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ABSTRACT 

A statistical description of horizontal thermal microstructure in 

anosotropic turbulence is developed for application with an existing 

acoustic propagation theory. The model predicts a temperature power 

density spectrum lvhich decays as -5/3 and -3 in the convective and 

buoyancy ranges, respectively. The relative power in the two ranges 

is a function of depth and depends on the total rate of energy dissi-

pation, the total rate of dissipation of temperature variance, and the 

Brunt-Vaisala frequency. Companion experimental data at two widely 

separated stations of the North Atlantic verify the theoretical 

predictions. 
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INTRODUCTION 

This paper presents models and measurements both for the 
horizontal oceanic random temperature field and for the horizontal 
transverse correlation of the acoustic energy which has propagated 
through a random environmental field. First the environmental field 
model is discussed and measurements supporting the model are presented. 
Then a theoretical solution for the acoustic correlation function 
which incorporates the environmental field properties is compared 
with acoustic data. 

A considerable amount of effort by a number of researchers 
has been devoted to the description of the random horizontal 
temperature structure of the oceans. This effort has produced a 
variety of single term power law representations of this structure, 
particularly in the wavenumber range between internal waves and 
dissipation. This intermediate range is treated both theoretically 
and experimentally in this paper. It is shown that two physical 
processes, buoyancy and convection, have a depth dependent effect on 
certain scale sizes of the temperature microstructure spectrum which 
can result in a number of single term power law representations. The 
form of the temperature power spectral density curve, which is 
developed and observed within the anisotropic buoyancy-convective 
wavenumber range, is strongly influenced by the Vaisaia frequency, N. 

ENVIRONMENTAL THEORY 

The first step in the theoretical treatment,[Moseley and DelBalzo, 
1974], of horizontal spatial temperature fluctuations in an anisotropic 
ocean throughout the buoyancy-convective range involves a modification 
of the standard assumptions (Corrsin, 1951) applicable in an isotropic 
medium. The modified assumptions are listed below. 

1. Temperature is not a simple passive additive. Although 
the temperature fluctuations are still so small as to have no 
appreciable effect on the velocity field, the mean temperature gradient, 
through its effect on density, does directly influence the velocity 
structure. 

2. The mean density gradient is statically stable. 

3. The statistical properties of both temperature and velocity 
in the spectral range of interest are homogeneous and isotropic only in 
horizontal planes and are stationary. 

4. With the exception of scaling and dimensionalizing factors, 
the statistical properties of the temperature fluctuations are 
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determined solely by (a) D , the temperature variance flow rate 
through the buoyancy-convec~ive range; (b) e , the viscous energy 
dissipation rate; and (c) the energy spectrum0 in the buoyancy-
inertial range of velocity fluctuations (Lumley, 1964). 

A dimensional analysis, based on the above assumptions, yields 

-J/'3 -3 
T. Od = A 1 k + A2 k (1) 

8C. _, ~ 
where A,= 800 Ec-111 and A2= $COot" N with B and C being dimensionless 
constants of order one. The first term results from convective 
turbulence; the second term occurs due to the buoyancy influence on 
the turbulence. The coefficient of the second term has an explicit 
dependence on the Brunt-Vaisala frequency. 

There are a number of predictions that can be made on the basis 
of this simple formulation. We shall just treat a couple. First, if 
the wavenumber interval under analysis is the fixed interval [~,k ] 
and a single-term power law analysis is applied, then the value ofuthe 
resulting exponent would be expected to vary in depth in a manner 
similar to the Vaisala frequency. This occurs because the relative 
dominance of the second term increases as the Vaisala frequency 
increases and so the single-term power law approximation begins to 
approach -3. Conversely, as the V~is~l~ frequency decreases, the 
influence of the second term decreases and the single-term approxi-
mation provides a power law close to -5/3. This effect is depicted 
in figure 1 where the transition wavenumbers ~ and k'b (above which 
inertial turbulence is the dominant influence) correspond to large 
and small values of N, respectively. 

A second theoretical prediction would be that if one plotted the 
power law resulting from a single-term analysis versus the square 
of the local Vaisala frequency, one would expect the power law to be 
asymptotic towards 3 as the Vaisala frequency increases. 

