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STATUS OF RAY THEORY DEVELOPMENT AT NAVAL UNDERSEA 
RESEARCH AND DEVELOPMENT CENTER 

by 

D.F. Gordon 
Naval Undersea Research and Development Center 

San Diego, California, U.S. 

INTRODUCTION 

The first part of this paper discusses NUC (Naval Undersea Research 
and Development Center) work on the accuracy and validity of ray 
theory. By comparing the range to convergence zones as indicated 
by experiment and by theory, we have found which techniques are 
required to make accurate ray computations. 

By comparing computations done by ray theory and normal-mode or 
wave theory, we can determine the limits to the accuracy of ray 
theory at low frequencies. 

The final portion of this paper discusses new developments in 
ray theory. 

CONVERGENCE ZONE RANGE 

The range to the leading edge of the convergence zone can be 
determined very accurately experimentally. This is partly because 
the average travel time to the leading edge of the zone is very 
insensitive to minor variations in the velocity profile and can 
be used to measure range accurately, and partly because of the 
rather abrupt increase in sound pressure at the zone. The range 
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at which the propagation loss decreases to less than 95 dB has been 
used to indicate the leading edge of the zone because at 
frequencies of a few kiloHertz this loss is clearly distinguishable 
from bottom returns. It is, therefore, interesting to compare 
this range with the range to the first zonal caustic of ray theory. 

Pedersen and Anderson gave a paper on this topic at the 28th Naval 
Symposium on Underwater Acoustics. Figure 1 is a summary of 
portions of that paper. The figure indicates average results from 
a number of Pacific locations. The jagged line indicates a possible 
experimentally observed convergence zone edge. The three vertical 
lines represent computed losses at caustics with their characteristic 
shape and indicate the range relative to the true zone, This leading 
caustic is formed by rays which travel downward from the source and 
upward to the receiver. 

Early attempts to compute the range to this caustic, used sound 
velocities computed from Kuwahara's tables. Several trials gave 
ranges which averaged 1.5 kyd short of the zone, as indicated in 
Fig. 1. Altering the profile to simulate the effect of earth 
curvature shortened the range an additional 600 yd as shown. 

The advent of Wilson's equations for the computation of sound 
velocity increased the range to computed caustics and the correction 
for earth curvature became an asset rather than a liability. The 
caustic line labelled "Wilson" indicates the average relative position 
of computed caustics from 12 different locations in the Pacific, 
This average position is about 500 yd beyond the true convergence 
zone. However, by applying a caustic correction taken from 
Brekhovskikh, the difference between theory and experiment is reduced 
by half. 

The final step in Pedersen and Anderson's investigation was to make 
an adjustment in sound velocities to fit a portion of Wilson's data 
which includes those ranges of temperature, salinity, and pressure 
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found in the Pacific. This .gave sound velocities which were smaller 
at shallow depths and larger at greater depths than those obtained 
from Wilson's equations by amounts up to 1 ft/s. The median 
difference between computed and experimental convergence zone 
ranges became zero. This is shown by the diffraction curve labelled 
"Wilson adjusted". These results indicate in a statistical sense 
that the current methods for computing convergence zone ranges have 
no significant bias. Although the average of the differences is 
zero, their scatter is not. Fifty percent of the differences were 
less than 360 yd. The largest difference was over 4 kyd. 

RAY AND NORMAL-MODE THEORY 

Figure 2 shows two profiles of special form for which both ray and 
normal-mode computations can be made. Comparisons will be made 
between computations made by the two theories. On the left is an 
Epstein layer which is a five-parameter function of hyperbolic cosines 
and tangents. It has been fitted to an Indian Ocean velocity profile. 
The curve has two vertical asymptotes, one at 1636 and one at 1753 yd/s. 
To simplify certain aspects of the problem, computations were done 
without the surface, so the profile is shown extending above the 
surface. 

On the right side of the figure is a four-layer approximation to 
an Atlantic profile in which the squared index of refraction is 
linear in each layer. Normal-mode computations for this profile 
at 10 Hz and 30 Hz were published by Tolstoy and Clay in JASA in 1960. 

Figure 3 compares propagation loss as computed in three different 
ways for the Epstein layer. Since no surface or bott0m is included 
in this profile model, only energy trapped in the duct by diffraction 
is seen at the zones. Only two caustics appear at each zone. With 
surface reflection, three additional caustics would appear. The 
source and receiver are at depths of 33 yd and 100 yd and the 
frequency is 30 Hz. The channel axis is at l589-yd depth. 
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The normal-mode theory gives the most accurate solution for this 
idealized duct. The inability of the simple ray theory to compute 
diffraction effects is apparent. In the modified ray theory 
Brekhovskikh's caustic correction has been applied to each caustic 
and the results, which are Airy functions, have been added ln random 
phase. A possible explanation for the difference between the mode 
and modified ray theory results is that the caustic corrections 
were not added in phase. 

The next four figures will compare ray and mode theory for the four-
layer Atlantic profile. Mode theory will be shown for 10 Hz, 
30 Hz , and 100 Hz. Figure 4 is a ray diagram for a source at 500-yd 
depth and the upper 500 yd is shown. Rays are drawn at each 1° in 
source angle with the rays that just penetrate into the surface 
duct and just graze the bottom included. The range is to 100 kyd 
and includes one convergence zone. 

The leading caustic runs from 54 upward to 62-kyd range before it 
encounters the surface . A similar caustic is formed by the rays 
which start upward at the source. Three additional caustics are 
formed by the surface-reflected rays, the last between 70 kyd and 

73 kyd. 

Figure 5 shows propagation loss contours as computed by normal modes 
for precisely the same situation as was used on the ray diagram, 
except that an extra 100 yd in depth is shown. The frequency is 10 Hz. 
The two refracted caustics and the final surface-reflected caustic 
from the previous figure are shown by broken lines. Note that the 
leading caustic from the ray diagram from 54 kyd to 57 kyd 
approximately parallels the 80 and 90-dB contours. Note also the 
surface-image effect which depresses the 90-dB contour in the zone 
deeper than 50 yd from the surface. 

The 110-dB contour appears to be influenced by the surface duct 
which has a depth of 153 yd. However, judging from the next figure, 
this is not a result of the surface duct which is too small at this 
frequency to have any large effect upon the loss. 

204 



Figure 6 is the same as Fig. 5 but for 30 Hz. Here the leading 
caustic lies partly within the 80-dB contour. The second refracted 
caustic lies near the string of 80-dB contours. The 90-dB contour 
comes within about 25 yd of the surface at this frequency. 

At 10-Hz frequency the 110-dB contour in the near field extended 
to 28 kyd range. Here it reaches only 21 kyd. It seems more 
reasonable to attribute this difference to differences in diffraction 
into the shadow zone than to attribute it to propagation in the 
surface duct which should be stronger at the higher frequency. 

Figure 7 shows the contoured field at 100 Hz. Here definite surface 
duct propagation is seen. This surface duct can trap one mode at 
100 Hz so this propagation is not unexpected. The effect of the 
surface duct can be seen in the 90, 100, and 110-dB contours in and 
following the direct field and in the 100 and 110-dB contours 
following the zone. The zone itself, as outlined by the 90-dB 
contour, is only slightly larger than the ray theory zone bounded 
by the first refracted caustic and the last surface-reflected caustic 

between 54 and 73-kyd range. 

Some phase interference or Lloyd-mirror beats can be seen near 10 kyd. 
They were at somewhat shorter range for the lower frequencies. 

These figures have shown several limitations of ray theory at low 
frequencies. Diffraction from caustics and shadow zones is important 
as is the interaction between ducts such as the SOFAR duct and 
surface duct. This interaction between ducts can remain important 
at higher frequencies. The surface image or surface decoupling effect 
must be considered. 

NEW TECHNIQUES 

Three items under current development at NUC are generalized 
velocity functions, two-dimensional velocity variation, and numerical 
quadrature. 
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In March 1968, Pede rsen published his generalized ray theory 

in JASA. This theory uses depth as a function of velocity to 

represent the velocity profile. The function can be a polynomial, 

a power series, or a series in non-integral powers of velocity. 

This makes it possible to fit velocity profiles directly with 

polynomials of any required degree or to use standard profile 
forms by expanding velocity as a power series in depth and then 
inverting the power series. By using non-integral powers of 

velocity, Pedersen was able to develop a theory of the axial ray 
published in JASA in January 1969. This ray theory requires the 
use of elliptic integrals. However, new developments have 

determined the range and travel time as a power series, making 

elliptic integrals unnecessary. A report by Pedersen and White on 
this development was given at the recent International Acoustic 

Congress in Budapest. 

In another new development, White and Keir at NUC have developed 
a method of determining ray fields with two-dimensional velocity 
variations. This is done by transformations on the depth and 
range axes. This technique gives theoretical examples of two-

dimensional velocity variation which can approximate various 
realistic situations and also can give models to test numerical 
ray tracing programs. 

In May 1971, Mr Edward R. Floyd of NUC published an article 1n JASA 
on ray tracing by Gaussian quadrature. This method again allows 
a polynomial of arbitrary degree to be fitted to all given velocity 

points and thereby avoids false caustics. It 1S not yet clear 
whether this method can give sufficient accuracy for computing 
intensities from detailed velocity profiles. However, it appears 
to be well suited for quick approximations to range and travel time. 
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SUMMARY 

The ran ge t ;o convergence zones can be accurately computed if 
accurate velocity profiles which are independent of range are 
known, and if earth curvature and diffraction from the caustic 
are taken into consideration. 

The technique of comparing ray and mode solutions for identical 
velocity profiles gives valuable information on the validity 
of ray theory for finite wavelengths. 

New work includes power series expansions for a general class of 
velocity profiles, velocity-depth transformations to simulate 
two-dimensional velocity variation, and numerical quadrature. 

DISCUSSION 

Bartberger had also encountered convergence difficulties using 
Gaussian quadrature even with 25 points. The author felt, however, 
that numerical techniques were now available which might make the 
method usable. 

In reply to a question concerning the continued use of the random-
phase addition of modes, the author said that certain results to be 
found in Brekhovskikh's work now made this unnecessary. 
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A THEORETICAL METHOD FOR THE PREDICTION 
OF UNDERWATER EXPLOSION PULSES AT CAUSTICS 

by 

I.M. Blatstein 
(read by R . M. Barash) 

Naval Ordnance Laboratory 
White Oak, Silver Spring, Maryland, U.S. 

Our concern [Refs. 1 and 2J is with the effect of refraction on 

the long range propagation of underwater explosion shock waves. 
Here, as with acoustic sources, ray tracing can be used to predict 
refraction effects. From the divergence or convergence of rays, an 

amplification factor can be calculated. This is defined as the 
square root of the ratio of the cross sectional area between rays 

at a given point assuming spherical spreading to the cross sectional 
area between rays at the same point when the actual sound velocity 
profile is specified. We can then multiply the pressure history 
expected at a given point if no refraction occurred by the 

appropriate amplification factor. This then gives us the pressure 

history expected at that point when refraction is accounted for. 

However, the amplification factor is inversely proportional to 
the square root of the cross sectional area between adjacent rays. 
So as we approach a caustic, where these rays cross, the 
amplification factor reaches infinity, and ray theory is invalid. 
Furthermore, in the shadow zone adjacent to the caustic, ray theory 
predicts zero energy penetration. This is due to the high frequency 

nature of the ray theory approximation. So if we are interested 

in the pressure near a caustic or in an adjacent shadow zone a 
method other than ray theory must be used. 

210 



In this paper, I will describe such a method for calculating shock 
wave pressure histories in and near caustic regions. This method 
involves the incorporation of various p ropagation effects into a 
Fourier series representation of the initial shock wave from an 
underwater explosion. I will then describe comparisons that have 
bee n made between calculated pressure histories and experimental 
results from ocean and flooded quarry tests. Figure 1 shows a 
typical ray diagram for the ocean case which we have considered. 
Here the source explosion is at a depth of 1000 ft. The convergence 
zone caustic then occurs at 20 mi to 30 mi from the source. If the 
source is deeper, in or just below the thermocline, a thermocline 
related caustic occurs. This shows up at 2 mi to 5 ml and is due 
to upward starting rays. The flooded quarry test that we have 
considered was intended to model this thermocline related caustic. 
For both cases, comparisons will be shown, agreement will be praised, 
and discrepancies will be sullenly discussed. Finally, I will talk 
about the accuracy of ray theory near the caustic, a region where 
it is known to break down . 

A starting point for our work was a solution to the wave equation 
that has been done at various times in slightly different forms by 
Brekohvskikh [Ref. JJ, Tolstoy [Ref. 4J, and in this case, Sachs 
and Silbiger [Ref . 5J, [Fig. 2J. The wave equation is solved for a 
harmonic source and an arbitrary depth dependent sound velocity 
profile. First they arrive at a ray solution, where each term in 
the sum corresponds to an arrival reaching the point of interest 
after leaving the source at a different initial angle. 
any ray solution, this one breaks down on the caustic. 

But as with 
So they do 

a further approximation and arrive at an expression valid at and near 
a caustic for a sinusoidal acoustic source, If we divide this 
expression by the pressure expected at that point assuming spherical 
spreading, we get an amplification factor valid at a caustic [Fig. 3J. 

Most of the quantities in the amplification factor are constants of 
the propagation path. These are determined once the sound velocity 
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profile, source depth, and point of interest are given . The 
expression also contains the Airy function, a function of both 
frequency through k13 and distance off the caustic through br. 
For a given source frequency, the Airy function, and so the 
amplification factor, falls off exponentially as we move to the left 
of the caustic into the shadow zone. ' As we start moving to the right 
of the caustic, which is located at br=O, the amplification factor 
at first increases. Further to the right we see an oscillating 

function. This is the result of two arrivals interfering in what is 
familiar to us in ray theory as the double arrival region. From an 
asymptotic expression for the Airy function, it can be shown that 
one arrival is approaching the caustic and has been amplified . The 
other arrival is receding from the caustic . It has been amplified 
and also phase shifted by 90°. While thi s information about phase 
shifts and amplitudes is difficult to verify in the resultant signal 
from a sinusoidal source, it 1S more readily seen in the resultant 
signal from a t ransient such as a shock wave. We will see this in 
some o f the figures. 

Now that we have a frequency dependent amplification factor, we need 
to apply it to a shock wave. Our next step is to describe the shock 
wave in a frequency dependent manner. This has to be done in such a 
way that we describe what the shock wave would look like at the range 
of the caustic if no refraction occurred. Then we can incorporate 
our amplification factor into the pressure history in order to 
account for refraction. 

We represent the initial shock wave as an abrupt rise to a peak 
p ressure followed by an exponential decay [Fig. 4J · We then write 
the Fourier series for the pulse. This way it is expressed in a 
frequency dependent manner. In this figure, the amplitude of the 
shock wave is normalized to one . In general, we will need both a 
peak p ressure, Pl, and a decay constant, 9, to determine the pulse 
shape and series. We would like these pa r ameters to be characteristic 
of the range of interest and also to take into account the finite 
amplitude effects that are present in the propagation of a shock 

wave . 
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We do this by using the similitude, or scaling, equations which were 
discussed in the companion pape r by Barash and Goertner [Ref. 6J 
(see Sect. 3 of these Proceedings). Since these equations a r e based 
on cube root scaling, they p roperly account for the finite amplitude 
effects on the peak pressure and decay constant. However, they 
have not been verified out to the 30 mi range at which we need Pl 
and e. So we use them to a range where they are known to be valid, 
and the peak pressure is low enough so that we may ignore finite 
amplitude effects beyond that range . The point at which we cease 
to account for finite amplitude effects is the range at which the 
peak pressure drops below 5 psi . From this point to the range of 
the caustic we assume acoustic spherical spreading to find Pl 
and e for our pulse. 

We now have the shock wave in a frequency dependent form with the 
appropriate peak pressure and e. The next step is to incorporate 
our amplification factor into the expression [Fig. 5J. 

The expression at the top of the figure is the Fourier series for 
the pressure history with refraction added. Pl and e are the pulse 
parameters we have just discussed. The function represented by 
the script f to the right of the summation sign is the refractive 

p 
amplification factor. This along with the n/4 added to the 
arguments of the sine and cosine take into account the effect of 
refraction on the propagating pulse near the caustic. This new 
expression, if evaluated as it stands, would diverge. The physically 
unrealizable step discontinuity in the pul.se would lead to an 
infinite spike when refraction was added. However, we have yet to 
take into account the attenuation of acoustic pressure disturbances 
that becomes important for long ranges and high frequencies. Not only 
is it an important effect over the long propagation path to the 
caustic, but it serves to force our series to converge and terminate 
at some finite frequency. The graph in the centre of this figure 
shows the relative strength as a function of wave number, k, of the 
refraction factor f, and an absorption factor ~ . We can see that 
the ocean acts as a filter, damping the high frequency components 
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of the shock wave. Thus by adding absorption, we get the expression 
at the bottom of this figure for the pressure near a caustic. It is 
a Fourier series that now t erminates at some finite frequency due 
to absorption. This limitation shows up as the summation now only 
extends to N rather than infinity. Once we find the range to the 
caustic for the depth of interest, and determine the absorption 
cut-off, N, the expression for the pressure may be thought of as 
being purely a function of ~r, the distance off the caustic. The 
next figures show pulses calculated for various Lr's, along with 
experimental pressure histories from the convergence zone experiment 
we treated [Fig. 6aJ. The pulse on the right is a typical experimental 
record. Those on the left are calculated. For negative ~, we 
are in the shadow zone. Here we see a broad, low amplitude pulse. 
This is a result of the action of the Airy function, which is 
monotonically decreasing with frequency in this region. In the 
caustic region [Fig. 6b], we observe a single arrival with a high 
amplitude and short decay time. As we move away from the caustic, 
the peak pressure at first grows and then starts to decrease . Also 
shown in the figure is the isovelocity pressure history . This is what 
the pressure history would look like at the range of the caustic if 
no refraction occurred. For larger distances off the caustic 
[Fig. 6cJ, there are two arrivals, the resultant of the two arrivals 
from various frequencies. The first has just been amplified and 
has approximately the same decay constant as the isovelocity pressure 
history. The second arrival has been amplified and further phase-
shifted by 90°. This phase shift leads to a much shorter decay 
constant as seen in the figure. Thus, for a shock wave, the effect 
of the phase shift shows up clearly. 

At this point, I have described the method for calculations near a 
caustic and shown qualitatively what to expect. Next, I will show 
the comparisons of calculated pressure histories and experimental 
results that have been made. 

The first such comparison involves an oceanic experiment done by 
the Naval Ordnance Laboratory. 

214 



The purpose of this experiment was to record pressure histories in 
a convergence zone. Figure 1 showed an average sound velocity 
profile and associated ray diagram for the time period of the 
experiment. During the experiment, one ship set off charges of 
8 lb and 900 lb of TNT in a region from near the surface to 
1000 ft deep. Another ship some 30 mi away used a vertical array 
of more than 100 hydrophones to record pressure histories throughout 
the convergence zone. When the gauge array was placed so that it 
crossed the caustic for a given shot, pressure histories were then 
obtained for the shadow zone, caustic region, and double arrival 
region, simultaneously. 

We selected five of these shots to test the method just described. 
We will show representative pressure histories from four of these 
shots. 

In order to do the calculations, we must know the depth of the 
gauge string with respect to the caustic. For these shots, this 
was determined from an analysis of the experimental pressure 
histories. In Fig.7, the position of the gauge string for each 
shot is indicated on an enlarged view of the upper region of the 
convergence zone. We notice that there is a reflected branch of 
the caustic resulting from surface reflection, as well as the 
direct branch. Gauges at various positions will record different 
pressure histories due to their proximity to both branches of 
the caustic. For the first two shots considered, due to lack of 
complete data, we will only consider the contribution from the 
direct caustic. 

