution Deep-Tow-derived slope density function gave excellent 
predictions. The theoretical model appears to offer a satisfactory explanation of the observed time 
spread functions including their absolute levels. The effect on system loss was computed as a 
function of bandwidth. The computation showed that large-bandwidth systems may suffer 
significant additional signal losses. 

Bistatic scattering was also examined by comparing predicted and measured beam power time 
series. Bistatic scattering strength was computed from the model as a function of bistatic angle for 
given source and receiver grazing angles. Scattering strengths were generally larger than 
Lambert's law and significant bistatic angle dependence was demonstrated. 

1. Introduction 

The Pacific abyssal hills are characterized as elongated hills a few hundred meters high, a 
few kilometers wide, and perhaps 10's of kilometers long. The pelagic sediments 
accumulate to less than 75 m depth and overlie rough oceanic basalt. Thin sediment 
overlying oceanic basalt is also found immediately adjacent to many shallow-water, 
narrow-shelf, coastal waters including the Tyrrhenian Sea, West Arabian Sea, and Pacific 
Rim. The Pacific Rim includes the Aleutians, Japan, Taiwan, Philippines, Indonesia, 
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Coral Islands, and New Zealand. Associated back arc basins include pans of the Kuril 
basin, Sea of Japan, Philippine Sea, South China Sea, Coral Sea, and Tasman Sea. 

The acoustic pulse response from the basalt interface is characterized by a long, slowly 
decaying tail with durations on the order of 1 sec. McCammon [1] has modeled time and 
angle spreads for this type of environment by assuming a Gaussian slope density function 
and fitting the data with a 2.5° to 3° surficial RMS slope on a 5 m thick, sediment layer 
and a 20° RMS slope for the basalt basement. The 2-dimensional RMS slope of 20° 
corresponds to a I-dimensional RMS slope of 14°. The model accounts for the top 10 to 
20 dB of the pulse response but fails to predict the remaining slowly decaying tail. High 
resolution bathymetric data [2,3] shows a non-Gaussian slope density function. We will 
see that the non-Gaussian function predicts the complete time spread observed and 
requires no roughness scattering from the water-sediment interface. 

This paper offers an explanation for the long time spreads based on Kirchhoff scattering 
theory and a slope density function taken from Deep Tow measurements. It will be 
shown that incorporation of this function together with the reflectivity function for an 
elastic half space with basaltic properties leads to predicted time series in good agreement 
with measurements. In particular, the theoretical time spread function for omni-
directional source and receiver exhibits the long time-spread tail and recreates the 
absolute levels with no adjustable parameters. The large time spreads have implications 
for large bandwidth systems. It will be shown that the effective bottom loss for a system 
increases significantly with bandwidth. In addition, the same model predicts the 
associated bistatic scattering strengths. The scattering strengths are found to be generally 
larger than Lambert's law and to have a significant dependence on bistatic angle. 

2. Experiment 

The term "Pacific Echo" refers to a series of experiments in the Pacific conducted jointly 
by the Naval Research Laboratory, Washington DC and Defence Research Establishment 
Pacific, Victoria Be. The first experiment (Echo I) occurred in June of 1986 using US 
DESTEIGUER as the source ship for deploying Signal Underwater Sound (SUS) charges. 
and CFAV ENDEAVOUR as the receiver ship for towing the receiving array. The 
second experiment (Echo II) followed in October of 1988. The experimental geometry is 
shown in Fig. 1. The receiver ship towed the array at 200m depth and 4 kts speed while 
the source ship executed an opening track from a range of 0.5 kIn to 40 km while 
deploying MK-61 SUS at a depth of 244m. 