In summary, this development shows a two-term power law for 
temperature fluctuations in the buoyancy-convective range of 
wavenumbers. The sp~3tral decay associated with buoyancy is shown to 
be proportional t~513 , and the decay associated with convection is 
proportional to k • 

ENVIRONMENTAL MEASUREMENTS 

A series of environmental measurements (temperature, sound speed, 
pressure and rate of advance) were taken along 54 straight horizontal 
tows near Bermuda over a wide range of depths, speeds and distances. 
Spatial power density spectra of temperature fluctuations after 
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removal of a mean and linear trend were computed and corrected for 
depth variability for each of the runs. 

In all of the treatments that follow, logarithms were taken to 
equalize the variance of the power density estimates before the least 
square analysis procedure was applied. 

Figure 2 indicates the results of single-term power law analyses 
over a fixed wavenumber interval versus depth. The symbols denote the 
power law values obtained and the vertical bars indicate the 90% 
confidence limits. As predicted, the single-term power law varies 
between -5/3 and -3. The dependence on depth was strongly suggestive 
of the Vaisala frequency profile for the area. In figure 3 the 
exponent resulting from the single-term analysis is graphed as a 
function of the temperature gradient (which is proportional to the 
square of the Vaisala frequency) and the predicted asymptotic 
approach toward -3 for large N should be noted. 

Figure 4 illustrates schematically the components of a procedure 
to check the details of the theory via a separated two-term analysis. 
If the initial wavenumber interval under analysis is constrained to 
sufficiently large wavenumbers, the influence of the -3 power law 
term becomes negligible. In this restricted wavenumber interval, a 
single-term power law analysis provides experimental estimates of the 
coefficient and exponent for the -5/3 term. Nex t an analysis is 
performed over the entire wavenumber interval throughout which the 
contributions (as determined from the experimental coefficient and 
exponent) of the -5/3 term are treated as noise and removed from the 
total temperature power spectrum. A single-term .power law analysis is 
performed on the residual and this gives experimental estimates of the 
coefficient and exponent for the -3 term. 

Our measurements extended to the large wavenumbers required by 
this procedure in 19 of the 54 tow runs. The average value of the 
exponent in the constrained high wavenumber interval was -1.68, 
extremely close to the theoretical value of -5/3. Having removed the 
contributions of this term, the power law analysis on the residual 
gave an average value for the exponent of -2.94, again close to the 
theoretical value of -3. In figure 5, for each run, the experimental 
estimate for the exponent of the term dominant in the buoyancy 
interval is plotted versus the experimental estimate for the exponent 
of the term dominant in the convective interval. p indicates the 
mean power law in the buoyancy interval. The 90 % confidence limits on 
this mean include the value -3. Thus, we conclude that the mean is 
not significantly different from -3, and that the experimental data 
support the environmental theory in the buoyancy-convective wave-
number range. 
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The environmental model which is to be incorporated in a 
propagation theory should include the range of wavenumbers dominated 
by internal waves. The power spectrum for this lower wavenumber 
interval can be obtained from Garrett and Munk (1975). 

ACOUSTIC MODELING AND MEASUREMENT 

Equipped with a model of random horizontal temperature 
f luctuations, we now briefly assess an influence of these fluctuations 
on acoustic propagation. In particular the two-point acoustic 
correlation function at the receiver is investig~ted because it is a 
low-order statistic directly relevant to system performance. r, the 
acoustic correlation function is defined as 

rc!5, )~:z.) = fP<.~,) P~~1.) J 
the ensemble average of the product of the acoustic pressure at one 
point in the field and the complex conjugate of the acoustic pressure 
at a second point in the domain. 

Starting from the reduced wave equation satisfied by the acoustic 
pressure at each of two points in the field, one can derive via the 
operator-smoothing method an integra-differential equation governing 
the propagation of the acoustic correlation function: 

'l. '2.. '1. , r ) [ v,'l. + k<:~~>] [~ t k(!2.)j (51 )!l. 