We will first consider shot 151 [Fig. 8J, an 8 lb shot where the 
gauge string was relatively deep. For shot 151, we first specify 
the gauge of interest, for example, the gauge near the top of the 
gauge string, Then we calculate the parameters needed for the 
amplification factor on the caustic at that depth using the given 
sound velocity profile and source depth. Then from this figure we 
determine 6r, the horizontal distance from the gauge to the 
caustic, and the final parameter needed. 
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Figure 8 contains this calculated p ressure history, and the 
experimental record from this gauge in the shadow zone in the upper 
left-hand corner, Next to it is a comparison in the caustic region, 
and at the bottom of the slide are two comparisons in the double 
arrival region. In all cases the experimental record is a solid 
line, while the calculated record is a dashed line . In all three 
regions, the calculated pressure histories adequately match the 
experimental records. In the upper right-hand corner we have also 
plotted the isovelocity pressure history . This again is what the 
pressure history would look like at all four gauges at the range 
of the caustic if no refraction occurred. 

Also of interest is the good agreement for relatively long times 
after the peak pressure. Th e caustic solution used in our pressure 
history retains some of the high frequency limitations of ray theory. 
This would suggest that for each arrival we could only make valid 
predictions near the peak pressure where high f re quencies predominate. 
Yet these calculations yield good results beyond the point where the 
pressure history drops below zero and flattens out . This indicates 
a reasonably good description of the low frequency content of the 
pulse . This is probably due to the relatively small sound velocity 
gradients in the ocean which make the caustic solution valid for 
relatively low frequencies on the order of 100 Hz or less . This low 
frequency validity should extend to ray theot'y as well, despite the 
often made remark that ray theory is valid for high frequencies only. 

The next shot we consider is shot 82 [Fig , 9J, an 890 Ib explosion 
at 1000 ft . The same general agreement between experimental records 
and calculated pressure histories is evident . In the records closest 
to the caustic, [Figs. 9b & 9cJ, gauge case ringing is very severe 
and interferes somewhat with the comparisons. 

Now we will consider the two s hots where both the direct 
and reflected ar r ivals were recorded . A gauge at the bottom of the 
gauge string for shot 120 is in the double arrival region of the direct 
branch caustic and in the shadow zone of the reflected branch caustic. 
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Hence, we would expect arrivals due to both branches. From ray 
geometry we can calculate the arrival time difference, or time 
delay, between these arrivals from different branches. We further 
assume that the surface acts as a perfect reflector for the 
reflected arrivals, causing only a phase reversal. We then combine 
the resulting pulses with the appropriate time delay to find 
the pressure history. 

Figure 10 shows comparisons of these calculated pressure histories 
and experimental records from the top, middle, and bottom of the 
gauge string. In the bottom record, the pressure history starts 
with a direct double arrival, which is then followed by a negative 
shadow zone pulse from the reflected caustic. Again the general 
agreement of peak pressure and wave forms is good. 

As the last of the oceanic comparisons, we calculated pressure 
histories for shot 119, an 8 lb shot [Fig. llJ. This differed 
from the previous shot in that it is a smaller charge weight, and so 
we are dealing with pulses with a much shorter decay time. This means 
there is proportionately more high frequency energy. By treating 
records with reflected arrivals in them, we are able to test the 
method for considerable distances off the caustic. in Fig. 11, the 
reflected arrival is approximately 1600 ft horizontally into the 
shadow zone, and the direct double arrival is approximately 2400 ft 
horizontally from the direct caustic. So with one record we gain 
information about a region 4000 ft wide. 

In all four comparisons, the calculated pressures are in reasonable 
agreement with the experimental values from the oceanic test. Just as 
important, the entire waveforms are in good agreement. So for the 
oceanic convergence zone case, the method is a reasonable approximation 
for the various phenomena involved in propagation to a convergence 
zone. 

We also tried matching pressure records from a test conducted by 
Woods Hole in a flooded quarry [Fig. l2J. As I have said, this type 
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of test models the thermocline related caustic that may occur at 
2 mi to 5 mi. For the quarry case the solution to the wave 
equation is not clearly valid for the frequency domain of our pulse , 
Not only are the sound velocity gradients 1000 times larger in 
the quarry than in the ocean, but the caustic is much closer to 
the turning points of the rays. This could tend to restrict the 
validity to the higher frequencies in the pulse. 

Also, we have to modify the pressure expression since absorption 
is no longer the high frequency cut-off mechanism as it was in the 

ocean. Here the gauge response restricts high frequencies more 
than absorption, so the gauge response as a function of frequency 
is used in the pressure expression instead of absorption. 

Pressure histories were then calculated near the caustic and in 
the double arrival region for a 56 lb charge detonated at 50 ft 
[Fig. l3J. The dashed lines are the calculated pulses, the solid 
lines are the experimental pressure records. While the exact 

agreement of the peak pressures is no doubt fortuitous, good 
agreement between experimental and calculated peak pressures has been 
obtained for similar quarry data during the course of this analysis. 
However, it is also apparent from this figure that the decay from 
the peak pressure is much too steep. 

If the solution to the wave equation is indeed valid only for high 
frequencies for this case, it may explain why our calculations only 
appear reasonable near the peak pressure where high frequencies 

predominate. Also, it is possible that a propagation mode other than 
the pure refracted one contributes to the pressure at a thermocline 
related caustic. For example, a lateral wave type of propagation 
could be occurring at the interface of the almost-isovelocity upper 
layer in the flooded quarry. This would be energy at relatively low 
frequencies which would affect most the decay from the peak. Or it 
1S possible that the surface boundary is influencing the propagation 
of energy in a way not accounted for by ordinary ray theory. If this 
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were the case, a modified ray t,heory such as that described by 
Mur phy and Davis in these Proceedings might be necessary for this 
type of situation. Whatever the reason, the calculation of the 
decay of the pulse for the quarry case remains the aspect of thi s 
wo rk that requires the most improvement . 

Finally, I would like to discuss the validity of ray theory near 
the caustic. Qualitatively we know that ray theory predicts an 
increasing intensity as one approaches the caustic from the double 
arrival region. This intensity, which is the same for all 
fr e que n cies , reaches infinity on the caustic, a line of zerO width. 
The caustic solution that we are using yi e lds a different picture. 
For this solution, the caustic is a region of finite thickness in 
betwee n the shadow zone and double arrival region. The lower the 
frequency of the source, or the la r ge r the charge for the transient 
case, the wider the caustic region is. Inside the caustic region, 
the solution yields one arrival that slowly increases in amplitude 
as one moves away from the shadow zone boundary at [:;r = O. For large 
distances off the caustic, the expression yields two arrivals in the 
p ressure history. This is the double arrival region as expected 
from ray theory. However, since the caustic solution was derived 
to b e valid near the caustic, it i s not obvious that it should yield 
reasonable results far from the caustic in the double arrival region. 
So really there are two quest ions to be answered: How different are 
ray theory and the caustic solution in the caustic region where ray 
theory is supposed to b e breaking down ? and How do ray theory and 
the caustic solution c ompare in the double arrival region, where the 
caustic s olution was not originally intended for use? 

Referring to Fig . 14, for reasons of simplicity, calculations were 
done for a harmonic source rather than the pulse sources we have 
been treating. Fo r the figure we have assumed a 100 Hz harmonic 
source and the convergence zone sound velocity profile previously 
shown. In the caustic region, we have combined the two ray arrivals 
in order to compare the resultant to the caustic solution we have 
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been using. As expected, as we approach the caustic, the two 
solutions diverge as the ray solution increases rapidly. It should 
be remembered that this figure holds true for the particular 
convergence zone profile treated. We have examined others where 
the caustic region was narrower, and some where the caustic region 
was up to three times as wide as this one is, Also shown in the 
figure is the double arrival region. Here we can resolve two 
arrivals in the caustic solution . It turns out that each one 
has the same amplitude, which falls off as the fourth root of 6r. 
We have plotted this amplitude along with those of the two ray 
arrivals. If we combined the caustic solution arrivals at the 
caustic region boundary , the resultant would match the caustic 
region solution at the caustic r egion boundary. However, what is 
most striking is the agreement between ray theory and the caustic 
solution far into the double arrival region. This explains why our 
calculations of pulses in the double arrival region were in good 
agreement with the experimental pulses. While in the double arrival 
region, one would tend to trust ray theory more, this figure 
indicates that it is not a bad approximation to continue using the 
caustic solution that was use d in the shadow zone and caustic region. 

In order to put all of these results in their prope r perspective, 
we must keep in mind the assumptions and a pproximations made. 
We assumed that the unrefracted shock wave could be approximated by 
an abrupt rise followed by an exponential decay. We then wrote the 
Fourier series for this pul se. In the oceanic case, we assumed that 
a superposition of finite amplitude effects, spherical spreading, 
and absorption on this series would adequately describe long distance 
propagation in the absence of refraction. Then we added refraction 
effects to find the pressure near a caustic. In the quarry, the 
gauge response was substituted for absorption. Our ability to apply 
these effects separately is no doubt due to the phenomena being 
treated . Finite amplitude effects occur relatively close in where 
pressures are high. Absorption for high frequencies takes effect 
only over long distances . While refraction effects occur throughout 
the path, the major effect is the significant amplification at the 
convergence zone. So while these effects no doubt interfere, their 
major influence is individual. 
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The main thrust of this work has been to describe the effect of 
refraction on the propagation of an underwater explosion shock wave. 
Particularly, we are interested in calculations near the caustic 
where the refractive amplification is greatest. We feel that in 
this method we have a reasonable means of calculating just such 
pressure histories for the oceanic convergence zone. What I also 
hope has been demonstrated by this paper, and the companion one 
by Barash and Goertner [Ref. 6J, is that an underwater explosion 
can be more than just a source of energy at various frequencies 
for acousticians interested in harmonic sources. These transient 
sources can also lead to analyses and information about ray theory 

validity that would be otherwise difficult to obtain. 
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DISCUSSI ON 

Durin g t h e d iscussion the p oint s were ma d e t h at i n a sense one 
was Hsaved by a b sorp tion", t h at t aking mo re terms i n the Fourier 
seri e s expansion would not h e lp , and t h a t t h e u se o f a mix o f 

l i n e a r and non- linear p r ope r t ies , a lthough expedient , may not b e 

v al i d at l arg e di s tances. 
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INTENSITY AT CAUSTICS 

by 

c.w . Spofford 
Bell Telephone Laboratories 
Whippany, New Jersey, U.S. 

The classical divergence expressions predict an infinite intensity 
at caustics. This infinite intensity is a fundamental limitation 
of geometrical acoustics (ray theory). The intensity at a caustic 
is of primary concern since the caustic is assumed to be the point 
of highest intensity within a convergence zone . Several approaches 
to estimating the field at a caustic have been made using stationary 
phase and more refined asymptotic methods. 

The recent uniform asymptotics work of Ludwig and Kravtsov may be 
used to obtain both the intensity at the caustic and the transition 
from the caustic to the point where ray theory is applicable. 
Whereas in the context of uniform asymptotics, coherent ray theory~~ 
is the zeroth order solution (in wavenumber) to the wave equation~ 
Ludwig shows that the first order solution is given (excluding a 
phase factor) by 

[Eq. IJ 

where 

x [Eq. 2J 

Coherent ray theory estimates intensity by adding all amplitudes on a phased 
basis. 
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and Al, A2 , Tl, and T2 are the amplitudes and travel times of 
the two rays intersecting the point of interest (R) on the 
illuminated side of the caustic. W is the angular frequency, 

Ai and Ai' are the Airy function and its first derivative. 

This result may be used to study the validity of coherent ray 
theory near a caustic. As one moves away from the caustic (on the 
illuminated side) ~ goes uniformly, with wavenumber, to the result 
obtained from coherent ray theory. In fact, if ~ is compared with 
the coherent sum of the paths (adding a -n/2 phase shift to Ray 2 
after tange ncy to the caustic), one finds good agreement up to 

the last point (first point in range) of constructive interference. 
After this point , the coherent sum t e nds to infinity, whereas the 
uniform asymptotics result experiences an exponential decay into 
the shadow zone. 

The intensity at the last peak is 3 . 5 dB greater than that at the 
caustic and the peak is frequently displaced from the caustic by 
many wavelengths . Also the position of this peak corresponds to 
the last point of constructive interference as given by ray theory, 
and the amplitude is given to within 0.5 dB by the in-phase sum of 
the geometric amplitudes . 

The field at the caustic proper is given by 

[W(TIlf R" - T"R'") J 1/6 

(R")2/3 
[Eq. 3J 

where R", R"', T" and T"! are the second and third derivatives of 
range and travel time with respect to 8S at fixed YR' and e 

R 
is the angle at the receiver . These derivatives may be evaluated 
directly from the ray trace. In fact, for vertically stratified 
media, for which Snell's law holds, ~ may be written in terms of R". c 
The results of Fig . 1, however, suggest that it may not be necessary 
to evaluate Eq. 3 for the intensity at a caustic but merely calculate 

the coherent sum of the geometrical-acoustics amplitudes at the last 

point of constructive interference. 
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SPECIAL FORMULATION OF MODIFIED RAY ANALYSIS 
FOR MACHINE COMPUTATION 

by 

E.L. Murphy 
SACLANT ASW Research Centre 

La Spezia, Italy 

and 

J.A. Davis 
Woods Hole Oceanographic Institution 

Woods Hole, Mass. , U.S . 

When the reflection coefficient for waves incident on a refracting 
or bounded region has a phase 
of incidence 90 (measured at 

~(eo) that is a function of the angle 
some reference level Z = Zo), then 

in consequence, individual rays,or "beams" will be displaced from 
the location predicted by Snell's law. [See, for example, 
Ref. l , Ch. I) . By ~(eo) we mean phase changes other than those 
corresponding to the geometrical-optics phase integral along the 
ray path. 

This phenomenon of beam displacement is the basis for modified 
ray analysis considered in this paper. The development of the 
theory is given in Refs. 2 to 5 (the nomenclature is somewhat 
altered for convenience from the symbols used in these references). 

The problem in obtaining quantitative results lies in the 
determination of the reflection coefficient 
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for realistic sound speed profiles. In particular, the modifications 
of ray analysis are especially significant for rays with turning-
point s, or vertices, near boundaries, or near a local maximum in 
sound speed, 

To determine R( 8o) we use an extension of the geometrical-optics 
approximation in a form that can b e made valid throughout regions 
near a vertex on a ray. This procedure does leave some freedom 
in the choice of the sound speed profile c(z) other than 
those for which exact solutions are known , 

The method 1S such that the phase, arg R ( 8 0 ) = rt ( eo), and the 
amplitude IR(Bo) \, and many features of the modified ray analysis 
can be described entirely in terms of a parameter E(8 0 ) determined 
by the integral, 

- sin2 8 0 dz [Eq, 2J 

whe re n ( z) = c 0/ c ( z) 1S the index of refraction referred to a 

reference sound s peed ce=c(zo). The angle 80 is measured with 
respect to the vertical, or z-direction, at a point on the ray at 
reference depth z=zo' The symbol ko 
k o = 2TIf/co, whe re f is the frequency. 

is a reference wave number, 
(We are considering a 

formalism for a harmonic source, but we can extend the application 
of the results to other time functions by the use of Fourier 
analysis). The limits of the integral are zeros, Zl and Z2, of 
the integrand for a given value of e~. The reason for the 
appearance of two zeros, Zl and Z2' when a ray in reality has only 
one real vertex, say at Z = Zl, is indicated in the sketch in Fig. 1. 

It turns out that modified ray results are most significant when 
c(z), or n(z), is such that there are at least two zeroes of the 
integrand in Eq. 2. Therefore in this paper we consider profiles 
with a local maximum in sound speed, or where a boundary at z = zb' 
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as sketched above , gives rise to an "image" of the vertex at Z = zl • 

We confine our discussion to the three kinds of problems: 

1) Z eros near a local maximum in sound speed 
(unbounded problem). 

2) Zeros near a pressure release boundary. 

3) Zeros near a rigid boundary. 

The results for the phase 1-t(E) of the "plane wave" reflection 
coefficients for these three problems are as follows [see Ref. 4J. 

11E 
7-t(E) 11 ""2 -X(E) -2' + E: arctan e 

E: 0 unbounded 
= -1 pressure release boundary 

+1 rigid boundary 

where the spatial function X(E) is given by the expression 

E E IE I 1 + iE 
v ( E) = - - - R/r, ...l..!:.l. + Im E7t r ( ) 
~ 222 2 

[Eq. 3J 

[Eq. 4J 

The symbol ~IE\ refers to the natural logarithm of the absolute 
value of E. The last term is the imaginary part of the logarithm 
of the gamma function [see Ref. 6, Ch. 6J. 

In Fig. 2, these phases are plotted as a function of the parameter E. 
Large positive values of this ray parameter E correspond, for the 
bounded problems, to rays that hit the surface, and the phases 
approach the limits we usually associate with such boundaries when 
the bounded medium is homogeneous (-11 for pressure release, 0 for 
rigid boundary) . On the other hand, large negative E-values 
correspond to rays with vertices far from the boundaries, and all 
curves for phase approach the value -11/2, the phase change for plane 
waves reflected in a smooth monotonic profile. 
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The curves are continuous and not the simple "patched-upi! step 
function that would result if we assume K -11 for all rays 
hitting the surface, or -11/2 for all rays with vertices . 

The amplitude of the reflection coefficient is, of course, unity 
for the bounded problems,while for the unbounded problem it has 

the following relatively simple form, 

\R(E) \ = 
I 

[Eq 0 5 J 

The formula for the displacement LR, of a ray that has transited 
a "two-turning-point" region is determined from the derivative 
of 

The 

K with respect to sin 9 0 

6R I ~/1. I - ko 
= 

ko d sin 90 

derivative d/1./dE can be 

£x 
dE 

11 sech 11E 
8 4 4 

[see Ref . 2J, 

dE d/1. 
d sin 8 0 dE 0 

expressed as 

where dx/dE can be written in the form 

follows: 

The last term involves the real part of the digamma function 
[see Ref. 6, p. 258J. 

[Eq. 6J 

[Eq 0 7 J 

[Eq. 8 J 

Since K(E), dK/dE, and \R(E}\ are functions of E only, then 
the preparation of computer programs for the contribution of these 
functions to modified ray analysis is relatively simple. We only 
need to program their evaluation as functions of E. When the actual 
sound speed profile is selected then E(9 0 ) and the derivative 
dE/d(sin ( 0 ) needed for 6R can be evaluated separately. 

In our current programs, which have been written for the Woods Hole 
Oceanographic Institution's SIGMA 7 computer, and Hewlett-Packard 
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computer, a composite linear/parabolic profile for 1/c2
, or 

equivalently, for n 2 (z), is used. The function n 2 (z) and its 
first derivative are made continuous at some "matching" distance P, 
as sketched in Fig. 3. 

In the sketch at the bottom of Fig. 3, for a more or less realistic 
profile, the regions in which "two-turning-point" phenomena may 
occur are shaded. Perhaps these programs may eventually be useful 
as simple subroutines added to already existing ray programs. 
When some IIflag" tells a ray it has transited such a region, the 
subroutine supplies a displacement. The ordinary ray program in 
its usual way then continues the displaced ray until it again reaches 
a "diffraction" region. If the diffraction region is a region of 
local sound speed maximum the subroutine also supplies a change in 
amplitude due to leakage and splitting of rays. 

The functions X(E) and dX/dE are the only terms in rt(E) and 
drt/dE requiring special procedures for machine computation. 