The horizontal array consisted of a VLF aperture of 32 elements equally spaced 37.5m 
apart (design frequency = 20 Hz) and a high frequency aperture of 64 elements equally 
space 4.7 m apart (design frequency = 160 Hz). Hydrophone elements consisted of 
groups of 10 hydrophones each. The grouping helps attenuate flow noise. A diagram of 
the array is shown in Fig. 2. Only one of the omni-directional hydrophones was used for 
this analysis of time spread. Environmental measurements included eXpendable Sound 
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Velocity (XSV) profiles from th:' rcc ' lvcr ship. eX pendable BathyThennograph (XBT) 
profiles from the source ship, and 3.5 kHz depth profiles from the source ship. Data 
analyzed in this repo rt is from th e sccon '~ (', perimcnt at a stat ion located at 34°Q4'N, 
138°20'W. 

Fig. 1. Experiment configuration. 

Hydrophone spacings: 
HF 4.7625m 64 groups 
MF 9.525m 64 groups 
IF 19.05m 32 groups 
VlF 38.1 m 32 groups 

CFAV Endeavour 

!aired tow cable (730ml 

drogue >------
array 11850m totan 

·depth sensor 
H ·heading sensor 
OS ·dead section 
VIM ·vibration isolation module 

VlF 
1.----------------1219m ---------------1 

Fig. 2. Diagram of towed array. 
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The array was towed in an east-west direction at 4 kts. The source ship started the run a 
short distance from the center of the array and steamed at 6 kts on a bearing 65° relative 
to the array track. The geometry placed the source at a fixed bearing of 15° relative to 
broadside. The advantage of this asymmetrical geometry is that the source stays out of 
the broadside beam where occasionally under very low signal conditions common-mode-
type electronic noise may dominate. 

In May of 1989 the Scripps Institute of Oceanography collected Seabeam measurements 
along the east-west track of Pacific Echo II. Seabeam is a high resolution multi-beam 
swath mapping bathymetric system. The output is bottom topography (bottom depth) 
over a swath approximately 4.5 km wide at the depth of 5 km. In addition a water gun 
was towed emitting pulses (without bubble pulses) that penetrated the water-sediment 
interface and reflected off the underlying basalt. The difference between the two depths 
gives sediment thickness, which averaged 25 m along the track. 

3. Model 

The model implementation developed to interpret this data is new, but the model itself is 
not. Classical scattering theory is invoked in the form of the Kirchhoff or tangent-plane 
approximation in the high frequency limit. The tangent plane approximation is 
appropriate for large-scale scattering--scattering from roughness features whose 
deviations from the basal plane are large compared to a wavelength and yet sufficiently 
smooth. Large roughness means the Rayleigh parameter is much greater than unity, i.e. 

kasin VI» 1 
where kis acoustic wavenumber, a is the RMS surface deviation, and VI is the grazing 
angle. The smoothness requirement may be quantified by a constraint on the radius of 
curvature and grazing angle of incidence as expressed by the following ineqUality: 

sin VI» (kat/3 
where k = 2tr/ A is the acoustic wavenumber, A is the acoustic wavelength, and a is the 
surface radius of curvature. That large scale scattering approximations are appropriate for 
this data set is clear from observation of typical bathymetric time series or by 
computation of an RMS height measure. In this case the RMS height is on the order of 
40 m, which is much larger than a wavelength for frequencies up to the 300 Hz limit of 
this data set. 

Shadowing and multiple scattering are ignored. This is reasonable as long as grazing 
angles are larger than the mean square bottom slope. The source and receiver are 
assumed to be in the far field, i.e. 

kS» 1 
where S is the slant range from source or receiver (Ss or Sr) to a scattering point on the 
rough surface. The mean square height must be much less than a Fresnel zone radius, i.e. 

(ka2 sin2 VI) / S « 1 
fhe high-frequency limit requires that 
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(q,aY »1, if qJ. S 1 
q,r 

(q,af »( qJ. J4, if qJ. '?1 
q,r q,r 

where y is the RMS slope, and q p and q, are the perpendicular component (projection 
onto the basal plane) and z-component, respectively, of the vector q, where 

q= f-k 
and K, f are the vector wavenumbers in the direction of the outgoing scattered wave 
and incoming plane wave, respectively. 