- [ v,.,.+ k (~j>] [ ~ (~1.) SG Oh1!> t/c..e> Re. c;sl)f) ro~, )f>Af J 
- [v: +k\~~)][th~,)sG (~, )~) k(~) Rt: (~·)D-). r(!} )~,_)J~] 

~ k(~.) k\~l.) Rf(~.J~z) P(~,>~1.) 0 

In this equation, G is the Green's function for the reduced 
deterministic wave equation, k is the deterministic acoustic wave-
number, and R is the two-point correlation function for the random 
environmental£field. A weak environmental field assumption has been 
made so truncation of the infinite series of integral operators can 
be accomplished at the order requiring only the two-point statistic 
of the environmental field. · 

Two approaches toward solving for r are currently being implemented. 
In the first approach a parabolic equation approximation is introduced 
and then a computer based numerical solution is constructed. This 
technique allows inclusion of actually observed oceanic sound speed 
pro£t les as well as - the random environmental field. 
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The second. ~pproach. involves addi.ti.onaL assumpti.ons which 
provide a strictly differential equation formulation and subsequently 
allow a closed form solution. It is a solution resulting from the 
second approach that will be compared with acoustic ~easurements in 
this paper. The closed form solution derived by McCoy and Beran 
( 1975) and shown below retains the basic anisotropic nature of the 
two-point environmental statistic together with the approximate form 
of the power spectrum of random temperature fluctuations in the 
horizontal plane. 

S"j,__ 3/z. 
T ex P [- E F L Y ] 

This result states that the acoustic correlation function along a 
horizontal line transverse to the direction of propagation is an 
exponential function whose argument is proportional to: E, an 
environmental factor; the frequency F to the 5/2 power; L, the range; 
and the transverse horizontal separation distance, Y to the 3/2 power. 
I is the i~tensity at a point receiver with the same range and depth. 
The factors of the environmental parameter are given in detail in the 
next equation. . ~ . ~72. 

E := I 7' [:L ~] A 1 [~Jr/co] 
• b C0 .}T T - )'It\ 

Here C is the average value of the sound speed, T is temperature, 
~ is the s~rength of the random horizontal temperature variations, 
and 1 M is a length scale associated with the vertical correlation 
function of the temperature fluctuations. ~ is d~termined in the 
following manner: the average value of the Vaisala frequency is 
determined along the propagation path; then an extrapolation of 
measured single term. coefficient versus Vaisala frequency gives the 
value uti·lized. 

The comparison of this theoretical solution with acoustic data 
taken in the same locale as the random temperature data is given in 
figure 6. Here for a fixed range and fixed frequency the dependence 
of the correlation function versus increased receiver separation on 
a horizontal line transverse to the propagation direction is shown. 
The transverse separation and the range are scaled in units of the 
acoustic wavelength. The correlation function is scaled by the 
intensity at a point receiver. The crosses are the experimental 
values for the average of the cosine of the phase. fluctuations which 
account for the vast majority of the change in the correlation function 
for a single transmission path as was the experimental case. The 
solid curve represents the theoretical predictions. 

CONCLUSIONS 

The assumptions, postulates, and dimensional analysis lead to the 
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two term formulation 

for the horizontal spatial power ~ensity spectrum of random oceanic 
temperature fluctuations in a wavenumber range called the buoyancy-
convective range. 

Analysis of experimental data obtained during 54 horizontal tows 
with depths ranging from 100 to 1450 ~ supports a number of 
theoretical predictions. Both the -5/3 and -3 predicted power laws 
were observed; the mean values were -1.68 and -2.94, respectively. 

Upon fitting a single-exponent power law formulation over the 
entire observation range, the expected power law variation between 
-5/3 and -3 was seen to occur along with the anticipated asymptotic 
(to -3) nature of the exponent for increasing magnitude of the 
Vaisala frequency. 

The theoretical predictions together with the experimental 
evidence in this report provide an explanation for the disparity in 
experimental results in the field of random temperature microstructure. 
This environmental theory fills the gap between the wavenumber ranges 
where internal waves and isotropic turbulence dominate the horizontal 
spatial random temperature spectrum. The environmental model utilized 
in the propagation theory formulation should contain the wavenumber 
ranges dominated by internal waves, buoyancy, and convective turbulence 
depending upon the acoustic frequency of interest. · 

The comparison of measured acoustic data and the Beran-McCay 
solution £or the acoustic correlation function indicates that the 
theoretical formulation does qualitatively describe the transverse 
acoustic correlation dependence on receiver separation. The inherent 
anisotropy and vertical inhomogeneity of the random environmental 
statistics and the form of the power spectrum for horizontal temperature 
fluctuations should be included in future theoretical formulations. 
The quantitative agreement between theory and acoustic measurements 
indicates that scattering caused by the random temperature field can 
account for the observed degradation in acoustic correlation for single 
path transmission. 
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FIG. 4 
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