With series expansions for the gamma and diagamma functions [see 
Ref. 6, Ch. 6J inserted into Eqs. 4 and 8, Ixl and dX/dE can be 
put into the form 

I xl = l::.Y IE 1- 21 E I Er7L 2 1 E 1 + ~ ( I E I - arctan JmE 11 ) 2 m=O 2m+l 
[Eq. 9J 

and 

dX 1 2 co 1 
dE --2" ~21El-~+ IE 1 :0 

m(m2 + IEI2) m=1,3,5 .. 

where y is Euler's constant, 

y 0.57721 •• (10 • ., 

The logarithmic terms in Eqs. 9 and 10 lead to computational 
difficulties since they become infinite for E = 0, that is for 
the grazing ray in the bounded case, or the split ray in the 
unbounded case. However, these infinities rather than being 
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troublesome are one of the most physically significant contributions 
of the modified ray analysis. The following illustration shows why . 

2 Consider a purely parabolic profile for n (z), for example, 

2 a + bz 0 [Eq. llJ 

For a source and receiver at depths Zo below the profile extremum, 
the ordinary ray theory result for the range R of the ray ray 
emitted at angle 90 and connecting source and receiver, is given 
by the relation 

R ray 
2 sin 90 =---- Zl [Eq. l2J & -----------------

where zl is the depth of the ray vertex below the extremum of the 
n 2 -profile . Note the logarithmic infinity for the grazing or 
split-ray (Zl = 0). However, for the profile of Eq. 11, the integral 
for E can be evaluated to give, 

E -ko Jb 2 = Zl 

and, in turn, 

1 dE 2 sin 90 
= 

ko d sin 90 Jb 
In consequence, it follows that the logarithmic term in the 
displacement is of the form 

2 sin 90 1/'4 1/4 
_ w (k 0 b Zl ) + other terms . 

Jb 

[Eq. l3J 

[Eq, l4J 

[Eq. l5J 

Therefore, in the modified range ~OD defined by the relation 

R_ _ = R +!::R --MOD ray [Eq. l6J 

the logarithmic singularities cancel leaving a finite, wavelength-
dependent range. For machine computation, therefore, we remove 
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the logarithmic singularitie s from the displacement 
before programming. 

and R ray 

This feature of the modified ray theory that would arise for all 
smooth profiles (continuous derivatives in the region of the profile 
extremum), leads to the result that there is a split-beam shadow 
at finite range when modifications are included. Without the 
modifications every point is illuminated by a ray. 

On the other hand, for a bilinear profile (discontinuous derivatives) 
ordinary ray theory does give a s plit-beam shadow at finite range, 
that is to say, there is no singularity in R For "non-smooth" ray 
profiles (discontinuous derivative s) we can also develop a modified 
ray analysis [see Ref. 4J. It turns out that in this case there is 
no singularity in the displacement ~R . In fact, as we shall see, 
when the modified ray results are compared for a bilinear profile and 
a smooth profile where the smoothing compared with the bilinear case 
is only over a depth increment o f a few wavelengths, the results are 
approximately the same. The modifications introduced by modified 
ray theory have removed some of the pathological sensitivity of 
ordinary ray analysis to small changes in the sound speed profile. 

For the presentation of the results of the computer program, we 
currently use the format sketched in Fig. 4 . The cycle range R(e) 
for source and receiver at the same depth 1S plotted as a function 
of the grazing angle e measured at the source point on a ray. 

In Fig. 5 the solid curves represent examples for the three kinds 
of problems (1) unbounded, (2) pressure release boundary, and 
(3) rigid boundary . In the small figure in the upper left-hand corner, 
the shape of the R vs c curve based on unmodified ray analysis is 
sketched; of course it is the same for al"l three problem s , but different 
for the bilinear and composite profiles. Note the singularity in 
the ordinary ray theory results for a smooth profile. Note also 
that for the ordinary ray theory result for the bilinear profile the 
extremum in range would not be considered a caustic, in fact the 
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derivatives of the R vs 0 curve are discontinuous for this 
extremum (grazing ray). 

The following conclusions can be drawn from the results presented 
in Fig. 5: 

1) The modifications have removed the singularity in the 
R vs e curves for smooth sound speed profiles. The resulting 

~OD vs ~ curves are smooth so that the extremum does represent 
a caustic. 

2) The modifications also lead to smooth ~OD vs ~ curves 
for the bilinear profile, so again the extremum actually is a 
caustic. 

3) The derivatives of the ~OD vs ~ curves can be found 
and used as parameters in quantitative descriptions (Airy integrals) 
for the field in the neighbourhood of this caustic. Pedersen [Ref. 7J 
has shown how false caustics can arise in ordinary ray analysis for 
linear-segmented profiles. It is rather interesting to see that 
with modified ray analysis, the modifications not only may act to 
remove some of this pathology, but also may result in real caustics 
at places not recognized as caustics in the ordinary ray analysis 
for bilinear, or bounded linear n 2 (z) profiles. 

4) The caustics are displaced in range compared with the 
location we might anticipate on the basis of ordinary ray analysis. 
For rays withverticesneara pressure release boundary, displacements 
are toward the source; for a rigid boundar~ displacements are mostly 
away from the source. 

5) The modifications have made the results different for 
all three kinds of problems, even for rays whose vertex would lie 
below the region where the models differ. 

6) For the bilinear profile, and for a bilinear profile 
!!smoothed" over a depth increment of "half-width" 
the results are approximately the same. 
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In the lower part of Fig. 5, the values of the magnitude of the 
reflection coefficie nt for the unbounded problem are plotted to 
give quantitative results for the splitting of the rays into 
reflected and transmitted branches. The diffraction regions can be 
sources of "leakage" rays and diffraction reflected rays (from rays 
that according to ordinary ray theory would be totally transmitted). 

In some of the examples we have analysed , it appears that for 
frequencies of the order of a kiloHertz the displacements can be 
hundreds of feet; while at lower frequencies, of 100 Hz or so, 
displacements amount to thousands of feet. 

Finally, we would like to point out that whereas here we have 
considered a harmonic source represented as an integral over ray 
parameter 90' it is also possible to consider signals of different 
time behaviour, Fourier-analysed so that the integral is over the 
variable IJ.) . In that case, we can also show that there are time 
delays or advances 6t, in arrival times, that are related to 
deri vati ves of the phase with respect to w. It can be shown 
that these time displacements can also be written in terms of the 
derivative d~/dE, as follows, 

d~ 6t =-dw 

E d~ 
W dE 

d~ dE 
dE dw 

[Eq. l7J 

Recently, a number of laboratories have been using machine programs 
for modBl analysis where a sufficient number of modes (perhaps a 
thousand, if necessary) are summed to describe the sound field for 
comparison with ray computations. It should be borne in mind, when 
making such comparisons, that the modal analysis is a more complete 
and exact analysis for the field, and if there is any validity for 
the displacements or modifications we have described in this paper, 
the modal results should already include such effects. 
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DISCUSSION 

In answer to questions the first· author said that, broadly speaking, 
modifications to ray analysis were needed if the ray has a vertex 
within 4 or 5 acoustic wavelengths of a surface; and that the 
linear/ parabolic model with Trhalf-width" p was chosen for purposes 
of il.1ustration. 

The first author affirmed that amplitudes could be obtained 
st,raight-forwardly from modif ied ray analysi s, In reply ' to a 
suggestion that this was equivalent to including higher order 
terms in an inverse-wavenumber expansion, the first author ·said 
that this may be so, but that the individual terms were not the 
same as in the traditional expansion. 

Some discussion at this session, and in later private sessions, 
reveal e d that the techniques of modified ray analysis might be 
usefully appl ied to remove some of the pa·th010gic a1 aspects of 
discontinuities when velocity profiles are approximated by 
constant-gradient segments. 
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THE EFFECT OF GRAVITY- FORCED OSCILLATIONS AT THE BASE 
OF THE DUCT ON ITS EFFECTIVE DEPTH 

AS A CHANNEL FOR ACOUSTIC RAYS 

by 

I . Roebuck 
(read by G. Murdoch) 

Admiralty Underwater Weapons Establishment 
Portland, Dorset, U. K . 

This talk must begin with a justification, since at first sight 
(and possibly even after further glances) it is difficult to see 
what place a problem of classical applied mathematics (which was 
originally chosen as a companion to the author's earlier paper on 
below duct sound levels due to scattering from the sea surface) can 
rightfully claim to occupy in this gathering of ray tracers and 
computing enthusiasts . This is especially so when one realises that, 
as in the earlier paper, given here six months ago, the object is to 
formulate the problem in such a way as to obtain the maximum of 
predictive results with the minimum of computation . 

Nevertheless, this account of the effect of gravity-forced internal 
waves at the base of an isothermal layer on its efficiency as a duct 
for acoustic energy is opposite to this particular convention; it 
has the laudable aims of saving effort for the sceptical 
perfectionists, and saving face for the lazy intuitionists, by 
demonstrating that it is not necessary to develop three-dimensional 
ray-tracing programs, nor to solve numerically the wave equation for 
a duct with one sinusoidal boundary, in order to take account of 
the horizontal stratification of sound velocity introduced by 
internal waves. 
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This is a very worthwhile simplification, but to achieve it it is 
necessary to have some background as to the generation and acoustic 
effects of internal waves; we start, as always, with the classical 
picture of acoustic propagation in the upper ocean, with the 
isothermal surface duct, and associated underlying shadow zone at 
long ranges [Fig. lJ, This is the ideal, on which computations 
of field intensities can be made with relative ease, as the 
stratification purely in horizontal planes makes a two-dimensional 
ray analysis valid , 

Unfortunately, in the real world, things aren ' t that simple. Even 
if we retain the basic framework of ray theory, there are three 
major perturbing effects to be taken into account when considering 
the idealised situation as a predictive model for in-duct 
propagation. The first of these is diffraction which, as shown 
schematically in Fig. 2, can distribute energy into zones forbidden 
by simple ray acoustics. This is obviously important as far as 
energy levels in the shadow zone are concerned; there is a school 
of thought that claims that, as far as in-duct propagation is 
concerned, the effect is negligible. The argument runs that the 
effect of diffraction is merely to alter the effective depth of 
the duct, and that the "below layerll field is an integral part of 
the trapped modes . Even so it is clear that there is a net energy 
leakage by this mechanism. 

The second complication to be considered is scattering from the 
rough sea surface of energy which is seemingly entrapped within the 
duct, so that it is deflected into the thermocline region and 
escapes. This is shown schematically in Fig. 3; much work has been 
carried out on this, both numerical and analytic (the papers by 
van Ness, Schweitzer and the present author, to name but three), 
and it is fair to say that the effect of this mechanism is now 
quantifiably determined, or determinable, for most 'typical' duct 
conditions. 
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Finally, among these mechanisms, we come to anomalous refraction 
due to internal wave s , the least well documented and most 
speculative of the three. Schematically, the way in which acoustic 
energy which has been trapped in the duct can be guided out of it 
by the action of internal waves is shown in Fig. 4; the dominant 
effect is the change from upward to downward curvature on crossing 
the internal-waves profile. It was on the basis of this type of 
diagram that Schulkin made his widely accepted estimate of the 
effect of internal waves, reducing the effe ctive duct depth by 
the rms height of the typical internal wave; the argument running 
that any ray which vertexes at a greater distance than this from 
the surface will in time intersect such an internal wave and be 
refracted out of the duct. 

Unfortunately, this conclusion is invalid, as this diagram is 
totally misleading - an inevitable consequence of the distortion 
of vertical and horizontal scales to get the figure on to a 
conventional slide. What in fact happens, because the curvature 
of the acoustic rays is so small and they are being propagated 
almost horizontally, 1S that the ray path, even taking account of 
refractive differences, occupies several periods of the internal 
wave in any transition from in-duct to below-duct propagation. The 
true schematic is more like the one shown in Fig. 5 - again noting 
that this is grossly distorted - the true grazing angle to the 
internal waves is less than 1°; this, however, at least indicates 
that a ray may penetrate into the internal-wave region and even 
so re-emerge into the surface duct. 

Now we are getting to the core of the problem if some rays can 
be refracted back into the surface duct while others are lost from 
it, how do we calculate what is the effect of the internal waves 
in quantitative terms~ To do this obviously requires a more 
detailed knowledge of the mechanism of generation and propagation of 
internal waves and so I must ask you to lay down your acoustics 
and follow into the uncharted depths of oceanography. The forcing 
mechanism for internal waves is gravity (salinity can also cause 
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them, but for the purpose of this paper it will be neglected), 
and buoyancy forces are dominant. 

We start with a water mass which was in equilibrium at a depth z 
below the surface, under a pressure p, its density at that time 
being P, and which by some mischance has been adiabatically 
displaced a small distance 6z from this position. The general 
definition of the word 'adiabatic' in this context is beyond the 
scope of this paper, in this context it means that if the same 
supernatural agency that caused the change in the first place 
decides to put the water back ln its original place, its density 
and pressure will also revert to their initial values. Even more 
confusingly, but more importantly, it means that although sea 
water is a viscous non-Newtonian fluid we can treat it as though 
it were a perfect gas and obeys the gas laws, PO: PT and PO: P y. 
Anyway, in its new position, the density of this element is 

l/y 
s:. 1 P ( z + 6z) l 
uZ p(z) I 

whereas the local equilibrium density is P (z + 6z) 0 

element has a density deficiency of 

1 dP 1 dP P ( z) 6 z (- _. - - -) P dz yp dz 

Thus this 

relative to its surroundings, and experiences a gravity-fed 
restoring force. The equation of motion is 

G 

d s + N 2 (z) S = 0 
dz 2 

(simple harmonic motion) 

with s the vertical displacement and N, the Brunt-Vaisala 
frequency, the frequency of the oscillations. There are various 
expressions for N, all equivalent, the most convenient of which is 

~ de e dz • 
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That has introduced yet another vari a ble, 8, so I had better 
explain what that is . It is the temperature the element would 
en d up ."t t if it adiabatically was transferred to a position wh ere 
it was subject to a standard pressure of I atmosphere, and it is 

called the potential temperature , 

N is a measure of the speed of reaction of the ocean to a 
perturbation - in other words of its stability . The bigger N2 

the more stable the ocean. Figure 6 shows the actual distribution 
in one typical case, together with the in the upper ocean 

normal idealisation of it used by theorists. Normal in this case 
means 

a . t hat it i s t h e one normally u s e d; 
b. that it is a normal distribution; 
c. that any ocean to which it is a valid approximation 

is completely abnormal. 

So now we know what happens when a fluid element is displaced 
vertically; an internal wave, t h ou gh, has a horizontal particle 
velocity component, so the full equation of motion must be used. 
We can simplify them by applying Boussinesq's Approximation, which 
says that, for slow enough motions (which internal waves are) we 
can treat the fluid as incompressible except that buoyancy must 
be taken into account. The equations are the top four in Fig. 7, 
which I do not intend to go into any detail over, except to say 
that you can eliminate all the oth er dependent variables and come 
up with this general equation for the vertical component of 
velocity, w 

which holds no matter what kind of internal motion we are discussing. 
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However, we are af"te r a propagating internal wave, so we take the 
most general distur b ance which is sinusoidally pe riodic in time 
and travelling i n the horizontal direction, writing [Fig. 8J 

w W(z) exp {i(kx- nt) 1 

and find that W mu s t obey the e quation 

o 

whi ch means immediately that the disturbance decays everywhere 
except inside the region where its time frequency is less than the 
local Brunt - Vaisala frequency, So, fr om Fig . 8 that shows the 
dist ribution of N2 with depth, we can say that internal waves, 
except the very slow ones, are confined to the region of the 
thermocline . With that fact established, we can go further and 
derive a dispersion re lation between the time frequency nand 
the horizontal s pace frequency k . 

2 n oP kg 
P 1 + coth kD (kD »l ) 

In this D is the depth at which the thermocline is situated and 
oP is the change in density across it . Now in this, an increase 1n 
k causes an increase in n, but n cannot b e greater 
than the Br unt-Vaisala frequency, so we can find a maximum value of 
k for each value of N. That defines the minimum wavelength 
for a wave of this frequency, the wave's amplitude is limited by 
the depth of the region in which the Brunt- Vaisala frequency 1S 
large e nough to support it, so we have a re lation between 
amplitude and wavele ngth . 

Mo re usefully , we can plot from Fig . 9, which you can read as either 
the maximum slope a wave of given amplitude can have, or the maximum 
amplitude for a wave of given slope on the mean thermocline plane . 
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These will be the ones which have the greatest effect on acoustic 
propagation, and Fig. 10 shows the model adopted for calculating 
this effect. Sinusoids make the calculation too difficult, so 
they have been replaced by truncated prisms of the same wavelength 
and maximum slope, cut off so that the area of "intrusion " is the 
same as that under the sine wave. The assumed velocity profiles 
are the same as the ones used for the undisturbed situation 
with the rays in the region of intrusion being straight lines, as 
the perturbation occurs without change of sound velocity . To 
calculate the ray path we just use Snell's Law so the calculation 
is straightforward but tedious. 

Because it is so tedious, all that the author has considered are 
those rays which would be horizontal at the base of the undisturbed 
duct. He has not finished even these, but says that no matter what 
the internal wave, more than 90% of the time the ray ends up back 
in the duct. So it seems that everyone can go away happy in the 
knowledge that their previous neglect of internal waves, whether 
due to ignorance or indolence, was and still is justified. 

FIG. J 

- - - - --""'-...e=-

INSONIFICATION OF SHADOW ZONES 
BY DIFFRACTIVE PROCESSES. 

EQUAL . LOSS CONTOURS (SCHEMATIC) 

249 

FIG. 2 

SHADOW 
ZONE 

CLASSICAL UPPER OCEAN RAY PICTURE 
FOR VELOCITY STRUCTURE WITH 

SURFACE ISOTHERMAL LAYER 





200 

INTEAHAl WAV ES AS A FAC TOII IN ACOUSTIC DUel THICKNE SS 

,_" .. SCHlA.ICIN ) 

N (Cycles/ houd 

5.' 

08SfJtVEO 

NORMAL FIT 

N (radians/ sec ) 
10. 

DISTRIBUTION Of BRLNT - VAISSAlA FREOUONCY 

ACA)SS AN OCEAN Tt-ERMOCL1NE 

FIG. 3 

FIG. 5 

FIG. 6 

---- """'-_.:c 

INSONIFICATION OF THE SHADOW ZONE BY 
SCATTERING AT THE SEA SURFACE (SCHEMATIC) 

FIG.4 

Sea Surface 

Refract iOn Upwards 

Refraction Downwards 

EFfECT IJ INTERNAL WAVES OH RAYS NUIt THE BASE 

Of THE DUCT (REVISEQ SCHEMATIC) 

250 





w 

aCT 
at 

FIG.7 du 
dt 

2 
n 

+ 

ciE. 
p 

o 

1 + coth kD 

GOVERNING EQUATIONS FOR INTERNAL WAVES . 