The solution for the scattered field may then be written in differential form 

drs = IV(8)12 (q/q,r Pr(-qJ./q,)dA/(4S;S;) 
where drs is the differential scattered field at the receiver, Pr is the probability density 

function for bottom slope, dA is the differential area, and jV(8)1 is the plane-wave 
amplitude reflection coefficient. 

The intensity response for an impulsive source signal of unit energy is found by replacing 
dA in the above equation with dNdt and integrating along the elliptic contour of equal 
travel time. The term dA in this context is a differential element of area at a point on the 
contour in the differential annulus formed between the two ellipses associated with time t 
and t+dt, respectively. The time series arises from bottom scatterers illuminated by the 
expanding travel time ellipse. The full ellipse corresponds to the omni receiver case. For 
a directional receiver the ellipse is overlaid by the receiver beam pattern. For the 
calculations presented here a simplification was made. The beam pattern for the array 
was assumed to be an ideal sector (bounded by straight lines) of width equal to the Hann 
shaded main-lobe beamwidth at the -3 dB points. Sidelobe energy was neglected. More 
precisely, the beam pattern for a horizontal array intersects the bottom in a family of 
hyperbolas (not straight lines). Intersection of a hyperbola and an ellipse defines the 
scattering patch. However, the simpler idealized beam pattern assumed here was found to 
give good results. 

For the reflection coefficient in the above equation for scattering strength the plane wave 
reflection coefficient for water overlying a basaltic half space was used. The plane wave 
reflection coefficient is calculated at a grazing angle that depends on the location of the 
differential scattering patch. The angle is equal to the grazing angle that the incident ray 
makes with a specular facet at that bottom location. A specular facet is one oriented for 
specular reflection between source and receiver at the location of the scatterer. The basalt 
parameters used for the reflection coefficient calculation are as follows: 

Density, p=2.5 
Compressional wave speed, q=5 kIn/sec 
Shear wave speed, ct=2.5 kIn/sec 
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This result and accompanying assumptions above follows the development of Bass and 
Fuks [4]. By far the most important component in this recipe is the slope density 
function. The slope density function and its non-Gaussian long tails are responsible for 
the large time spreads and associated angle and Doppler spreads typically observed in 
Pacific thin sediment areas . 

Past work often assumed a Gaussian slope density function because of analytic simplicity 
and because, in many stochastic phenomena, non-Gaussianity leads to minor second order 
effects. Indeed. if one plots the slope density function used here along with the Gaussian 
function of the same RMS slope on linear axes of probability versus slope. the non-
Gaussian deviation appears to be of minor importance. hence the temptation to ignore it 
because we are still trying to explain major first-order effects. 

The importance of the non-Gaussian tail is more easily appreciated if the density 
functions are plotted on semilog graph paper (a fair representation because the time-
spread reverberation from the scattered field interferes with target detection in accordance 
with the ratio of scattering intensities). This brings into perspective the behavior at low 
probability levels. The shape of the Gaussian is concave downwards at first and drops 
precipitously below the non-Gaussian curve. Meanwhile the non-Gaussian curve is 
virtually a straight line. i.e. exponential in fall-off. over the entire range. This difference 
in fall-off rates is obscured in the linear plots. 

Because the fall-off rate of the measured slope-density function is so much slower than 
the Gaussian curve, the energy associated with these low levels can still be significant 
because of the long integration times involved. A second feature which we will see in the 
acoustic predictions is that the geometric mapping of the slope density function into time 
is highly nonlinear and the straight line behavior near zero slope actually gets mapped 
into a very peaked acoustic response in time . Thus. a very sharp peak is predicted in the 
incoherent scattered field which is not the same as the coherent reflection produced by the 
mean smooth plane. 