R AV ClJIIIAT\.IRE U PWARD AND CONSTAHT 

RAY ClJRIIATURE (XMtNWARO AND CONSTANT 

MODEL ADOPTED FOR CALCULATION OF INTERNAL WAVE EFFEClS 

2 

~ 

FIG. 8 

FIG.9 

FIG. 10 

251 

BOUSSINESQ 's APPROXIMATE EQUATIONS 

2 
N w 0 

+ ~' 0 

GENERAL EaUATION 

2 
(~ + -b ) w 

d~ 

i . 
~ 

+ 

1.: + dw ;r; 

dw + ~' + CT · 
~ 

FOR VERTICAL VELOCITY 

N 2. (~1 
2 

~ 0 

= 

RElATION BETWEEN INTERNAL WAVE AMPliTUDE 

ANO SLOPE: OF WAVE PROFll E 

0 

0 



" 



SESSION 5 

THEORY, STATISTICAL ASPECTS, AND 
RANGE DEPENDENT RAY TRACING 

Session Chairman 
Session Secretary 

B.W. Conolly 
H.R. Krol 

5.1 Application of the Riesz Potential -to the Cauchy Problem 
For Wave Propagation in an Inhomogeneous- Medium 
by L.A. Lopes 

5.2 Hamiltonian Methods in Hydro-Acoustic propagation 
by B.O. Koopman 

5.3 Rays and Statistical Diffraction Theory 
by R.H. Clarke 

5.4 Approximate Methods for Ray Tracing 
by M.J. Daintith 

5.5 Considerations on Numerical and Experimental Propagation 
Models for Two-Dimensional Variation of Medium Properties 
by W. Sluyterman van Langeweyde 

5.6 Application of Ray Tracing with Horizontal Gradient to 
Monostatic Boundary Reverberation 
by L.B. Palmer 





APPLICATION OF THE RIESZ POTENTIAL TO THE CAUCHY PROBLEM 
'FORlWAVE: PROPAGATION IN AN INHOMOGENEOUS MEDIUM 

ABSTRACT 

by 

L.A. Lopes 
Naval Undersea Research and Development Center 

San Diego, California, U.S. 

The method of Riesz [Ref. lJ for the solution of hyperbolic 
partial differential equations is applied to the Cauchy problem 
for the wave equation. It is shown that the first term in the 
Riesz potential function, which is represented in series form, 
yields the geometrical acoustics solution when applied to the 
problem of radiation rrom a point sourc-e. 

THE WAVE EQUATION AND ITS RIEMANNIAN GEOMETRY 

We seek a solution to the partial differential equation 

Lu = = f [Eq. 1 J 

where f is a function of (t, r) E R X ES • For simplicity we 
shall assume vanishing initial conditions, u(O,r) = ut(O,r) = o. 
The local sound speed c is assumed to be a function of 
r = (x,y,z) only. 

Construction of the Riesz potential for the operator L rests 
on the Riemannian geometry associated with the operator. The 
semi-Riemannian metric is given by the differential form 

[Eq. 2 J 
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A displacement for which ds2 > 0 i s called timelike; one fo r 
which ds2 < 0 is called spacel i.ke . Let P: (to' ro) and 
Q: {tl , r l ) be two points of spac e time. A geodesic joining P 

and Q is a curve y : I[t,{o ), r{ o )] : 0..:: 0 ~ 0 0 \ such t ,hat 
[ t{O)"r{O ] - (to, ro), rt, (oo )' r{ o o)] = (tl,rl ), and 

s (p,Q) = J ds [ Eq. 3 ] 
y 

is an extremum with respect to all curves joining P to Q. 
Let 

ds 2 (-) do = = w 

Then the geodesic curves a r e extremum curves of the integral 

SO o 1 
w2 do [ Eq. 4] 

o 

The geodesic curves then satisfy the Euler-Lagrange equations 

1 1 
d ow2 ~ 

do ( ov o ) = 0 
d t [Eq. 5J 

1 
d Qw2 1 

do (av ) - 'Y w2 = 0 [Eq , 6 J 

where 

V o = ot 
00 [Eq 0 7 J 

- .QE. v = 00 [Eq. 8 ] 

If we now choose w to be constant along a geodesic (0 is then 
a linear function of s) the equations for the geodesics 
become 

d (c2 V o ) 
2 .Q.£ 

do = V O c = 0 [Eq. 9J ot 

dv 2 

do = -(vo ) c'Yc [Eq.IO] 
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Let w == 1 - p2. Then p == 1 is the equation of the characteristic 

cone through P o We have 

== [Eq. 11 J 

If O-;;;:p~l ds2 > 0 and the geodesics are timel i k e. Since w 
is constant along a geodesic 

s == (J J1 - 2 
P [ Eq. 12J 

Using the notation introduced by Hadamard we set r(p,Q) == S 2 (p,Q). 
The region ! Q: r (p, Q) ~ 0, t s:: tl \ is c aIled the retrograde 
conoid with vertex P. We see from Eq. 12 that it is also 
defined by 0 ~ P s:: 1, t ~ t l . The region 
is called the direct conoid with ver tex P. 

\ Q : r (p ,Q) :? 0, t ~ tl \ 

In the theory of the Riesz potential a par ticular coordinate 
system for the conoid with vertex P plays an important ro1eo 
This is the Riemannian coordinate system with coordinates defined 
by 

1 == 0, 1, 2, 3 [ Eq. 13 J 

In this coordinate system the geodesics emanating from the point 
P appear as straight lines. It is shown by Riesz [Ref. l J that 

8 + 2 (J d 2;n ,Ja 
d (J [Eq. 14J 

where 6. represents the second order Beltrami ope r ator, or spac e-
time Laplacian, and a is the determinant of the metric tensor, 
expressed in Riemannian coordinates. We have 

[Eq. l5 J 

where J - D (t x. Y Z) the Jacobian transformation from 
- xO X l X2 x 3 

the original coordinate system to the Riemannian coordinate 
system. Expressed in our original coordinates, t, x, y, z, 
we have 
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6I' 1 ( ~ I't) t 1 (c'VI') = - - - 'V . 
c c 

= LI' - 'V em c . 'VI' 

= LI' + 20' d .0n. c -d(J 

since oC = 0 ot 

Hence, from Eqs. 14 and 16, 

LI' 8 + 20 d em J = dO 

From Eq. 9 we see that c 2 V O is constant along a geodesic. 
Letting the constant be - Co = - c (p) , 

dt 
d o 

dt:: 
d O' 

dv 
d O' 

Moreover, 

= 

= 

= 

from 

Cv (0)]2 

-V 

2 
Co 
7 

Eq. 

= 

THE RIESZ POTENTIAL 

2 

'VC 1 (~) = "2 'V c 

11, 

p 2 

[Eq. 1 6 J 

'Eq. l7J 

I. Eq. l8J 

rEq. 19l 

I.Eq. 2ll 

Following Duff ,Ref. 2J we denote by DP the interior of the 
retrograde conoid with vertex P. ' Let S be th~ intersection 
of DP with the initial manifold, t = 0, and let DP be the s 
part of the conoid cut-off by the initial manifold, i.e. the 
intersection of DP with the half-space t> O. For twice 
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differentiable functions u, v, defined on 
Green's theorem 

f (uLv-vLu)dtdxdydz 
nP 

s 

= f 
SUCP 

s 

DP we have by s 

where cP is the part of the characteristic cone (r = 0) s 
cut off by the initial plane t = 0, and (nt,n) is the 
exteri or normal to the boundary. 

The Riesz potential VU(p,Q) is defined as a function of 
points P,Q, in t h e Riemannian space of the wave equation 
and the complex variable u . It satisfies the relations 

and 

lim I f(Q) VU(p,Q) dt dx dy dz = f(P) 
a=tO 

DP 
s 

CEq. 22J 

[Eq. 23J 

[Eq. 24 J 

for any continuous function f. Va is expressed in the form 

00 a + 2k - 4V (p Q) 
s k ' 

H( a ,k) [Eq. 25J = "0 
k=O 

where s = s(p,Q) is the geodesic distance between P and Q. 
The functions Vk(p,Q) are to be determined from the conditions 
23 and 24, while 

H(o:, k) = r(!a) r(!a+k-l) [Eq. 26] 

For sufficiently large Rea, Va is an analytic function of a 
and vanishes on Cp . Thus, for those values of a, and for s 
functions u satisfying the vanishing initial conditions of the 
Cauchy problem [Eq. lJ, we have from Eq. 22 
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f u L y JJ, + 2 dt d x dy dz = 

DP 
s 

r 0,+2 Y Lu dt dx dy dz 
J 
DP 

s 

[Eq. 2 7 J 

Equation 27 remains valid for all values a to which analytic 
continuation is p ossible. From Eqs. 23 and 24, then, letting 
a tend to z ero, we obtain for a solution to Eq. 1 

u{p) = lim 
0,"'0 

J y o, + 2 (p, Q) f (Q) dt dx dy dz 

DP 
s 

[Eq. 28 J 

Equation 28 provides a representation of the solution to the 
Cauchy problem. Determination of the coefficients Yk{P,Q) 
remains. 

F rom the de f inition given b y Eq . 26 and the p r operties o f the 
Gamm a function WA o bt ain t h e r e l ations. 

H{ (j ,k) = 2{!\3+k-2)H{ (j , k-1) [ Eq. 29J 

H{\3 + 2, k) = 2 \3 (! \3+ k -1) H{ (j ,k) I~ Eq. 30 l 

Now 

= [Eq. 31J 

[Here we have used Eq.4.5.19 of Duff (Ref. 2).J Using Eq. 17 
this becomes 

= r\3 L ~ + 4\3r\3-l 1°* + (\3 +l+ -~o dtJ) ~ I. [ Eq. 32J 

Operating with L on y i3 + 2 (p, Q) , 
using Eq. 32, we have 

given by Eq. 25, and 

Lya + 2 
co 

= 6 1 
k=O H (a + 2, k) 

a 14 (I + k - 1) r -Z + k-2 
[Eq. 33J 

[ ( 9:. + k + 1. d 0n J ) Y + dY k J + r ~ + k - 1 L Y 
2 2° do k ° d o k 
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Using Eq . 29 this b ecomes 

.-. 6 
k ==O 

.1 

0, 
l r 7 +k-2 + LVk _1 ! 

[Eq. 34J 

where W8 have introduced V_1(p,Q) = O. Now choose Vk(p , Q) 
so that for k = 0,1,2, 

Then, using Eq s . 29 and 30 , we have 

LV 0, + 2 

~ 9:.+k-2 
== 6 1 V r 2 

k=O H( o" k) k 
V 

0, 

[Eq. 35J 

[Eq. 36J 

Thus requjr1ng Vk to satisfy Eq. 35 results in vo, satisfying 
Eq. 23. We may rewrite Eq. 35 in the form 

= 
1 

1 k-l J2 LV 
- "2 () k-l [ Eq. 37J 

Choosing Vo(O) == co' so that vo, will satisfy Eq. 24 [Ref. 1], 
we have 

1 
Vo (p,Q) = Co J-2 [Eq. 38J 

since J=l at P . For k >-l we set Vk (0) = O. Then 

1 -k f ()k-1 
1 

Vk 
1 - - J2 LVk _1 d () [Eq. 39J = -"2 J 2 () 

0 
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APPROXIMATE SOLUTION TO THE CAUCHY PROBLEM 

Let us now replace Va + 2 (p , Q) by the first term in the s eries 
[Eq. 25J in computing t h e integr al [ Eq. 28J. Define 

N 

9-. - 1 
V r 2 o 

U (p) a J f(Q) H(a+2 , 0) dt dx dy d z [ Eq. 40J 

DP 
s 

We consider ('llIlh ua (p) to be a fi r st approximation to the 
solution to i fit : (. auchy p r oblem. In order to carry out the 
integration indic at e d in Eq . 40 we introduce a coordinate system 
for DP based on the geodesics defined by Eqs . 18, 19, and 20. s 
With - (v1 , v2 v 3 ) s et v = we , 

v 1 (0) = p cos e cos cp 
y2 (0) = p co s e sin cp [ Eq. 4lJ 

v 3 (0) = p sin e 

Then Eq. 21 is satisfied. The geodesic equations provide a 
correspondence between points (t,x,y,z) E D~ and (o ,p,cp, e ). 
This correspondence will not be one-to-one in general. If multi-
paths occur a point (t,x,y,z) may correspond to ma n y po i n t s 
(0 ,p,cp,8). However, except at exceptional points (t,x,y,z), 
each of the points (o,p,cp,S) will have a neighbourhood that 
is in one-to-one correspondence with a neighbourhood of 
(t,x,y,z). At the exceptional points, called caustic or focal 
points, thi s 10 a lone-to-one property will not hold. As a 

th J b . d t . t D (t x y Z) Wl' 11 vanl' sh at consequence e aco lan e ermlnan ° p cp e 
such points. 

The geodesic Eqs. 18, 19 and 20 uniquely define (t,x,y,z) 
as functions of (o,p,cp,S). Transforming coordinates in 
Eq. 40 we have 

'V 
U (p) a 

~iT iT / 2 
= J dcp S de 

o - I!, 
2 

1 
r d p J 
o 

9:._1 
d f (t ) V [ 02 (1 _ 2 ) J 2 DCtxyZ) ° ,x,y,z 0 p o pcpe 

[Eq. 42J 
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where Oto = oto (p,cp,e) is the value of 0 for which the geodesic 
curve reaches the initial manifold. This will happen at a f i nite 
value since we assume c is bounded. It is well known that if 
F (p, E) is a continuous funct i on for 0 ~ p ~ 1, E ::z 0, that 

1 E 1 
E'-~~ E f F(p,E) (l-p) - dp = F(l,O) [Eq. 43J 

o 

We will write, for continous g(p), 

1 
Jg(p)o(l-p)dp = gel) [Eq. 44J 
o 

Equation 44 is the definition of the generalized function o(l-P). 
Since H (a + 2, 0) ""411/ a as 0. -+ 0 we can apply Eq. 43 to Eq. 42 
to obtain 

~(p) = lim ~ (p) 
a =t 0 a [ Eq. 45 J 

211 11 / 2 1 ° t 
1 r r 0 2 

0(1- )DCtxyZ) dcp d e J d P f d o f Vo -= 
411 0 J p o p cp e J 

0 _Ti 0 0 
'Z 

Note that in the latter equation we have assumed f V 0 D(t x y Ze) to 
o pcp 

be a continuous function of p ln a neighbourhood of p = 1 . 

The solution to the Cauchy problem is represented approximately 
by Eq. 45. Multipaths cause no problem in this representation, 
since they are sorted out by the (o,p,cp,e) coordinates. 

Letting f represent a point source we set 

f(t,x,y,z) = Set) o(x,y,z) [Eq. 46 J 

where o(x,y,z) is the 3-dimensional delta function and Set) is 
the transmitted waveform. Although we cannot, strictly s peaking, 
use Eq. 46 in Eq. 45 directly because it is not a continuous 
function, we could replace the delta function by an approximating 
sequence of continuous functions. However, the formal manipulations 
are perhaps more clear if we are less rigorous. Thus we introduce 
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the generalized function defined by Eq. 46 i n Eq . 45. In order 
to carry out t;he integrat;ion over the delta functi.ons in Eq o 45 
i.t i.s necessary t o revert to (p , x,y , z) as variables of 
integration. 8ince we do n o t in general have a one-to - one 
corres pondence between (t ,x ,y , z) and (o,p,~,e) a point (~,O,O,O) 

may be covered by many points (o,p , ~,9) . We assume there are 
f ini t ,ely many. In addition we assu..rne t hat t ·h e origi n is isolated 
from caustics of Cp . Each of the points s covering 
( ~,O,O,O ) then h as a neighbourhood U n that has a one- to - one 
mapping onto a neighbourhood V of n ( ~, O,O,O)o Then 

li(p) = ~ J SSJ 2 D t x Y Z) 8 ( t) 0 (x, y , z) V ° 0 - 6 (1 ~ p ) ( d o d P dcp de o p cp e 

1 -- 4n 

u n 

J f S J 8 ( t) 6 (x, y, z) Vo 0 _2 6 (1 - p) dt dx dy dz 

Vn 

[Eqo 47J 

Now, considering t to be a funct,ion of (p , x, y , z) we write 

t - to - T(p,x,y,z) 

where T may be interpreted as the travel time along the 
geodesic emanating from the point P . Then 

~(p) = 1 
411 6 

n 
S J f f 8 (to ~ T) 0 (x , y, z) Vo 0 _ 2 0 (1 ~ p) T P dp dx dy dz 

V I 

= 
1 
4ii 

n 

2 

6 8 (to - ~ ) V 0 on T (1 , 0,0,0) n n p rEq o 49 J 

where ~n is the travel time along the n - th ray from (xo,yo,zo) 
to the origin, and a n is the corresponding value of o. 

From Eqs. 18, 19 and 20 
(o,p,~, e ). We write 

t = t(o,p,Cj),e) 

-t and r 
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[ Eq o 50J 
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Then 

at = _.Q! _ 'V T . .QE. 
op ap op ~ Eq. 52 J 

Now ~ = t + T(p, x,y ,z) is, for fixed p, an integral surface 

of the linear part ial differential equation 

1 2 
~ ~ t - (\I~ ) 2 = constant [Eq. 53J 

whose characteristic strips are generated by the geodesic 
Eqs. 1 8, 19 and 20. Comparison with Eq. 11 shows that the 
constant on the right-hand side of Eq. 53 must be (1 - p2 ) / Co 2 

and \I~ = v / Co . Hence 

Co \IT = 
or 
00 

Thus, from Eq. 52 

-.Q! at - Co = Co + .a£ . .Q!: 
ap ap ap 00 

at + a r . -= Co v op op 

Now, differentiating Eq. 55 with respect to 0 we have 

;v + .aE: • Ov 
00 00 

Let us temporarily write (C O /C) 2 = l3(x,y,z). Then the 

geodesic Eqs. 18, 19 and 20, become 

= 

= 1 2" \1 13 

i Eq. 541 

[Eq. 55J 

[ Eq. 56J 

CEq. 57J 

[Eq. 58 J 



From Eq . 11 we obtain 

or 

Referring again to Eq. 56 we then have 

= 

Hence 

= po 

.Qii+ op 1 ..Q... C:y2 ) + 0 r • ( 0_1 'V R) 
"2 op op I-' 

[Eq. 59 J 

P 
[Eq. 60 J 

[Eq. 61J 

since the relation clearly is valid for small o. Thus Eq. 49 
becomes 

'U:Cp) 

where Vo is given by Eq. 38. 

The Riemann coordinates involved in the definition of J 

[Eq. l5J are given in terms of (o,p,~, 8) by 

= 

Xl = po cos 8 cos ~ 

X 2 po cos e sin cp 

= po sin e 
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[Eq. 62 J 

[Eq. 63J 

[Eq. 64J 

[Eq. 65J 

[Eq. 66J 



Then 

J = 

= D ( t x y Z) I D (XO Xl ~ X3) 
opcp9 1 \ 0 pcp e 

Hence, setting P = 1 , 

= 

and Eq. 62 becomes 

\1(p) = 1 
4n 

[ Eq . 67J 

= D(X Y e'L, )1 (p 02 cos e) 
o Cp 

[ Eq. 68J 

[ Eq. 69J 

This is the geometrical acoustics solution in its generalize d 
form. 
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DISCUSSION 

The author confirmed that the signal distortion can be obtained 
directly i f the source function is bounded. 





HAMILTONIAN METHODS IN HYDRO-ACOUSTIC PROPAGATION 

by 

B.O . Koopman 
Arthur D. Little, Inc. 
Cambridge, Mass., U. S . 

The investigation that I wish to outline here originated in the 
military need of forecasting detection p r obabilities of underwater 
acoustic emitters, in case s in which only a somewhat general idea 
of the sound speed profile i s available, based, for example, on a 
known geographical location and average sound speed behaviour at 
a given time of year . Since detection of a distant object is 
the objective, only very fa i nt signals enter - certainly nothing 
that could produce the non-linear effects, shock-waves, etc . , 
that have been discussed in many of the paper s reported here. 
Evidently the object of pre s e nt interest is not this or that 
result of meticulously accurate computations based on exact 
knowledge of the sound speed c as a function of position, but 
more general facts that are relatively stable - i.e., are not 
radically altered by slight changes in the function c. Moreover, 
it is not only necessary that the stable evaluations be rather rough 
approximations (since we cannot know values of c in an area of 
future enemy operations except roughly ) - but this is sufficient 
for military applications. 

These requirements lead us in two directions: quantitative 
~eralities: mathematically this means theorems rather than 
detailed computations; and a statistical attribute of the results. 
Our situation suggests a similar one in the quantitative study of 
those other complex physical systems, composed of the molecules of 

* The investigation reported her e grew out of an earlier phase, s upported by the 
U.S. Naval Ordnanc e System Comm and. The author i s uniquely responsible for all 
views expressed herein. 
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a gas; and just as statistical mechanics bases its methods on 

Hamiltonian theory, phase-space and its integral invariants, 
so we shall find, rather surprisingly, that similar branches of 
classical mathematics will play an essential part in our 
investigations. 

It is not too surprising that the methodology of classical 
Hamiltonian dynamics should enter our problems of hydro-acoustic 
propagation~ mathematics does not know the difference between 

Fermat's principle of least time and Maupertuis' principle of 
least action~ which led immediately to the Hamiltonian theory, 
But let us start from the beginning, 

Our starting point is D I Alembert I s wave equation in the velocity potential ~ 

2 / 2 \] ~ - ~tt c = 0 

(with possible slight modification in derivatives of lower order) 
together with the energy density expression 

and the energy flux vector 

Note that we are using the absolute values, to allow for complex 
wave functions ~, We recall that for every c which is a function 
of geometrical position and is independent of time t, the wave 
equation has a consequence that an equation of continuity is 
satisfied; i.e., that 

oE/ot + \].F = 0 . 

Geometrical acoustics is a valid approximation at sufficiently 
high frequencies: w» c/depth, where w= 2" X frequency. The 
element which transports hydro-acoustic energy is the travelling 
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~, that is, a solution of the wave equation of the form 

\)J = uf [Ul (t - S) ] , S = S(x,y, z) 

Here the function f = f (x) must be defined for all x. For 
monochromatic steady state propagation, we take f (x) = e ix , while 
for an infinite pulse, f(x) = o(x), the Dirac delta function, etc. 
The coefficient u depends on x, y, z, t, and even w; but it is 
thought of as varying "slowly" with these quantities. When the 
above \)J is inserted in the wave equation and only terms in w2 

retained, the eikonal equation is obtained, 

A solution S S(x,y,z) of this, when set equal to a constant 
has for locus a wave front; and the family of such loci: S(x.y,z) =t 
is a moving surface as the time t increases -the wave front of 
the travelling wave. In space-time it is a characteristic 
hypersurface of the wave equation. 

The eikonal equation has, in its turn, characteristic manifolds, 
the bicharacteristics of the wave equation or. rays. The classical 

-- theory of all these relations known for well over a century 
gives us the rule for writing the differential equations of the 
latter. We replace aS/ox, etc., in the eikonal equation by p, x 
etc. , and set 

H 

so that the eikonal equation could be written as H = O. 

write the system of six differential equations 

dx dr=--H-p x 

dp x 
-H x 

dp 
....:..L 
-H 

Y 

dp z 
-H z 

Then we 



where the denominators are the parti al derivatives of H with 
respect to the six independent variables 
T is a parameter. 

Clearly the equations for the bi char acteristics are ln Hamilton's 
canonical form ~ 

dx 
dr =p , etc., x 

dp x 
""(fi=""" 

oH = 
OX 

o I 
ox 2c2 

, etc . 

They are the equations of the motion of a particle of unit mass, 
solicited by a force derived from the potential _1 / 2c2

, referred 
to a "time" parameter 1'. 

and 1" the pseudo-time. 
We shall call it the pseudo-particle 

If in these equations the three "momentum" variables Px,Py,Pz 
are eliminated, we find a system of three differential equations 
of the second order. If, finally, we replace the independent 
variable dT by the physical time t by means of the relation 
d1" = c 2 dt, our equations become identical with the differential 
equations of the rays, as obtained by minimizing the time 

S ds / c in Fermat's principle. 

Further relationships now become clear : We have p = dx / dT = dx / cds x 
= cos a/ c, cos a being the first direction cosine, etc. Thus the 
"momenta" are directional quantities along the rays. The pseudo-
velocity is seen to be ds / d T = 1 / c = V , the refractive index. 
This is all part of the wave- particle complementarity, which worried 
physicists as far back as the Newton- Huygens arguments about light. 

What is the relationship between the rays and the hydro-acoustic 
energy? The answer is given by going back to the expressions for the 
density of energy E and its flux vector density F, and replacing 

by its travelling wave expression. On discarding lower powers 
of wand then using the eikonal equation, we find simple expressions 
for these quantities in terms of the intensity the fact that 
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the energy flux vector F is in t he direction of the momentum 

(px' Py' pz), that is, of the tangent to the rays, becomes 
evident from this substitution . Finally, the equation of continuity 
obeyed by E,F leads to the following one in the present picture: 

If the pseudo-time T is used instead of t, and if Px' Py' Pz 
are regarded as the components of a fluid velocity field (based on 
the function S we are using), then the energy (in these units) 
obeys the classical equation of continuity . 

We may forecast one of our results in the following terms: If in 
the above picture of a spatial flow, the fluid were incompressible, 
then the energy density would be a "first integral" of the ray 
equations; i oe . , it would remain constant along each ray, so that, 
by tracing it to its source (the emitter) where its value is 
regarded as known, we would have its value at the point in space 
of interest (the detector). This would enormously simplify our 
problem. But since the above flow in x y z - space is very far from 
incompressible, the above method is totally inapplicable[ 1 J. However, 

by using, not a single travelling wave, but a statistical ensemble 
of such waves, randomly out of phase, we can easily establish an 
equation of continuity in the 5-dimensional "space" of values of 
the six v a riables (x,y,z, Px,Py,pz) which satisf y the equation 
H ~= O. Now the Hamiltonian theory comes to our aid, showing that 
this flow in 5-dimensions is incompressible. This is the 
consequence of Liouville's theorem,of fundamental importance in 
classical statistical mechanic s . Therefore the energy density is 
constant along each bi-characteristic, or ray in the 5-dimension 

representation. 

The "model" of the action of the ocean in transmitting acoustic 
energy over long ranges from an emitter of naval interest to a 
receiver, experiencing all the random viscissitudes of the 
environment as well as of these two objects, is a statistical 
ensemble tw n l of travelling waves Wn ' and only approaches a 
single one (a point source, plane wave, etc.) in the limit. 
It happens that for the present purpose it is easier to deal with the 
ensemble (however near to its limit) than the limit itself. 



There is a two-fold situation that may appear paradoxical : First, 
the sum of two travelling waves is not in general a travelling 
wave and does not have a wave front in the usual sense. This fact, 
which should be evident from the analytical expressions, has too 
frequently been overlooked and has l e d to errors in some standard 
text books in acoustics. Second, in spite of the inapplicability 
of the wave front picture, the ray picture and the Hamiltonian 
form of the equations continue to be valid. Moreover, the additivity 
of energies transmitted along several intersecting rays is an 
immediate consequence of their corresponding to travelling waves 
that are randomly out of phase. If they were in phase their 
amplitudes would add vectorially : there would be interference. 
This is not observed under the physical conditions of our military 
situation, with its multi - path reception, etc . , lending support to 
the validity of our model. 

From the ensemble \ ,1. \ we are led to the replacement of the E 't'n l 

and F, which were functions of position only, to corresponding 
quantities which depend on ray direction (momentum) as well. 
Let (dV) be an element of volume in the x y z - space and let D 
be a direction (a point on the unit sphere). If (dD) is an 
elementary cone of directions (elementary area on the sphere) 
containing D, we shall select the sub-ensemble of \ iii n \ ' consisting 
of those waves whose i ndividual wave fronts at (dV) have a 
direction in (dD) . To be precise, this has to be required at some 

chosen reference point in (dV) ; but the results depend only 
infinitesimally on its exact choice. Consider the sum of energies 

in (dV) contributed by all the members of the sub-ensemble \ ~ n\': 

to quantities of higher order, it is proportional to the volume dV 
and the area dD, and may be written as 

E dV dD = E ( x, y, z, p x' p y' p z ) dV dD 

where, of course, Px' Py' Pz' are the components of the vector Dlc -
The coefficient E in this expression is the energy density per unit 
5-volume in the phase-space M5 - When integrated over the whole unit 
sphere it gives the energy density of the radiation field in ordinary 

3-space. 
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A corresponding d efinition is given f or the energy f lux density 

in M 5 • Then by an additive process, starting with the ordinary 
equations of continuity for the individual elements ~n in our 
ensemble, and making obvious assumptions about the latter, an 
equation of continuity in the phase space M 5 is obtained. 
We give only one result at this point : Let dS be an element 
o f surface in ordinary 3-space and dD an element of directions. 
If e is the angle between the normal to dS and the direction 
D in dD, the rate of flow of energy across dS due to the waves 
of ray directions in dD is given by 

E cos e dS dD 

where E is the value calculated at a reference point in dS 
and the direction D. [Note that any change in D and dD 
during the elementary time dr considered has only a higher 
order effect on the flux. ] This result corresponds to the 
following: Normal to 

dS 

1 
= (? 

Momentum 

dD 

cos e dS dD 

2 
We shall find an invariantive expression for the cos e dS dD / c , 
which will lead to the desired conclusion of the behaviour of 
E along each ray. 

We return to our Hamiltonian equations. The six first-order 
differential equations determine one and only one integral curve 
through each point of the six dimensional phase space of the 
variables x, y, z, Px' Py' Pz' Furthermore, as the independent 
variable T increases, each point moves continuously along its 
integral curve (the ray). This gives rise to a c ontinuous one-
parameter group of transformations a IIflow ll • Liollville1s 

theorem declares that this flow is incompressible. 
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The only part of t he six-di mensiona l phase space is the sub-

space M5 of five dimension s defined by t he equation 

M = o 

Since the Hamiltonian H is a r J f "::t, integral it remains 

c onstant along each integral curve . Therefore the locus M5 
is invariant in the flow, and contains the whole of every 
integral curve containing a point in common with it . 
there is produced a flow 1n the sub-phase-space M5 " 

Thus 
As a 

corollary of Liouville1s theorem it too is conservative. 

The concept of integral invariant was developed at the end of 
the last century by H. poincar ~ [ 21 i n c onn ec tion with d y n amical 
s ystems, and greatly extended and given wide applications by 
E . Car t an [ 3 l in the ea r ly d ec ade s of this century . .In its 

simplest forms it is a familiar notion: the density p of a 
fluid, when integrated over any given volume of the latter, 
remains invariant during the flow, since the mass it represents 
is conserved. In a perfect fluid, the integral, around a closed 
curve drawn in the fluid, of the tangential component of the 
velocity, i s invariant during the flow: this is Lagrange's 
theorem of the cons·tancy of "circulation", which is basic to his 
theory, as well as to Helmholtz's theory of vortices. In this 
case, for invariance, the integral has to be taken about a closed 
curve: it is called a "relative ll integral invariant. When this 
condition is unnecessary, the invariance is call.ed "absolute". 
An example of an absolute integral invariant is obtained by 
applying Stokes' theorem to the circulation, thus expressing the 
circulation as a surface integral of the normal component of the 
curl of the velocity - the vorticity (tourbillon). 

The Hamiltonian theory gives us a set of integral invariants, 
starting with the basic relative one . Setting 
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and using the not ation dO f or the curl, and bracketed product 
for llouterll or Grassmann proauct (actually a determinant opera-
tion) we have the series 

J [dO dO] 
4 

= 

f u dS 5 
5 

The existence of the six-dimensional one is simply the statement 
of Liouville's theorem, and the five- dimensional one is a direct 
consequence. The lldensityll u in the latter case can be 

computed as a simple single-valued expression in terms of the 
6-gradient of H. 

For our purposes the integrand of the four-dimensional integral 
invariant is of particular importance because of its simple 
geometrical interpretation. We have, in fact, when the 
4-dimensional element in M5 is taken as the pair (dS, dD) 
used before, that 

2 = "2"' cos e dS dD c 

This is de r ived from the expression for the quantity 

where each bracket is the Jacobian determinant of the indicated 
quantities with respect to the four parameters in the 
representation of the surface element in question. 

Since,as we have seen, the flux of energy across the above 
element is given by 
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and since as stated before, this flux is the i ntegrand of a n 
integral invariant - by the c on s e r vation of energy - it follows 
by the general the ory ( actually by Cartan's theorem) that the 
r atio, namely E i f.; a scalar invarian-t , const,ant along each 
ray. By referring it b ack t o its point of c ontact with the 
emitter, its valu e can be d etermi n e d . By do i ng thi s for each 
ray through the receiver, t ,he total energy received can be found 
by integration. Since one usually assume s the initial values 
of E at the receiver constant? the above process reduces to 
that of finding the solid angle subtended at the receiver by the 
directions of those rays which connect it with the emitter. 

The most limited view of t~he above result s is that we have 
established the validity of a ray tracing p r ocess i n the case 
of a general sound speed function c = c (x , y, z) 14 1. Actually we 
have done more, we have laid the ba s is for a statistical 
treatment of perturbations of the syst,em. But this cannot 
profitably be discussed in its general terms in this Conference } so 
we shall sample it in a simple special case below. Before leaving 
this subj ect , it is noted that when our equat;ions are wr i tten in 
general curvilinear coordi nates , our densit ies become multiplied 
by the factor ft' where g is the determinant of the mat,rix 
of coeff ic ients in the general expression for the l ength squared J 

ds2 • With coordinates appropriate to cylindrical spreading, 
fl = 1'; for spherical spreading ., fl = r2 sin 8, etc. This in 
combination with the invariance o f the energy density 
automatically introduces the appropriate spreading factors, 
l / r, 1 /r2 , etc , 

Finally, we note that in our use of integral invariants, they 
are understood in Cartan's sense " sliding invariants", 
remaining c onstant when all points are slid an arbitrary amount 
along the integral curves, without requiring to be moved to 
sync hronous points, as required by the Poincare. conception. 

We tur n now, to illustrate the ideas graphically, to the special 
case (to which so much of present ray-tracing is confined!) in 
which we have a "fixed profi le!!, with c d e pending on depth alone, 
c = c(z). 'fhen, as is generally known , the equations can be 
integrated explicitly, requiring, however, a set of numerical 
integrations of numerically given functions. For purposes of 
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illustration, we shall exhi bit the phenomena graphically, aft e r 
the easy reductions have b een made . 

The first reduction in this case replaces the geometrical 3-spac e 
by a vertical plane, the (x,z) plan e or , more appropriately to 
cylindrical spreading, the (r,z) plane . The two momenta (Pr' p) 
and equation H = 0 show that the phase-space becomes a 
3-dimensional one, M3 instead of M 5 • This makes it possible 
to draw diagrams of it on paper. 

The next simplification when c=c{z) is the validity of Snell 1 s 
law in the large, which states that Pr is constant along each 
ray. This constant, which we denote by w , is called the 
Snell constant. The set of all rays in M3 having a given Snell 

constant are on the locus of the equation 

This makes it convenient to use, 
the three coordinates 

for specifying points in M3 , 

This M3 is shown in Fig. I 
drawn with these three coordinates as rectangular. 

This is not a tank of water - the ocean is represented as the 
(r,z) plane but, if a tank of anything, a tank of phase space. 
But the flow in M3 is incompressible. 

Since the above equation, g ive n the fixed Snell constant value 
w, does not contain r, its locus is a horizontal cylindrical 
surface whose elements are parallel to the axis of r. Each ray 
with this value of w winds around the cylinder in helix-like 
fashion. 

Let a plane be drawn perpendicular to the r-axis. It cuts all 
the rays in one and only one point. As the value of r at its 
intersection increases, i.e., as the plane is moved along the 
r axis and always perpendicular to it, the points of intersection 
of a given ray move in this plane; such a ,plane is called the 
surface of section, and was introduced in the study of dynamical 

systems by H. Poincar~, and later by G.D. Birkhoffan d the 
~lUthoi 5J, Th e trans formation induc e d by the rays when r is 
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changed, as described above , can be pictured as a flow in the 
plane . During this flow, the representative point of each ray 
moves about its curve of given Snell constant . Finally, the flow 
is incompressibl~ . This is a consequence of the sliding integral 
i nvariant l dO, whi c h, when evaluated on a region of the 
surface of section, is equal to its area. 

Since, as in the more general case, energy flux is a constant 
a long the rays, the application of the relations just outlined 
can serve as a basis for the study of propagation, showing 
shadow zones, etc . It may b e noted that caustics have di s appeared 
in this representation; they re-appear only when we project sets 
of rays of M3 onto the (r,z) plane . 

A case of great practical importance is that in which the ranges 
are very large - quite a number of ray periods. Then the 
practical uncertainty of the exact lengths of periods leads to 
the replacement of the energy flux density by its average over 
a period. Either on this basis, or by reasoning based on 
"ergodic mixing", we are led to consider an energy flux density, 
which depends on the Snell constant w only, and therefore 
has the path curves on the surface of section as its level lines . 
Wi th a slightly higher degree of perturbing influences, this flux 
becomes essentially constant over those parts of the surface of 
section where long- range propagation is not intercepted (by 
underwa t er obstructions, etc.) and zero over the latter parts. 
Then the acoustic power born by a bundle of rays is proportional 
to the (invariant) area in which it is cut by the surface of 
section. On reducing the picture back into geographical space 
the spreading factor comes out of the equations automatically. 

2 7 6 



NOTES AND REFERENCES 

I. It would be suff i cient if, . instea d of being incompressible, 
the flow J..n the x y z-space were conservative, i. e., had a 
density function whose integral over any piece of this space 
remains constant : then the ratio of the energy flux density 
to the latter would be the required first integral . Such a 
density exists - and is put in evidence by convential ray-
tracing 
emitter. 

as long as we stay suf f iciently close to the 
This provides the justification of the standard 

methods; but only under this proviso. Further away, in fact 
at distances of particular interest, the densities become 
increasingly multiple-valued (ind<e e d , singular at the branch-
loci, the caustics); therefore the justification breaks down. 
It is for this reason that the present approach is not 
submitted merely as an alternative to a more conventional 
one, but as a method of salvaging the latter when it ceases 
to be applicable. 
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Bodies" , (Trans . Amer . Ma th Soc . , 1927). 

6. The simplified picture (given in ,so ma n y treatments) of the 
" limiting critical ray" composed of two tangent circles, one 
above and one below the horizontal ray, is derived from the 
two-line "approximation" to the acoustic profile. Unfortunately, 
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for this picture, the differential equations determining 

the rays involve the derivative of the profile as 
coefficients . Since the two-line lIapproximationl! has no 
derivative at the point at which this critical ray is 
constructed, it is difficult to understand the logic of 
the construction. 

Instances of the surface of section are shown in Fig . 2 

(one duct) and Fig. 3 (two ducts). These show the lines 
of the 2--dimensional flow, along each of which the Snell 
constant w has a fixed value. They enclose the ducts. 
In the two duct case, they intersect at the point of maximum 
sound speed, corresponding to the unstable horizontal ray, 
approached asymptotically by its nei ghbours (with increasing 
or with decreasing range. In Fig. 2 we have heavily 
shaded the region at which the emitter injects its energy . 
Since the vertical dimensions of the emitter are small in 
comparison with the depth, the region is a slender band. 
Its horizontal extent is wide since this corresponds to the 
directions (or momentum values) at which it emits power. 
For a point source, the band would shrink up to a 
horizontal line segment. 