3.1 Slope density functions . 
Slope density functions may be numerically estimated from high-resolution bathymetric 
data. For the purposes of scattering theory, surface slope is the two-dimensional surface-
height-gradient vector. which lies in the basal plane of the rough surface. In the simplest 
case azimuthal isotropy is assumed; then. all bathymetric lines are realizations from the 
same population of surface heights. Bathymetric time series may be differenced to obtain 
a time series of slopes projected onto an axis (x-axis) coincident with the bathymetric 
line. The ensemble of these slope projections forms a marginal distribution since the 
orthogonal projection (y-component) is also being randomly sampled. That is. the one-
dimensional distribution of slopes obtained from measurements along the x-axis is an 
estimate of the two-dimensional slope distribution integrated over the y-component of 
slope. 
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For the isotropic function. appeal is made to a very powerful theorem [5] that states that a 
probability density may not be simultaneously non-Gaussian and isotropic with 
independent marginal densities. We must refrain from creating a two-dimensional 
density simply as the product of the x and y. one-dimensional marginal densities . The 
isotropic density is circular symmetric. and the relationship between one- and two-
dimensional densities in the case of circular symmetry is contained in the theory of Abel 
transforms [6]. The inverse Abel transform provides the means for obtaining the radial 
density of the two-dimensional density from the one-dimensional marginal density. 

Consider the two-dimensional slope density function. pz ( y %. y,). A one-dimensional 
slope density function may be constructed from a histogram of slopes derived from the 
marginal differencing of an equi-spaced bathymetric time series taken along say the x-
axis. Each frequency-of-occurrence bin is filled with members having the same x-
component of slope but with randomly occurring y-component slopes. The resulting 
probability density is an estimate of the marginal density defmed by 

- -
PI (yJ = J P2(Yz.' y,)dy, = 2 J P2(Yz.' y,)dy,. 

o 
If we assume circular symmetry. then 

pz(Yz.. y,) = p(y,) 
where. 

2 Z 2 y, = y% + y,. 
Substituting for y, and dy, we arrive at 

P (y ) = 2J- p(Y,)Y,dy, 
I % r.(y;-y;)IIZ · 

This expression for PI (rJ is identical to the Abel transform [6] of p( y,). We can 
obtain the radial density from the x-component marginal density by inverting via the 
defmition of the inverse Abel transform. From reference [6] the result is 

P(y ) = -~J- p;(yJdyz. 
, lr,(y;_y;)IIZ· 

The slope density function proposed in this modeling effort is taken from the Deep Tow 
measurements and slope distribution analysis of Larson et al. [2] and Spiess et al. [3] . 
These authors compiled the statistics on the occurrence of bonom facet slopes. Their 
instrumentation consisted of 40 kHz echo sounders (beamwidth = 4°) towed from 50 m to 
500 m off the bottom. Sub-bottom information was obtained with a 3.5 kHz source. No 
beamwidth was specified for this source except for the statement that the beam was 
broader and more powerful than the 40 kHz echo sounders. The sounding data was 
sampled from analog records at distances such that straight line segments nowhere 
departed more than 2 m from the observed trace . Each such segment provided a sample of 
bonom slope (This author expects that such processing adds white noise of RMS 
amplitude 2 m to the bathymetric time series). Larson and Spiess present the data in a 
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histogram of segment sizes that shows a minimum value of 100 m. This suggests that the 
effective lateral resolution of the measurement is on the order of 100 m. 

Larson and Spiess analyzed measurements taken in an area 5 km x 20 km at the crest of 
the East Paci fie Rise (20°54 'N ,109° 13 'W) and at another site on the western flank 
(32°25'N, 125°40'W). They discriminated between tracks along the strike and across the 
strike of the ridge axis. Slopes were higher across the strike. Similarly, they 
discriminated between the water-sediment interface and the basalt interface. As might be 
expected slopes from the basalt interface were higher. Presumably the ponding of 
sediments reduces some of the larger slopes in favor of the zero slopes for the flat top 
sediment ponds. 

For the modeling presented here the distribution for the basalt interface was used. 
Differences between across strike and along strike distributions were noted by Larson and 
Spiess; however, based on the model, these differences are expected to result in less than 
1 dB difference in acoustic level at long time spreads. Hence, a two-dimensional isotropic 
density function was derived from the across strike basement distribution. The onc-
dimensional density provided by Larson and Spiess and the extrapolation to higher slopes 
is ShOy..l1 in Fig. 3. A comparison of the two-dimensional slope density functions for the 
Gaussian, Seabeam, and Deep Tow cases is shown in Fig. 4. 

I-Sided. I-Dimensional Slope Density Function From Deep Tow Data 
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Fig. 3. I-dimensional slope density function from Deep Tow data showing measured and 
extrapolated parts. 
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2-Dimensional Slope Density Functions 
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Fig. 4. 2-dimensional slope density functions for the Gaussian. Seabeam. and Deep Tow 
cases. 

4. Results 

4.1. Time Spread 
To illustrate the perfonnance of the above model several bonom reflected time series are 
compared with theoretical predictions. The time series were taken from a single omni-
directional hydrophone and filtered in a band from 100 Hz to 300 Hz using a three-
section Chebyshev digital filter. Amplitudes were corrected for system transfer function 
and topside amplifier gains. A ray trace program was run to calculate transmission loss 
along the bottom reflecting path. Correction was made in received levels to remove 
transmission loss. source level. and bandwidth. The filtered amplitudes were squared and 
the resulting intensity series smoothed with a three-section low-pass filter with an 
effective integration time of .05 s. This gave 10 degrees of freedom to the statistical 
estimates with minimum distortion even at the beginning of the response where the fall-
off rate is very rapid. 
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111ree theoretical predictions were generated for comparison. The first was the Gaussian 
model. The Gaussian model needs only one parameter, the RMS slope. The RMS slope 
was computed from Seabeam data taken along the acoustic track. The second model used 
a slope density function derived from the Seabeam data. Sensitivity of the slope density 
function to sample length and location of the bathymetric series was examined 
qualitatively and found to be unimportant. The third model used the Larson and Spiess 
slope density function derived from Deep Tow data. 

Figure 5 shows the comparison of the three models at a bottom grazing angle of 79.5°. 
Because the data contained contributions from all four surface multiples for a single 
bottom interaction the theoretical time series were generated by adding the predicted 
intensity time series 4 times with appropriate time delays. 

Measured And Theoretical Time Spread Functions 
10-1 ~---.-----.----'------r------.---r-----'-----

10-8 
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~ 
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~ 
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IOO-3OOHz, .OSs Integration 

Deep Tow 
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Time (sec) 

Fig. 5. Measured and theoretical omni time spread functions; grazing angle = 79.5°. 
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While all three models are in good agreement in the first 0.2 sec of each multiple peak, a 
dramatic difference is noted at long time delays . Only the Deep-tow-derived slope 
density function provides an adequate prediction. The prediction is good over the 6.5 sec 
of available first bounce data representing nearly 30 dB of dynamic range. The basalt 
parameters chosen are typical of laboratory measurements for dredged basalt samples. 
The model assumes no sediment effects such as refraction, i.e. just the rough basalt 
interface is assumed. 

Figure 6 shows the data theory comparison for a grazing angle of 22°. The ordinate of 
this plot, which is different from that of Fig. 5, is a normalized power density. The 
nonnalization gives the power in the 100 Hz to 300 Hz band expressed as a per Hz power 
density, for an impulsive source of unit energy corrected to a transmission loss of 0 dB. 
This isolates the time spread function from the source and transmission loss tenns in the 
sonar equation. The integral over all time then gives the total energy bottom loss. 