Figure 4 shows the effect of an underwater obstruction, 
with a key to the calculation on the left, which refers 
back to the surface of section. Time does not permit us to 
go into details here; we merely note that the fraction 
intercepted by the obstruction is the horizontal interval 
through which the ray (in rz-space) can be moved and still 
cut the obstruction, divided by the ray period. 

Figure 0 shows a graphical method of exhibiting the source-
to-duct coupling. The case shown is that of a single duct 
under an inversion layer, and assumes perfect specular reflec -
tion (plUS phase randomization) at the water's surface. One 
may think of the whole diagram as reflection in the latter 
surface (method of images, or "Lloyd's mirror"), whereupon 
it resembles the case of three ducts separated by two unstable 
horizontal rays. Again the thin horizontal band shows the 
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energy injected by the emitter , its heavily shaded part 
being that portion that survives bottom absorption and 
can undergo long range propagation. Their ratio might be 
called the "source-to-duct coupling factor". At the 
receiver is drawn a horizontal band representing what it 
can receive (or, by reversal of path, emit). The dotted 
part of the receiver band shows the part of the emitted 
energy that reaches the receiver. Clearly the fraction 
of emitted power reaching the receiver is not even 
approximately equal to the product of an emitter coupling 
factor (determined by its depth) times a receiver coupling 
factor (determined by its depth): g iventhe acoustic profile, 
the fraction in question is a function of two variables (the 
two depths); but not a product of two functions of one 
variable each. 

DISCUSSION 

The author stated that the theory would have to be reworked 
for the 5-dimensional case when applied to a range-dependent 
sound-speed profile. Also, since a flat bottom was assumed 
in the theory, it would have to be modified if that were not 
the case. 
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ABSTRACT 

RAYS AND STATISTICAL DIFFRACTION THEORY 

by 

R.H. Clarke 
SACLANT ASW Research Centre 

La Spezia, Italy 

A method of extending ray tracing is proposed, such that medium-
scale irregularities of a statistical nature are taken into account 
along with large-scale irregularities in refractive index of the 
medium. 

INTRODUCTION 

Ray tracing is a relatively simple and very practical method of 
obtaining solutions to the fundamentally very difficult problem of 
wave propagation in an inhomogeneous medium. These solutions are 
admittedly approximate, but give perfectly satisfactory "engineering" 
answers, provided the scale size of the inhomogeneities is large 
compared to the propagating wavelength, and provided one does not 
require answers in regions of focusing or shadowing. 

I want to address myself to the problem of dealing with irregularities, 
both in the medium and on the boundaries, whose scale size is not 
large compared to the propagating wavelength. In particular, I am 
interested in scale sizes of the same order or somewhat larger than 
the propagating wavelength. I shall exclude from consideration those 
irregularities whose scale size is smaller than the propagating 
wavelength, since in a sense these will be invisible to the 
propagating wave and are likely to have only a collective effect. 



(For example, bubbles will have the effect of changing the acousti c 
properties of the water when encountered by metre wavelengths, and 
so the problem reverts to that of the effect of conglomerates of 
such bubbles of scale sizes of a wavelength or larger.) 

One can state the problem ln a somewhat more restricted fashion by 
asking how one can retain the advantages of using ray tracing 
to deal with large-scale irregularities when medium-scale 
irregularities are also present . I eventually want to discuss 
the effect of medium-scale irregularities on the sea surface, 
ln the depth of the thermocline and in the medium everywhere. But 
it is useful to start with the rough surface. 

EXAMPLE OF SURFACE ROUGHNESS 

After a more-or-less tortuous path, some of the rays leaving the 
source will strike the surface [Fig . lJ. A straightforward 
extension of the ray tracing concept would be to say that each ray 
is reflected in the local specular direction. But there are two 
objections to this course: (1) 
large-scale irregularities and 

this idea is only valid for 
(2) a hideously large number of 

ray tracings would have to be made in order to obtain a satisfactory 
statistical ensemble. 

An alternative approach, and the one I shall advocate, is to use ray 

tracing to just below the surface; then to employ statistical 
diffraction theory to accoun~ for the effect of the statistically 
rough surface; and then to employ ray tracing again to describe 
the subsequent progress of the field. This gets over the two 
disadvantages I mentioned in connection with the first approach: 
(1) since diffraction is taken into account the validity of the 
method is not restricted to large-scale irregularities, and (2) the 
ensemble averaging is performed at the surface and so a single ray 
tracing suffices to describe the subsequent reflected field. 



I shall give more details of this in a moment. But first, I must 
describe more clearly how one can make the transition from rays 
to fields and back again. 

RAYS AND PLANE WAVES 

Dating from Rayleigh's treatment of the problem of reflection from 
a corrugated surface [Ref. lJ, the expansion of acoustic fields 
in terms of plane waves travelling in different directions has 
become increasingly popular. Intuitively, one expects there to 
be an equivalence between such plane waves and the purely 
geometrical concept of rays;that equivalence will now be 
demonstrated. 

Uniform Medium 

The pressure field p (x, y, z) in the half space z ~ 0 can be 
represented [Ref. 2J by the plane-wave spectrum F(~, e) , such 
that 

00 

p(x,y,z) Sf F (o:,~) exp \-jk o(a:x + Sy + yz) 1 dct d~ [Eq. lJ 
_00 

where (o:,~,y) are the cosines of the angles formed between the 
direction of a single plane-wave component and the three rectangular 
coordinate axes (x,y,z), and ko is the phase constant (wave-
number) of the medium. 

Assuming the acoustic source to be at the origin, at a large 
distance r from the source, such that kor» 1, it can be shown 
by applying stationary phase methods that the pressure field is 
asymptotically 

p . il F ( ) -jkr J o:,~ e . r 
[Eq. 2J 



Thus the angular plane-wave s pectrum F(n,~) is proportional to 
the directivity pattern of the source. 

The associated intensity is 

I=lE..L= 
2Z 0 

where Zo is the characteristic impedance of the medium. It 
will be useful later to refer intensities to the "intensity at 
unit distance!!, which is 

[Eq . 3J 

Layered-Inhomogeneous Medium 

When the acoustic properties of the medium change with z, then 
the angular spectrum F(a,~), which describes the field at the source 
level z = 0, no longer deE/cribes the field for any other z. 
However, by writing the angular spectrum as a function of z, 
namely F(Q;,~,z), it can be supposed that all plane waves emanating 
from the source follow the ray paths prescribed by geometrical 
acoustics, provided the irregularities in the medium are of scale-
size very large compared to the acoustic wavelength. Hence [Ref. 3J, 

00 

p(x,y,z) = JI F(Q:,~,z) expl-jko(ax+ ~y+ JZ qdz) \ do: d~ [Eq. 4 J 
_00 0 

where q=ncos 9, the refractive index n=n(z) = c(O)/c(z) is the 
ratio of the sound speeds, 
of the ray path [Fig. 2J. 

2 2 2 _ r.l2 
q = n -Q; '" 

and 9 is the local angle to the vertical 
From Snell's law it is obvious that 

[Eq. 5J 



The W.K.B. solution [Ref. 4J for a plane wave travelling in a 
layered-inhomogeneous medium yields 

F(Il,~,z) ~ (::cC::o:°e)'f' F(Il , ~) [Eq. 6J 

whe re P = p(z) 1S the density, and the subscript 0 refers to 
the source level. (Note that Z = Pc is the characteristic 
impedance at the level z). 

Integrating Eq. 4 by stationary phase methods, asymptotically 

[Eq. 7J 

where (Qo, ~ o ) are the direction cosines at the source which 
satisfy the s tationary-phase conditions . These conditions are that 

x = r z a - J ~ dz [Eq. 8aJ 
o 

and that 

r z a 
y = - J ~ dz 

o 
[Eq. 8bJ 

which are just the equations of the ray path. The quantity 6 is 
a determinant in the general case [Ref. 3J, but in the x-z plane 
reduces to 

r z ::.2 r z ::. 2 ( JI ..2.....9.. dz) (JI .£....9. dz) 
o 00:

2 
0 O~ 2 

[Eq. 9J 

The intensity corresponding to the pressure of Eq. 7 is 

2 

I lEL 
2Z 

[Eq. 10J 
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where, as can be shown by applying Eq. 9 to Eq. 5, 

t::, = 

Then, the 

I 

x SZ sin e dz . 
. 29 3 e Sln 0 0 COS 

final intensity formula 

. 2 e Sln 0 

xcos 9cos 90JZ 
o 

sin 9 
3 COS e 

[Eq. llJ 

is 

[Eq. l2J 
dz 

and is equivalent to the formula developed by Krol [see Session 2 

of these Proceedings] using purely geometrical arguments. 

Thus an equivalence between a ray description and a plane-wave 
description of acoustic fields in a layered inhomogeneous medium 
has been established, which takes care of the effect of large-scale 
irregularities. 

The next step in the argument is to consider how each of these 
plane-wave components, which go to make up the total field, are 
affected by medium-scale statistical irregularities encountered 
either in the medium or at its boundaries. 

STATISTICAL DIFFRACTION THEORY 

Consider the simplest case, shown in Fig. 3, of a plane wave incident 
normally on a "random phase screen". Such a screen alters the 
phase of a wave propagating through it in a random manner, but 
leaves its amplitude unchanged. (The physical mechanisms in the 
ocean which produce such random phase screens will be discussed 
in the next section.) 

If the random phase induced by the screen is a zero-mean, gaussian 
random process of variance a~, then the transmitted field will 



consist of a coherent part and an incoherent part. (Coherence is 
used here in the sense of the phase having a deterministic relation 
to the incident phase.) It can be shown [Ref. 5J that the coherent 
part of the transmitted field is a plane wave, in all respects 
the same as the incident field,except that its amplitude is reduced 
by exp!-! o~}. This can be expressed by saying there is a 
"coherence loss" of intensity of 

exp \_o~ \ or 4. 34 o~ dB . 

But this is not a real, absorptive loss, and the remaining 
transmitted energy is incoherently scattered in a pattern which 1S 

determined by the second-order (i.e., lateral correlation) 
statistics of the phase across the screen. 

In terms of rays: the incident ray suffers a "loss", but apart 
from that continues as though the screen were not there. The lost 
energy is converted at the screen into new, incoherent sources of 
energy whose angular pattern can be determined. Ray tracing can 
be applied to follow the subsequent behaviour of this new source of 
acoustic energy. 

RANDOM MECHANISMS IN THE SEA 

Rough Sea Surface 

For a plane wave incident obliquely on a randomly rough sea surface, 
[Fig. 4J, the simplest (and most common) approach is to ignore 
amplitude effects and to consider only the random phase induced in 
the incident wave arising from the local excess path travelled by 
the wave to and from the surface, compared with reflection from the 
mean surface. Thus the surface is replaced by a random phase screen. 
If the surface profile is a zero-mean, gaussian random process of 
variance o~ the random phase variance is 

2 
(2kcos9) 
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Thus the incident ray is specularly reflected with a coherence 
2 loss of 4 .3 4 0~' and the remaining energy is scattered incoherently 

with an intensity pattern determined by the spatial correlation 
function of the surface roughness. 

Internal Waves 

Figure 5 shows an idealized model of an abrupt thermocline 
boundary separating two regions of the ocean in which the sound 
velocities, and hence the phase constants, kl and k a , are slightly 
different. If the boundary profile is a zero-mean, gaussian random 

process of variance o~, then the same sort of arguments used 
for the rough surface establish the first-order effect on an 
oblique ly incident plane wave of such a boundary as a random 
phase screen with phase variance 

(A similar expression has been used to examine the effect of 
irregularities in dielectric holograms [Ref . 6J.) 

Volume I rregularities 

If a plane wave travel s a distance t [see Fig. 6J through a slab 
of tenuous irregularities in refractive index, then it is 
physically plausible to suppose that the emerging field is randomly 
modulated in phase but unaltered in amplitude. (For a more 
rigorous validation of this approach, see the r~sum~ of the work 
of Fejer and Bramley in Ref. 5. ) Hence the slab of irregularities 
behaves as a random phase screen. If t is many times a typical 
scale size, ~o,of the irregularities, then a crude application of 
the Central Limit Theorem establishes that the emerging phase 
is approximately gaussian, with variance 



where 0
2 is the variance of the refractive index fluctuations. n 

Hence as a ray traverses such irregularities it will suffer a 
loss of 

4.34 k 2 G o0~ dB/unit length 

of its energy to incoherent scatter, the angular spread of which 
will be determined - as in the other examples - by the lateral 
scale size of the irregularities. 
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DISCUSSION 

The author confirmed that these ideas could be applied to a 
surface sinusoid with roughness superimposed, and also to a 
rough and randomly layered bottom - although the latter is more 

difficult. 

\ / 

FIG. 1 
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FIG. 3 
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APPROXIMATE METHODS FOR RAY TRACING 

by 
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INTRODUCTION 

The conventional approach to ray tracing is to follow one ray, usually 
specified by its initial direction, by standard techniques of numerical 
integration along the ray path, building up a set of values of 
horizontal displacement, direction, and travel time, as a function of 
vertical displacement (horizontal stratification of the sound speed 
profile in the medium is assumed). This process demands computer time 
and storage. By this means a family of ray plots may be built up 
[e.g. Fig. lJ 

In many applications, however, this forward computation is inconvenient, 
in that an inverse problem requires solution. Examples are: 

a. Given the terminal points of the ray, what is the 
grazing angle at one point on it (this frequently occurs in 
experimental determinations of bottom reflectivity). 

b . Given the measured travel time from surface to bottom, 
what is the true slant range (e.g. the use of bottom transponders 
ln some navigational systems). 

c. Given the known slant range, what is the true travel 
time (the converse of (a), also often encountered in bottom studies). 

A common feature of these problems is that they do not involve rays 
having turning points (i.e., the slope is always of the same s ign), 
and basically the theory to be described is restricted to this special, 

but important, situation. It is possible to extend the treatment to 
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rays having a turning point, but the advantages of the approach are 
not as marked, and this extension will not be discussed here. 

THEORY 

Figure 2 shows the geometry of the situation . Horizontal range is 
denoted by x, vertical depth by z, and the grazing angle at any 
point on the ray bye. The terminal points of the ray will be 
denoted by (0,0) and (X,Z). The sound speed profile (horizontally 
stratified) is assumed known, the sound speed at depth z being c. 
The slope of the slant range line 90 , and the slant range is D. 

The basic ray-tracing equations are that along the ray: 

tan e 

cos 8/c = p = constant (Snell's Law) 

dzl dt = c sin e, where t = travel time 

On integrating along the whole path, we obtain 

x = Sz cot e dz 
o 

t = JZ (cosec si c) dz 
o 

[Eq. I J 

[Eq. 2 J 

[Eq. 3 J 

[Eq. 4 J 

[Eq. 5J 

If we use Eq. 2 to express Eq. 4 in terms of c and p, we note 
that, if given X and Z, Eq. 4 becomes essentially an integral 
equation for determining p. The method to be described is based on 
noting that integration is an averaging process, and that this 
suggests that we are in effect computing some rather complex 
weighted average of c. 

As far as Eq. 5 is concerned, we may note that another average 
value of c is defined by travel along the straight line path; 
since by Fermat's principle the true travel time represents a 
stationary value, the change due to moving to the displaced straight 
line path can differ only be second order quantities. 

294 



We therefore express c in terms of its deviation from the mean - - 1 JZ value over depth c, where c = Z c dz and write 

c = c[ 1 + e: (z) J , where for real profiles 

e:(z) « 1 [Eq. 6J 

It is also convenient to replace the Snell's law constant p by 
an angle e, defined by the equation 

cos e/c = p [Eq. 7J 

Since -c is a value which actually occurs on the sound speed 
profile, e is a real angle for any real ray. 

The mean of e: over z is clearly zero, and we may define higher 
moments by such equations as 

1 Z 
= - J e: 2 dz Z 0 

[Eq. 8 J 

On making the appropriate substitutions in Eqs. 4 and 5, we obtain 

x/z cot 8 0 
cot e 

z 
1 f z (1 + e:) [1 - cot2 e (2 8 + 8 2 ) J -2" dz 

' 0 [Eq. 9J 

t = (cosec e / e) J Z (1 + e: ) -1 [1 - cot2 '8 (2 e: + e; 2 ) J -! dz . 
o [Eq.lOJ 

Equations 9 and 10 may now be expanded as binomial series in e:, 
the results being 

cot 80 

ct/ z 

= [Eq.llJ 

= cosec e [1 +? (1 - ! cot2 8' + 3/2 cot4 a) + 0 (83 )J 
[Eq.12J 

the first-order terms vanishing identically. 

If we retain only terms to the second order, Eqs. 11 and 12 are very 
easy to invert or otherwise manipulate, with the following results 
(noting that D = Z cosec 80 ) : 
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[Eq. l3J 

[Eq. l4J 

and the inv erse of Eq. 14 

[Eq. l5J 

Thes e equations clearly give a very simple answer to the problems 
cited in the introduction. They are easy to compute, and require 
c omputer storage for only two environmental parameters, c and~, 

both of which are easily computed once for all for any given sound 
s p eed profile. 

ACCURACY 

Equations 13 to 15 are approximations ln which terms in "€3 and 
higher moments have been ignored, and it is obviously necessary to 
determine the errors introduced (and indeed even to decide if the 
s e ries is convergent). 

Thi s probl em has been solv ed as follows. Considering all possible 
s ound s peed profiles for which c and ~ are specified, and for 
given val u es of X and Z, for which of these profiles will the 
values of p or of t given by Eqs. 2, 4 and 5 have extremal 
valu e s? This is a variational problem, which can be handled by the 
technique of using Lagrangian multipliers for the equations of 
c ondition. The result, for both p and t, is that extremal values 
wi ll be attained when c{z) is a function of (z) which can take 
only two discrete values, i.e., when the sound speed profile is that 
of a two-layered environment. 

This, however, is not sufficient to determine a true maximum, since 
the two - layer profile is specified by only two conditions, but has 
three degrees of freedom. It is necessary to find a third constraint, 
and an obvious one is given by the observation that any real profile 
has bounded values of c, that is, that it has a maximum and a 
minimum value for sound speed. It can now be shown that the extremal 
v alues in this situation will be given when one of the layers is 
a llocated either the greatest or the least value of c, denoted by 
c and c. [Fig. 3J. max mln 
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From these extreme profiles it can be shown that the series expansion 

is absolutely convergent, and that the values of cos e and D lie 

within the bounds given by the following expression: 

D = c t [1 +!- 7 \ (c2 e / Z2 ) - 3 \ (1 + Y 2 ) ] 

c = c(l+a) max c. = c (1 - b) mln 

It is clear from these expression that the error is greatest at the 

maximum range, and falls off roughly as the fourth power of range. 

If we make some simplifying assumptions (basically that gradients are 
never very large, so that the sound speed profile moves relatively 
smoothly between its extremes), it can be shown that, to a reasonable 
degree of accuracy, the error at maximum range is approximately equal 
to the correction introduced by adding the term in €2 for the 
Snell's law constant cose, and is half the corresponding correction 

for the slant range determination. 

ILLUSTRATIONS 

To demonstrate the sort of accuracy that the approximations can give, 
a comparison has been made between the results of an exact computa-
tion, using a digital computer, and the approximations given above, 

for two profiles (chosen basically to ease the digital computer's 

task ~ ) 

Figure 4 outlines the profiles used. That marked 'typical' has 

parameters not unlike those found in the real ocean; the 'extreme' 
profile was designed to have wide limits (a 10% variation in sound 
speed) and incorporates a marked inversion layer. 
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Figures 5 and 6 illustrate the results for travel time. The computed 
slant range errors are shown for 

a . the very simple formula D = ct and 

b. the second-order expression [Eq. 15J. The computer 
upper and lower bounds are also shown. It will be seen that, with 
the second order correction terms the error is at most 9m in 28.9 _km 
for the 'typical profile, and is only 23 m in 19.3 km for the 'extreme' 
profile. 