Omni r-.f agn itudc Squared Envelope 
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Fig. 6. Measured and theoretical omni time spread functions; grazing angle = 22°. 
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Because the magnitude-squared envelope has initial sharp peaks followed by a long, 
slowly decaying tail, the response of systems with different bandwidths will be different. 
For a bottom impulse-response that decorrelates rapidly compared to the decay of its 
envelope, the system power response may be calculated by the convolution of the square 
of the source signal with the mean magnitude-squared envelope. The magnitude-squared-
envelope response of the bottom is measured with a pulse that is short relative to time 
over which the envelope changes significantly. Convolutions were calculated for 
sinusoidal pulses of various pulse lengths. Fig. 7 shows the results with inverse pulse 
length expressed as bandwidth. After convolution the peak power divided by the source 
peak power is shown as peak bottom loss. Similarly, the ratio of total energies is shown 
as total energy bottom loss. The results at high and low grazing angles are also shown. 
We see that because of the large time spreads significant additional effective bottom 
losses are sustained by large bandwidth systems. 

An example of the array beam response is shown in Fig. 8. The source-receiver range for 
this shot produced a nominal grazing angle of 46.5°. The bearing of the source was 
107.5° and the beam was steered towards the source. Sharp multi path spikes can be 
easily discerned. The first such spike in the data is anomalously low, but the other two 
spikes are on the order of 1 dB lower than the model. The rest of the decay shows a lot of 
fluctuation as usual but the mean response is well represented by the model. 
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Fig. 7. Peak- and total-energy bottom loss versus bandwidth. 
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Fig. 8. Measured and theoretical beam time spread functions; grazing angle = 46.5°. 

4 .2. Bistatic Scattering Strength 
Modem warfare scenarios increasingly employ multiple platfonns to perfonn mine 
hunting and anti-submarine warfare tasks. Active sonars transmit pulses that are not only 
returned to the transmitting platfonn but are also received on other platfonns. When 
propagating paths include the bottom. reverberation is received via available bottom 
scattering patches and the reverberation is tenned bistatic reverberation. Obviously. 
prediction of bistatic reverberation is as important to multistatic operations as monostatic 
reverberation is to single platfonn operations. Yet. insufficient attention has been paid to 
the bistatic aspects of reverberation. 

The tenn scattering strength has long been associated with backscattering. i.e. scattering 
back to the source. In a monostatic configuration. in which the source and receiver are 
collocated. all scattering is backscattering and the interaction is specified in tenns of a 
single angle. the grazing angle between the incident beam of energy and the scattering 
plane. A bistatic configuration. in which source and receiver are spatially separated. 
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involves three angles for any scattering patch: the grazing angle from the source, the 
grazing angle to the receiver, and the bistatic angle. The bistatic angle is the angle 
between the projections onto the scattering plane of the vectors connecting source and 
receiver to the scattering patch. We will adopt the com-ention that 00 is in the forward 
direction and that 1800 is in the direction back towards the source. 

A scattering-strength model is at the heart of any reverberation prediction. Lambert's law 
is often employed as the scattering-strength kernel because it often gives an approximate 
prediction. However, measured scattering strengths often differ mar1cedly from Lambert's 
law. When it does we often have no knowledge as to why. When it is known that the 
scattering law for a given area is different from Lambert's law, it is important to the 
fidelity of reverberation prediction to implement the correct scattering strength function. 

We shall see that oceanic basalt is just such a case in which the scattering strength is not 
represented by the cosine dependence on incoming and outgoing grazing angles. 
Furthermore, a strong bistatic angle dependence is seen that is totally absent from 
Lambert's law. 

Bistatic scattering strength modeling is a natural outgrowth of time-spread studies. After 
all, the physical mechanisms are the same regardless of whether their effects appear at 
different places within the sonar equation. In the case of basalt scattering the return is all 
incoherent scattering. Hence, there is really no distinction between what we would call 
signal-path or target-path energy (that occurs close to the first arrival along the specular 
path) and all other energy that keeps pouring in from increasingly farther scattering sites. 
There is no time demarcation in the received time series or Fresnel zone on the bottom 
that separates signal energy from reverberation. We will simply look at the totality of 
received energy in two different ways. For signal considerations we want to know what 
effective bottom loss accounts for losses of signal energy for a given processor. For 
reverberation we want to know how to describe the angular dependence of scattered 
energy. 

From the theory the relationship between the calculated received field and scattering 
strength is straightforward. The scattering strength (SS) is simply the received intensity 
per unit scattering area at unit distance from the scatterer in an incident field of unit 
intensity. For the model discussed here SS is simply written: 

SS = jV(8)12 (q/q,t py(-qJ,/q,)/4 
where all quantities are as previously discussed. 

As with the beam time series the location of scattering patches contributing at a given 
instant in time is detennined in our simplified model by the intersection of the travel time 
ellipse and the azimuthal rays approximating the main lobe in the array beam pattern for a 
particular steering direction. In general the rays for the steered beam and the symmetric 
conjugate beam can intersect the ellipse in 0 to 4 different places. When there is a single 
intersection, and in the limit of a very narrow beam, the beam ray is tangent to the ellipse. 
In this case main beam energy has been scattered from a single spot on the bottom. In 
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effect, it constitutes a direct measurement of bistatic scattering strength at some angle of 
interaction. At later times more than one intersection occurs and the received main-lobe 
energy is a result of scattering from at least two different sets of interaction angles. 

An example is shown in Fig. 9 of the evolution of the interaction angles with time. This 
example corresponds to the beam time series displayed in Fig. 8. The angle Phi is the 
bistatic angle, Chi is the grazing angle to the receiver and Psi is the grazing angle from 
the source. The different solutions are indicated by the solid and dashed lines. Time is 
measured relative to the travel time along the specular path. 

Range = 9.1 kIn. Beta = 107.5. Delta = -107.5 Source. Receiver Height = 4.8 kIn. 4.8 kIn 
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Fig. 9. Interaction angles and scattering strength versus time. Grazing angle of the mean 
surface specular point = 46.5°. The angle Phi is the bistatic angle, Chi is the grazing 
angle from scattering patch to receiver, and Psi is the grazing angle from source to 
scattering patch. Delta is the angle between the endfire direction of the array and the line 
connecting source and receiver, and beta is the steered angle relative to endfire. 
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At just after one second in the plots of Phi, Chi, and Psi a change of solution is shown. 
Since the source and receiver are at nearly the same depth in this calculation the solution 
changes when the scattering point moves directly under the source for one path and 
directly under the center of the array for the other path. Notice that because the source is 
slightly off of broadside the symmetry is broken so that Phi is exactly 180° for the beam 
pointing to the source but the conjugate beam is not along the line joining source and 
receiver. As a result Phi for the second solution differs a little from -180°. The 
asymmetry is not nearly as evident in the curves for Psi and Chi. 

The scattering-strength curve is one of the most interesting. In addition to the general 
trend with time a depression is seen which corresponds to an interval in which the basalt 
reflectivity is between the compressional and shear critical angles. At a little less than 
four seconds the compressional critical angle is reached, and near one-half second the 
shear critical angle is attained. The reduction in basalt reflectivity becomes expressed in 
the interval of reduced scattering strength .. 

Calculations at shorter arrival times than shown in Fig. 9 indicate that the first arrival 
occurs at a grazing angle of 47°. Specification of the scattering strength at short times 
brings up a bandwidth issue because the scattering strength continues to rise rapidly with 
decreasing time. Specifically, at t=.ool sec the scattering strength is 5.2 dB and at .0001 
sec it is 7 dB. What is being described here is the sharp scattering-strength peak in the 
vicinity of the specular direction. The implication is that a large bandwidth system is 
needed to measure the full extent of the scattering strength peak in the specular direction. 

At directions away from specular the problem goes away. Thus, we may choose the time 
series from a beam that misses the specular point. The first arrival still comes from a 
single scattering patch, but the decay with time is not as rapid. Examination of several 
beam time series in this way showed that first arrival peaks fluctuated above and below 
(on the order of 3 dB) the model predictions from beam to beam. This suggests a 
manifestation of fluctuations rather than a deterministic departure of scattering strength 
behavior from the model. Furthermore, the omni time series which are predicted well by 
the model, are really the result of scatterers from many beams which helps to average out 
such beam-to-beam fluctuations. 