A similar analysis was carried out to compute the error ln initial 
grazing angle as deduced from the Snell's law parameter cos e. A 
summary of the results is given in the following table. 

TABLE 1 

ERRORS IN GRAZING ANGLE 

Profile Range True Grazing Error in Maximum Error 
(km) Angle Angle Bounds 

(deg) (deg) (deg) 

15 15 0.01 ±0.05 
20 8 0.1 ±0,17 

'Typical' 24.5 4 0.27 ±0.4 
29.3 0 0.74 ±0.87 

10 17·5 0.01 ±O .15 
15 7 0.1 ±0.8 

, Extreme' 16.5 4 0.17 ±1.2 
18.7 0 0.29 ±1.9 

It will be noted that the errors in grazing angle are larger for 
the 'typical' profile than for the 'extreme'; this is because the 
horizontal ranges with the 'typical' profile are much greater than 
for the 'extreme', and the strong range dependence outweighs the 
smaller variation in the sound speed. Even so, the errors are 
remarkably small over most of the range, and the accuracy everywhere 
is probably greater than is warranted by the reliability of the 
input data. 
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DISCUSSION OF RESULTS 

It is appar ent that for most purposes the errors introduced by the 
use of this approach are far smaller than the quality of the input 
data would justify, and the saving in computer size required is 
considerable. Furthermore it is clear that, because the sound speed 
enters only in the form of statistical averages it is easy to assess 
the precision to which individual measurements should be made. 
Again, from this analysis, it is evident that the effect of 
irregularities in the profile will not in general be of great 
importance; this is a deduction that would be difficult to make 
by conventional ray-tracing methods. 

At first sight the high accuracy of this very simple approximation 
seems surprising. The following argument gives an explanation for 
this result. In the integration over z for X and t (Eqs. 4 and 5) , 

" the order in which successive increments are added is immaterial, and 
the profile can be redrawn so that c is a monotonically increasing 
function of z (this is the same as forming a Lebesgue integral). 
The approximation then consists, in effect, of replacing this 
'regularised' profile by the constant gradient profile of best fit 
by least squares. The shape of the ray-path will be quite different, 
but the Snell's law constant and the travel time will be nearly 
unchanged. This argument also shows immediately why the two-layer 
profile gives the extreme bounds, since this is the one which is 
least well fitted by a single straight line. 

The method is clearly capable of extension. For example, if ln say, 
a side-scan sonar the launching grazing angle and the travel time are 
simultaneously recorded it is possible to estimate the height of a 
projection above the sea-bed (since in effect 8 and t are given) 
by suitable inversion of the equations. 
reported separately. 
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CONSIDERATIONS ON NUMERICAL AND EXPERIMENTAL PROPAGATION MODELS 
FOR TWO-DIMENSIONAL VARIATION OF MEDIUM PROPERTIES 

by 

W. Sluyterman van Langeweyde 
Forschungsanstalt der Bundeswehr fur Wasserschall und Geophysik 

Kiel, Germany 

ABSTRACT 

One of the problems the FWG is dealing with is the prediction of sound 
propagation loss in shallow water. A part of this problem is being 
treated by bringing measurements and numerical computation into 
relationship. 

First a formal description was given of the general problem and then 
the concept of a partial problem. Some sets and a function were 
defined: 

C the set of oceanographic conditions. 
E the set of acoustical excitations under water. 
p = C X E : the cartesian product of C and E, 

p=(c,e)eP with ceC and eeE 
called the set of channel conditions. 

A the set of acoustical fields under water 

so that 

f P ... A : A function of the set P into the set A, 
so that a = f (p) for a e A, p € P 

The main problem, the prediction of a e A was divided into two 
subproblems: 

(1) Subproblem: Prediction of peP 
(2) Subproblem: To find f for all peP 

The paper was confined to the treatment of subproblem two. 
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The methods used to approach the problem, relevant to propagation loss 
in shallow water, are: 

(1) Simultaneous measurements of oceanographic and 
acoustical data in special areas of the North Sea and the Baltic. 

(2) Acoustical measurement in a model basin with definite 
physical conditions as far as possible. 

(3) Numerical model computations on a digital computer. 

These three methods have to be related to each other. 
sets and functions are written CI, EI, pI, AI and fl 

The corresponding 
for method two 

and C ", E" , pll, A" and fll for method three. 

Taking measurements according to method one, finite subsets of C,E,A 
are found, which are marked by a bar. 

E =\C . \i€I1 CC 
1 

E = \ejlj€J1CE 
I,J,K . sets . 

I Subscripts ! p = \ Pk I k € K ICC X E =! ( C i' e j ) \ i € I, j€Jlcp I 

A = \ ak\k € K\ c A J 
-

The function thus found, f: p .... A is a restriction of f, so that 
f = f for p € P • 

The next aim is to define a numerical model with an input set pll 
equivalent to P, an algorithm fll so that the output set A" is 
equivalent and comparable to A. 

The numerical model (pll, fll, A") will be called an isomorph image 
onto the triple (p, f, X) with the isomorphism (h1 ,h2 ), so that 
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\ .. 
" 

hl p bij .. pH is a bi j ective func tion P onto P 

h 2 A bij-1O Ali is a bijec tive func tion A onto All and 

[ Remark ; g :X 
b O 

° -21. ... ___ y < ) 
y = g(x) for all y € Y, x € X and 
g (Xl) = g ( X2 ) =-~ Xl = X:;> ] 

P € P 

P hl 
-~ fi ll 

f 1 1 I'll ~ A All 

The final goal is to extend this ibomorphism onto whole sets P 

and A to come from p to A, without knowing f , via hl , fll 

and h2 
-1 (reverse function h 2 ) ; however, order to keep ln 

the problem tractable, the sets h a ve to be d ecompos e d into 

further cartesian factors, and these factor sets have t o b e 

reduced by classifications and by means of statistical descriptions· 

By a simple concrete example of 6 series of model basin measure· 
ments the decomposition of the set P ' was demonstrated to the 
point that the internal structure of the first function fil ' of the 
aspired isomorphism could be seen and the channel conditions 
described . 

In a few words, the ray tracing program used and the represent a -
tion of the function £11 was described. The program traces rays 

ln a plane, which is given the range-depth coordinates. A 

variability of sound velocity in both directions is taken into 
account in a manner that this plane is divided into triangles 
with constant sound velocity gradients with vertical and horizontal 
components. 
circle arc s. 

This causes the rays to be triang le-wi s e part s of 
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The equation 

v(x,z) 

with x, z c c 

= ~ (x-x) + 2 v (z-z) ax c az c 

as centr e c o o r din a t es of the ray curvatures, is 

generally valid for two dimensional variability sound velocity. 
For v = ax+~Z-i- y , 

to circles. 
x c and z c are constant, which leads 

For the surface and bottom reflections exits for subroutines are 
provided which compute for instance random variable reflection 
angles at surface or reflection factors for stratified bottoms, 

subroutines which are being developed at this time. 

Several subroutines compute coordinates, travel time and distance 
of rays. Calcomp ray plots can be drawn. The intensity is 

computed such that each ray is given a starting intensity according 
to the directional diagram of the source. This intensity is being 
reduced stepwise by medium and bottom bounces. A number of rays, 
of the order of 2000, are being traced in that manner and their 

intensity parts are accumulated at given distances and depth 
classes incoherently. 

After having decomposed the input set pll in an analogous manner 
as pI the internal structure of the first function hi was 
demonstrated. The second function 
describing the sets XI and A" 

hI was defined after 2 

averaging the intensities to 
sound level distributions with depth and total propagation losses. 

The results of the four series which differed most were demonstrated 
by slides. 

The influence of the internal waves present at condition 4 brought 
in the experiment a double value of total propagation loss ln dB 
compared with the loss at the stationary profile, whereas for the 
computed propagation loss a rise of 10% occurred. The stationary 
profile was of nearly constant gradient with a sound velocity of 

1487 ml s at the surface and of 1606 ml s at the bottom. Probably 

the still unknown directional diagram of the source and reflection 
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behaviour of the bottom in the exp e rimen t is responsible f or 
this disagreement . The se p r oper t i es will be measured s oon 
and put into the program. 

With this simple example the formal concept was just demonstrated . 
But a concept of that kind will really be helpful in explaining, 
handling and controlling the problem, when large numbers of 
oceanographic parameters are to be taken into account . 
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APPLICATION OF RAY TRACING WITH HORIZONTAL GRADIENT 

TO MONOSTATIC BOUNDARY REVERBERATION 

ABSTRACT 

by 

L.B. Palmer 
Naval Research Laboratory 
Washington, D.C., U.S. 

Presented is the current work being done at the Naval Research 
Laboratory (NRL) on the development of a series of computer 
programs to predict long range, low frequency, monostatic boundary 
reverberation. The emphasis is on the ray tracing technique and its 
application to the special problems of estimating the transmission 
loss of rays that hit the boundaries of the medium. The ray 
tracing technique is to increment a ray from point to point along 
its ray path by evaluating Taylor series expansions in arc length 
of various ray parameters such as range, depth, travel time, 
and range angle, which are based on the ray equation. Possible 
horizontal variations in sound speed are accounted for by allowing 
multiple input profiles. Also, a linearly segmented ocean bottom 
and a flat surface are assumed. Monostatic boundary reverber.ation 
1S estimated by means of a range dependent formulation developed 
at NRL. An underlying assumption of this formulation is that when a 
ray encounters a boundary, it continues to propagate in the 
direction of specular reflection, while a small amount of the 
incident radiation is scattered in all directions. By reciprocity, 
scattered energy will return to the source-receiver back along 
those ray paths emitting from the source and passing through the 
boundary point at which the hit occurred. 

307 



INTRODUCTION 

The purpose of this talk is to present the current work being done 

at the NRL on the development of a series of computer programs to 
predict long range, low-frequency monostatic boundary reverberation. 
The emphasis will be on the ray tracing technique and its application 
to the special problems of estimating the transmission loss of 
rays that hit the boundaries of the medium, especially the bottom. 

The tracing of rays utilizes an iterative technique first described 
in Hudson Laboratory Report 150 by W.A. Hardy et al in 1968. 
This ray tracing model accounts for the possibility of a horizontal 
sound speed gradient by allowing for multiple input profiles, and 
assumes a linearly segmented ocean bottom. This model has been 
programmed in FORTRAN by J.J . Cornyn of NRL as part of a series of 
ray tracing and transmission loss programs. The ray tracing model 
has since been extracted from this series of programs, modified, 
and then adapted to the purpose of calculating monostatic boundary 
reverberation. Also, computer programs have been written which 
organize the ray tracing results and estimate reverberation by means 
of a formulation developed by J.T. Warfield of NRL. 

I. ORGANIZATION OF PROGRAMS 

The operation of the series of programs proceeds in four basic 
stages [Fig. lJ. First, since the modelling of the velocity field 
is a problem unto itself because of the possible presence of 
horizontal variations in sound speeds, it is tackled separately. 
Therefore, first a magnetic tape is generated on which is written 
the multiple profiles located at discrete ranges along the track of 
interest. Each profile consists of the sound speed and its first 
two derivatives with respect to depth, specified at discrete depths 
and the ocean bottom as discrete depth versus range points. 
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This tape serves as input to the ray tracing program. This program 

employs the iterative ray tracing technique to determine all 
boundary hits for the rays of interest. These points as well as 
the associated travel times, ray angles at the boundary, and 
transmission losses are written onto an output tape. An initial 

ray trace may not furnish enough information to adequately describe 
where the boundary hits occur. If this is the case, additional 
rays will be traced and additional ray tracing output tapes 
created. 

The next computer program uses as input the output tapes from one 
or more ray traces and reorganizes this information onto another 
magnetic tape. By reorganizing is meant the creation of "order 
contours", which will be discussed in a moment. This reorganizing 
procedure is done separately, due to computer storage requirements 
and for the convenience of handling multiple ray traces. 

Finally, the reorganized tape of ray tracing information is the input 
to reverberation calculating program, which computes the boundary 
reverberation function at discrete times. 

II. REVERBERATION FORMULA 

Before proceeding to a description of the ray tracing model, I would 
like to briefly outline the model used for predicting monostatic 
boundary reverberation. 

Equation I is the formula used for determining the reverberation 
from a boundary which is detected at the source-receiver at time t. 

R ( t) = I 1 ~ I 0) [6 6 C J x) (t)' I (p , r, x, z) J xdx 
o p 8m ( x) r 8m ( x) p r 

[Eq. IJ 

II is the source level relative to 1 yd and the remaining 
expression represents an integration over the three-dimensional 
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boundary, assuming separable source-receiver beam patterns and an 
azimuthal symmetry of the boundary . 

An underlying assumption in the development of the reverberation 

formula, is that when a ray e ncounters a boundary, it continues to 
propagate in the direction of specular reflection, while a small 
amount of the incident radiation is scattered in all directions. 
By reciprocity, scattered energy will return to the source-receiver 
back along those ray paths emitting from the source and passing 
through the boundary point at which the hit occurred. 

Consider now, the expression within the brackets, which is 
evaluated at each range x. The set m(x} is a set indexing all 
possible ray paths from the source-receiver which pass through the 
boundary at range x . A single term of the double sum represents 
the contribution to reverberation from energy travelling from the 
source to the boundary point (x, z) along path p and returning 
along path r [see Fig. 2 J • 

C is a characteristic function which is equal to one if the 
reverberation contribution I, attributed to the ordered ray pair, 
(p,r), will be detected at the source-receiver at time t, and 
zero otherwise . The times of detection will be those times t 
satisfying the inequality of Eq . 2. 

t-D::;'T (x ,z ) +T (x,z) S t . p r [Eq. 2J 

D is the signal duration and T is the one-way travel time for a 
signal travelling to the boundary at range x, along the path 
denoted in the subscript. 

The contribution, if detected, is given by Eq. 3. 

I(p,r,x,z) 
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Band B are the t r ansmitting and receiving beam patterns respectively, 
and the L'S are the transmission losses suffered by travelling along 
the respective paths and a is the boundary scattering strength. 

III. ORDER CONTOURS 

In order to get a visual picture as to how the possible paths between 
the source-receiver and the boundary at range x are found, an 
explanation of order contours is necessary . For a fixed ray R 
such as shown in Fig. 3, each boundary hit and turning point 
(both of which are called occurrences) is assigned a positive 
integer order. Surface hits and down turning points (called crests) 
are defined to be of odd order, while bottom hits and up turning 
points (called valleys) are of even order. The first bottom hit, 
or valley, for the fixed ray R is assigned an order of 2. 
Subsequent bottom hits and valleys are assigned 4, 6, 8 and so on. 
Surface hits and crests are assigned orders of 1, 3, 5, etc., in 
such a manner that the orders of the occurrences of the ray R 
increase with range. 

Now consider the contours of curves determined by the boundary 
hits of identical order, plotted on an initial source angle versus 
range coordinate system, as shown in Fig. 4. Incidentally, a 
given contour need not necessarily be a continuous curve, but 
rather several continuous and disjoint segments. 

For the reverberation from a given boundary, only those contours 
corresponding to that boundary are pertinent. For the purpose of 
illustration, let us assume that bottom reverberation is being sought. 
To determine all ray paths between the source-receiver and the 
bottom at range x, consider a horizontal slice at range x, as 
shown in Fig. 5. Denote the three paths having initial angles 
of 91, 92, 9 3 by 1, 2, 3 respectively. Then the set m(x) consists 
of the integers 1, 2, and 3, and hence there are 3 2

, or 9 possible 
routes from the source-receiver to the bottom at range x and 
back again. 
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In reality, the computer ray tracing program will produce only a 
finite number of bottom hits, or, ln other words, a finite number 
of points on the order contours. Figure 6 illustrates two order 
contours of the type produced by the computer program. Here the 

BT's represent the bottom hits and the V's the valleys determined 

by tracing rays with initial source angles of 8, 9b , e , etc. a c 
The true order contours are approximated by linearly connecting 
the known bottom hits of the same order. Travel time, transmission 
loss, and ray hit angle values between computed hits are found in 
interpolating linearly with respect to range. The valley type 
turning points are displayed to indicate the end points of the 
contours. 

IV. RAY TRACING PROGRAM 

The purpose of the ray tracing then, is to determine the boundary 
hits and the transmission loss, travel time, and ray hit angle for 
each hit. The rays traced should be those rays which hit the 
boundary and are not masked out by the source beam pattern. Also, 
the resulting boundary hits should approximate the true order 
contours as accurately as possible. In the search for a ray 
tracing model, it was felt that such a model should allow for 
multiple nontrivial sound speed profiles and an irregular bottom 
contour. Such a model was developed at the Hudson Laboratories at 
Columbia University of New York. This ray tracing technique is an 
iterative one in which a ray is incremented from point to point 
along its ray path. This is accomplished by means of evaluating 
Taylor series expansions in arc length of various ray parameters 
such as range, depth, travel time, and ray angle. 
are derived from the ray equation shown as Eq. 4, 

-+ d 1 dP 
cis [v(x,z)' ds] 

1 grad [( ) ] v X,z 
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The sound speed, v(x,z), 1S assumed to be known at every range x, 
and depth z, throughout the two-dimensional medium, and ds 1S 

a differential increment along the ray path, P. 

The present version of this ray tracing model has the following 
features: 

1. Accommodates multiple profiles for possible 
horizontal variations in sound speed. 

2. Each profile is defined at discrete depths with 
weighted parabolic interpolation used between 
specified depths. 

3. Assumes a linearly segmented ocean bottom and flat 
surface, with specular reflection applied to both. 

4. Uses incremental finite Taylor series approximations 
to ray paths. 

5. Transmission loss, ray angle, and travel time computed 
at boundary hits as opposed to predetermined ranges. 

6. Each ray assigned two subliminal companion rays for 
computing the amount of geometric spreading. 

7. Multiple bottom loss tables are applied to various range 
intervals. 

8. Individual rays are terminated upon exceeding input 
maximum allowable travel time or bottom loss ceilings. 

9. Up to 500 rays may be traced, not including companion 
rays. 

Operationally, rays are selected whose initial source angles are 
from that part of the source beam pattern which will experience 
bottom hits. To each of these "primary" rays, is assigned two 
"companion" rays whose initial source angles tightly bracket that 
of the primary ray_ The rays are then traced through the medium 
which is described by the multiple profiles, linearly segmented 
bottom and flat surface. They are traced on an individual basis 
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between predetermined "rectification " ranges. After all the rays are 
traced to one of these ranges, which necessarily include the ranges 
at which the p rofiles are specified, the accumulated boundary hit 
and turning point information is written onto a magnetic tape. 
A computer storage area is then re initia1ized and the ray tracing 
continued to the n ext rectification range or until some predetermined 
maximum range 1S reached . However, individual primary rays will 
be terminated prematurely if they excee d input travel time or 
bottom loss ceilings . For each boundary hit by a primary ray, SlX 

statistics are recorded . 

1. Initial angle of ray . 
2. Order of hit. 
3. Range of hit. 
4. Travel time . 
5. Ray angle relative to the boundary. 
6. Transmission loss . 

For the problem to which the pre sent model is applied, transmission 
loss is assumed to be made up entirely of bottom loss and geometric 
spreading loss . Bottom loss is input to the ray tracing program as 
several bottom loss versus incident angle tables which are applied 
to different range intervals, and geometric spreading loss is assumed 
to be given by Eq. 5. 