Therefore, we take the interpretation that the model represents a good prediction of the 
ml:an scattering strength for such a bottom and for given interaction angles. Although we 
cannot form an ensemble average over the random scatterers while holding all angles 
fixed, the omni time series represents a kind of ergodic ensemble average over a 
distribution of interaction angles. If we take that data/model comparison as a measure of 
the model's fidelity, then calculations from the model for interaction angles that were 
sampled by the acoustic data serve as our estimate of scattering strength inferred from the 
measurements. 

We proceed to present a few of the characteristics of bistatic scattering from basalt. There 
are many ways to display a function of three variables. To emphasize the bistatic effects 
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we show the bistatic scattering strength as a function of bistatic angle for fixed source and 
receiver grazing angles. Figs. 10-13 show the results for equal source and receiver 
grazing angles of 10°, 20°, 40°, and 70°. For comparison Lambert's law with the 
MacKenzie coefficient (-27 dB) is given by the dashed line. As expected when large time 
spread is observed, there is also large angular spread and high scanering strength levels. 
Secondly, we notice that the decay with bistatic angle increases at lower grazing angles 
and is very significant. We also notice again the remnants of the basalt reflectivity curve. 
The compressional and shear critical angles are most noticeable here in the 20° and 40° 
grazing-angle curves. 
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Scattering Strength Versus Angle 
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Fig. 10. Scattering strength versus bistatic angle; source and receiver grazing angles are 
10°. 
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Fig. 11. Scattering strength versus bistatic angle; source and receiver grazing angles are 
20°. 
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Fig. 12. Scattering strength versus bistatic angle; source and receiver grazing angles are 
40°. 
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Fig. 13. Scattering strength versus bistatic angle; source and receiver grazing angles are 
70°. 

s. Summary And Conclusions 

Bottom reflected signals were measured at an abyssal hills site in the Northeast Pacific 
using SUS charges as a source. The time series received on an omni-directional 
hydrophone exhibited large time spreads typical of those thin sediment sites. Although 
the time spread at the -20 dB level was large (-1 sec) a sharp peak occurred at signal 
onset. 

Theoretical time series were calculated using Kirchhoff theory in the high-frequency limit 
together with a slope density function taken from Deep Tow measurements at the East 
Pacific Rise. The theory was in good agreement with the data. accounting for the early 
narrow peaks as well as for the very slow fall-off at later times. At 79.5° agreement was 
good over the 6.5 seconds duration of the first bottom bounce (before onset of the second 
bottom bounce) representing almost 30 dB of dynamic range. 

The combination of basalt reflectivity and slope density controlled scattering strength 
gave correct levels without resort to adjustable parameters. The time-spread function 
convolved with (target-reflected) signals causes loss of signal energy that increases with 
bandwidth of the system. 

The acoustic data was collected about 2000 Ian from the East Pacific Rise Crest, where 
data for the slope density function was collected. This suggests that basalt roughness 
changes very little over the geologic time that the crust moves from the spreading center 
where it was formed, westward to the present location where the acoustic data was taken. 
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Theoretical predictions were also made for a Gaussian slope density function and a 
function based on high resolution Seabeam data. The Gaussian slope density calculation 
failed dramatically at long delays relative to the first arrival. This fact demonstrates the 
importance of the non-Gaussian nature of bottom roughness . The Seabeam density 
calculation did little better. Lateral resolution for Seabeam at this depth (5 km water 
depth) and Deep Tow are on the order of 300m and 5m, respectively. The highest 
frequency in the acoustic data (300 Hz) has a wavelength of 5m. This suggests that 
bathymetric data must be acquired with spatial sampling about as fine as the acoustic 
wavelength in order to give meaningful basement slopes. 

Beam time series for the narrow array beam were also predicted in the mean by the 
model. Calculations of bistatic scattering strength based on the model gave values higher 
than Lambert's law in most instances and exhibited a strong dependence on bistatic angle. 
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