1 
L 

2 a cos eQ 

x cos e 
a 2 d( sin 9 0 ) 

x cos 8 x x 

where 

a unit di stance 
x range of boundary hit 
z depth of boundary hit 
80 initial source angle of ray 
8 ray angle at boundary hit x 
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The companion rays [see Fig. 7J are used to calculate the factor dz, 
by determining their respective depths and directions at the range 
where the primary ray hits the boundary. The companion ray which 
has not yet hit the boundary in this region and is still being 
directed towards it, is used to determine dz. After a primary 

ray has been specularly reflected off the bottom, the amount of 

bottom loss will be added to the ray's accumulated bottom loss. 

V. RAY TRACING TECHNIQUE 

Now let us look at the ray tracing technique itself. When a ray's 
location, as well as its ray angle and travel time to that point, 
are known, the sound speed and its spatial derivatives at that 
position are used to determine the ray's location and associated 
parameters at a point further along the ray path. A single profile 
could be employed throughout the track, but often, actually 
encountered velocity fields require the specification of 
different profiles along the track of interest. Each sound speed 
profile is specified at discrete depths and the first two derivatives 
of sound speed with respect to depth are approximated at the given 
depths by means of weighted difference equations. Weighted 
parabolic interpolation is applied vertically and linear 
interpolation horizontally to make sound speed and its first two 
depth derivatives functions of both range and depth. Therefore, 
the first derivative of sound speed with respect to range can be 
approximated at any range and depth by a linear first difference with 
respect to range. With the use of this horizontal gradient in 
the Taylor series expansions, it is hoped to reckon with the effects 
on ray paths due to horizontal variations ln sound speed. 

Once the sound speed, its first two derivatives with respect to 
depth, and its first derivative with respect to range are 
determined for a known location on the ray path, various convergence 
tests are performed to determine how far to increment the ray path 
location, and associated parameters, by evaluating the Taylor 
series expansions. Normally, an input incremental step size, 6max ' 
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will be used in evaluating the Taylor series expansions. However, 
if certain convergence tests fail, the step size will be 
appropriately reduced. One of these tests require that the ray 
path does not experience more than some predetermined maximum 
amount of bending between computed ray locations. By "bending" 
is meant the change in the trigonometric sine of the ray angle. 
Another test requires that the chosen step size be used to 
predict the sound speed at the new ray location within a 
predetermined accuracy of the "true" sound speed at that point. 
By the "true" sound speed at a point is meant that value found 
by interpolating between input profiles. Regardless of these 
tests, the step size is never allowed to become smaller than some 
predetermined minimum allowable step size. This is done to expedite 
the incrementing of the ray path. Therefore, first the initial 
maximum step size, 6 ,is used to determine a trial sine, max 
given in Eq. 6. 

The sound speed derivatives Z, D and G, 

Z = ov/ oz 

D o 2V/OZ 2 

G ov/ox 

are all evaluated at the known ray path location, (xo,zo). 
step size, A', is then determined from Eq. 7. 

6 jlsin s 
8t - sin 9 0 I 

6. max 

6' = min 
S va 

6 max 
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where S 1S an input maximum 
Next, using the new step 6,' , 

allowable change in sine, say 0.02. 

a new location (xt ' Zt)' is found 
further along the ray path by evaluating their Taylor series 
expansions, 

By interpolation between two known profiles, a sound speed v t 
1S determined for this location. Then a computed sound speed, 
is found for this location using the Taylor series expansion of 
Eq. 8. 

v , c 

[Eq . 8 J 

If the computed and interpolation sound speeds differ by more than 

an input accuracy criterion, 8, then a new step size is found from 
Eq. 9. 

__ 8 __ •
6

, 

" 6, = min [Eq. 9J 

6.' 

The step size will be further reduced to a predetermined minimum 
allowable step size 6. if the cosine of the predicted ray m1n 
angle 8t is greater than one, where the cosine is found from 
Eq. 10. 

and where c is found by evaluating a Taylor series in arc 
length. 

[Eq. 10J 

The final step size is never allowed to be less than 6.min ' except 
in such cases as approaching a boundary or a known profile 
location. Once the final step size is determined, a new ray path 
location and corresponding ray parameters are found by evaluating 
the different series for this step size. The process is then 
repeated with the new location being taken as the known ray path 

location. 

317 



Although 6. and 6.. max mln are inputs to the program, they may be 
redefined as a ray is traced . If an increase results, 6. . mln will 
be taken to be the vertical distance between the known ray depth 
and the nearest de pth, in the di rection the ray is headed, at which 
a sound speed is specified in the input profiles . 6. will be max 
reduced appropriately, if a straight line projection of the ray 
direction, of length 6.maxJ passes outside the medium. Also, when 
a ray location is determined which is within about 100 m of a 
boundary, the input 6.. will be used as the iterative step size, mln 
without the various tests being conducted. 

The boundaries , themselves, are assigned tolerance gates of some 
vertical distance, such as a half a meter, within which a ray is 
considered as having struck that boundary. In some cases, 
interpolation will be employed between computed ray path locations 
within and without the medium in order to determine the step 
size necessary to increment the r ay to the boundary. 

The described ray tracing technique represents an adaptation of t~e 
original version to the computation of transmission loss at 
boundary hits as opposed to predetermined receiver ranges. 

CONCLUSIONS 

After the reverberation and ray tracing models were programmed, 
two test cases were run to check the validity of the programs. Both 
test cases involved the use of a single profile, one case being a 
constant sound speed profile, the other a constant gradient profile. 
The computer results for these two test cases compared quite well 
with the corresponding analytic solutions. The ray tracing technique 
itself, has been verified for a multitude of cases. 

Next, the programs were run on a case for which measured reverberation 
data existed. This case entailed a track of fairly long range over 
a relatively rough, upward sloping bottom. The low-frequency signal 
duration was about 30 s, with the source beam pattern dominated 
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by the main lobe . Input boundary scatter ing strength tables were 
based on data appear ing in the literatur e, as were the bottom depth 
and bottom loss tables. 

A comparison of the p r edicte d bottom reverberation versus the total 
measured reverberation is shown in Fig . 8. For this low frequency 
study, surface reverberation is assumed to be doppler shifted. 
The vertical, or reverberation, axis has a scaling of 10 dB between 
the indicated tick marks. The relative level of the two curves 
do not agree as well as had been hoped, but the appearance of the 
peaks at the recorded times seem to correspond fairly well. The 
peaks of the predicted curve correspond to the main beam of the 
source striking the bottom. However, the relative level of these 
peaks are largely determined by a small angular span of rays whose 
initial source angles usually vary by less than 1°. These so-called 
"crucial" rays are those rays which experience both valley type 
turning points and bottom hits with very low grazing angles as they 
propagate down range . Some of these rays will be completely RSR 
until an initial bottom hit occurs far down range, at which point 
the intensity of the given r ay will dominate those of other rays 
hitting the bottom nearby which will have accumulated bottom loss 
by that range. These "crucial " rays will also tend to encounter 
the bottom at very low grazing angles where the bottom loss tables 
are the most questionable. Another problem is the occasional 
focusing of the "crucial" rays near the bottom . That is, they are 
sometimes in near-caustic regions as they approach the ocean bottom. 
Because of the so-called "crucial " rays, the predicted bottom 
reverberation curve is sensitive to slight changes in bottom depth 
definition, as was discovered when different approximations to 
the ocean bottom were used. 

The linear segmentation of the bottom is also a problem area. The 
abrupt changes in slope between linear segments tend to artificially 
break up the wavefronts. This shows up as radically jagged sections 
in the order contours, which tends to weaken one's belief in the 
computer approximation of the contours and the validity of the 
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interpolation perf ormed b e tween computed bottom hits. Finally, 
averaging over reverberation estimates for s everal different 
headings did not significantly improve the results . 

Despite these apparent problem areas the main difficulty seems to 
be in predicting the level of the reverberation curves. Work is 
continuing on this problem and the extension to the bistatic case. 

Investigation is underway at NRL to approximate ray intensities 
in near caustic regions and to more efficiently model the ocean 
bottom. Also, the ray tracing program is being modified to 
improve the iterative procedure and the spreading loss estimation. 

DISCUSSION 

The author said that the rough-surface reflection coefficient was 
an empirical function of the angles o f incidence and reflection. 
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ABSTRACT 

ACOUSTIC PROPAGATION MODELS AS VIEWED BY THE 
SONAR SYSTEMS DESIGNER 

by 

J.L. Reeves 

Naval Ship Systems Command 
Washington, D.C., U.S. 

The purpose of this paper is to consider the efforts performed in 
the development of ray acoustic propagation analyses from the view-
point of advanced sonar system design. In particular, those 
parameters required of such analyses for the enhancement of sonar 
system design and performance are identified and elaborated upon. 
A simple ray acoustic shallow water propagation model is used as a 
vehicle for identifying and relating to a number of areas in which 
propagation results may be utilized to significantly improve 
operational sonar system effectiveness. In the development of these 
examples, the spatial distribution of the acoustic energy together 
with fluctuations in the received signal energy receive prime 
consideration. Expanding upon this simple basis, a sonar design 
concept is developed by analytically incorporating propagation 
features that can be provided by suitable models. 

The orientation of my discussion today is somewhat different from 
those that have been presented so far in this conference. I intend 
to talk not as an underwater acoustician actively involved in 
propagation analysis and the development of ray trace programs. 
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Rather, from my view point as an engineer faced with the problem of 

developing sonar systems to operate with maximum efficiency in the 
ocean medium, I wish to present some of my requirements for 
information on propagation phenome na , 

My reasons for attempting such a presentation are to outline to 
representatives of the propagation community those aspects of 
propagation which bear directly on design decisions, and to 

indicate why simple measures of the energy lost by a signal 
propagating through the sea are not in themselves sufficient 
inputs to the sonar design process . In doing this, I hope to 
indicate to you some specific design-related parameters which 
characterize propagation phenomena and about which relatively 
little information exists. Specifically, it is my objective to 
illustrate why the spatial and temporal behaviour imposed on signals 
by the medium present inputs to the sonar design process equal in 
importance to a knowledge of the propagation loss between two points. 
I hope that this overview will encourage studies in which attention 
is focused on developing more information about the mechanisms 
governing these spatial and temporal characteristics which currently 
are often "washed out" or ignored in analyses directed at developing 
numbers to characterize average propagation loss . 

The general points I wish to consider are outlined in Fig. 1. The 
usual goals of a programme to develop propagation models, using either 
ray tracing techniques or 

namely: 
normal mode analysis, are twofold, 

1. To delineate, on the basis of velocity profiles and 
other environmental data, the dominant paths via which 
acoustic signals propagate from source to receiver. 

2. To develop a means for e st imating the average acoustic 

power lost by a signal as it propagates between two points. 
The loss mechanisms involve accounting for geometrical 
spreading of the wavefront, reflection/scattering, and 
absorption effects within t he medium or at its boundaries. 
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Once these goals are accomplished, the sonar designer can readily 
estimate: 

1. The average value of the signal present at his array; and 

2. The depths at which he can expect high and low levels 
of signal power. 

In general, however, a comprehensive sonar design process requires 
more detailed knowledge concerning the influences of the medium 
upon the signal. Specifically, the designer would like to have 
at his finger tips: 

1. The spatial distribution of the signal arrivals at 
the array . 

2. The statistics of both spatial and temporal fluctuations 
imposed on the signal by the medium; and 

3. In the case of short term (transient or pulse) signals, 
the "impulse response" of the medium; i.e., a measure of 
the time and frequency dispersion imposed on the 
original signal. 

For the remainder of this paper, I intend to focus on the three 
areas listed above, and illustrate, by some simple examples, how 
knowledge of these phenomena may be incorporated into the sonar 
design process. In particular, I wish to concentrate on the active 
sonar problem since this area is most urgently in need of more 
sophisticated techniques. 

As a starting point, I would like to consider a simple example to 
illustrate how a knowledge of the spatial distribution of signal 
arrivals can impact on the design of a sonar array. The specific 
case of interest here is one where the impact is greatest, namely, 
a vertical array for use in a shallow water environment. As used 
here, the term shallow water implies those instances where propagation 
takes place over ranges very large relative to water depth, and 
where the water depth itself is large compared with the wavelength 
of the signal being propagated. 
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In such instances (particularly when ranges are such that little 
energy arrives via a direct path), the signal arrives via multiple 
surf ace and bottom reflections. These multiple arri va].s imply 
that the dominant signal energy is distributed over a range of 
arrival angles rather than being concentrated at a single angle. 
If this range of angles is known, then the array can be designed 
to spatial1.y "match " this angular window, and thus insure that 
maximum signal powe r is captured by the array. 

This can easily be illustrated by use of a very simple ray trace 
model, which describes the gross features of propagation in a 
shallow water environment. This model is similar to the one 
devised by McPherson and Daintith [ Ref. lJ, and elaborated on 
by Smith [Ref. 2J. The salient features of this model (which is 
based on averaging over ray cycles) are shown in Fig. 2. 

The details of the model on which the results to be presented are 
based can be found in the references. Basically, it treats the 
large number of rays involved in transporting energy from source 
to receiver as a statistical ensemble . The major features of the 
propagation mechanisms are preserved, but by use of spatial and 
temporal averaging over the ranges and depths involved, fine 
details (i . e., Lloyd1s mirror interference phenomena) are smoothed 
out. Howeve r, the fundamental postulates and assumptions which 
guide the analysis are indicated in the figure. 

The postulates are self explanatory; the assumptions are found to 
be reasonable within the objectives of the analysis, namely, a gross 
prediction of the propagation loss which preserves the basic 
sensitivity of the result to the dominant environmental parameters. 
These are: 

1. Water depth . 
2. Sound speed profile. 
3. Surface loss. 
4. Bottom loss. 
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Although sound velocity profiles are seldom observed to have equal 

velocity at all depths, the isovelocity model often predicts 
results close to t hose observed experimentally in shallow water. 
The most significant departure from isovelocity behaviour occurs 
for strong surface ducts and severe upward or downward refraction. 
The model can, however, be readily extended to include these cases. 

The geometry for a simple isovelocity situation is shown in 
Fig. 3, along with the results of the analysis. 

In the isovelocity case S, the loss per cycle from boundary 
reflection f o r a ray with initial angl e e , is found to be 

b s e + bb 8 = b( 8 ) (sin 8 = 8, cos8=1) 

where 

b = b s + bb 

The results of Smith1s anal ysis [ Ref. 2J show that the ray cycle 
method gives the following value of transmission ratio T(r) 
under t.he isoveloci ty assumption. (The transmission ratio is 
the ratio of the intensity at range r to that at 1 yd) and is 
given by : 

r (r) = 2 
rD 

rb 82 

_E!.yr J 8f - 2D e e 

o 

The expression in the figure contains twice the integral from 0 
(horizontal) to a limiting angle 8f. For the symmetrical 
situation, this is equivalent to including all rays from - 8f to 
+8fo Note that this integral is of the form of the area under a 
Gaussian (normal) curve. In their paper, McPherson and Daintith 
[ Ref. l J obtained a similar isoyelocity result by analysing the 
number of bounces, rather than working with ray cycles. They 
showed that the result is the same for the sloping bottom case if 
average depth is used for D. In addition, they derived equations 
that are quite similar to those shown here for propagation loss 
under negative gradient conditions. 
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The distribution of signal arrival angles as determined from the 

equation for the transmission ratio per radian is shown in Fig. 4. 

Note that in isovelocity water the receive d e nergy is normally 
distributed in arrival angle about a mean angle 9 = 0 with a 
standard deviation a that increases with increasing depth and 
decreases with increased range and bottom absorptivity. The upper 
limit of the integral for an omnidirectional receiver is n/2 

corresponding to the two cut-off points shown in the figure. 

The implications on array design are immediately evident. First, 
if one designs a vertical array to have a b eamwidth of 9B between 
say, the 6 dB down points, when steered to the maXlmum response 
axis, the choice of 9B should be dictated by the distribution of 
signal arrivals as shown in the figure. These, ln turn, depend 
upon the water depth, the range between source and receiver, and 
the combined bottom and surface losses. While the first two 
parameters are usually definable for the conditions over which an 
array must operate, the determination of the surface and bottom 
losses is not so easily made. However, it is interesting to note 
that sufficient information for the designer is obtained by 
developing estimates of average bottom and surface losses over the 
ocean area of interest. Thus, a useful effort would be to continue 
work aimed at developing estimates of average bottom and surface 
losses, parameterized in terms of controlling physical mechanisms 
(i.e., windspeed, etc.) in areas of interest to the sonar community. 

The preceding example results in conclusions which may seem somewhat 
obvious to people versed in propagation analysis. However, this 
simple example was intended mainly to illustrate the coupling which 
exists between the design process and a knowledge of medium effects; 
the two cannot be separated, nor can simple estimates of energy loss 
suffice. In this case, the spatial distribution of the energy 
arrivals impact on design choices; in turn, the design impacts on 
guiding the propagation analysis by delineating the environmental 
parameters of importance. 
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This analysis also points out the types of shallow water propagation 
models of use to the sonar designer . Essentially, he looks for a 
model which provide s maximum visibility of the physical parameters 
of the ocean environment which influence sonar performance. 
In this context, a simple approximate model, which can be rapidly 
executed may be favoured ove r an elaborate ray trace model which 
requires large computer facilities. At the same time, the designer 
is aware of the limitations of such simple approximate models. 

In the one employed here, for example, the use of incoherent 
energy addition of r ay paths precludes accounting for spatial 
phase cancellation effects among rays (e.g., the Lloyd's mirror 
effect). However, as long as the designer 1S aware of the model 
limitations, he can use various sub-models to investigate "fine 
structure" effects as required. Basically, this amounts to an 
iterative application of propagation models; i.e., begin with the 
simplest physical model available, and then expand the analysis 
through the use of sub-models as the design development dictates. 

Of even more relevance to the sonar designer are data concerning 
the characteristics of fluctuations imposed on the signal by the 
medium. Sound fluctuations in the ocean are observed for virtually 
every type of propagation; surface ducts, deep sound channels, sea 
surface or bottom reflected paths - to name a few. All of these 
propagation paths can be characterized by an observed mean value of 
propagation loss around which instantaneous values of transmitted 
energy are distributed . 

Too often, modelling efforts are focused on predicting the mean 
values, with little or no attention given to estimation of the 
fluctuating components. Yet, often the fluctuations are of primary 
interest to the sonar designer, in that they impact on his 
selection of processing times and his estimations of the spatial 
stability of the signal over the array aperture. Recent work, such 

as that of Nichols and Young [Ref . 3J, and Dyer [Ref. 4J have 
provided considerable information on the character and statistics of 
fluctuations; however, more extensive studies are needed if an 
adequate data base is to be established. 
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As an example of how such information may b e incorporate d into the 

s onar design pro c ess, conside r the p roblem of estimating the 

s p atial phase stability of a signal over the aperture of a sonar 
system. Here, it is impo r tant to understand that the degree to 
which a sonar ar r ay can imp rove signal- to - noise gain and provide 
d irectional information is directly relate d to the degree of 
stationarity of the phase of the signal wavefront over the array 
eleme nts . When the ar r ay is "steered" to the di rection from which 
the signal arrives , any " jitter " o r fluctuations in phase among 
ele ments of the array can cause a degradation in performance , in 

the sen se that t h e signal is not perfectly !l i n phase" at every 
eleme nt of the array . 

This can b e illustrated by consi dering the response of a simple 
two - element array t ·o a signal arriving from an angle, 8, as shown 
in Fig, 5. Th e two i dentical receivers each gen erat e an output 
voltage eo in response to the incoming wave . However , the 
difference in signal p ath length between the two receivers results 
in a spatial phase d ifference b etween their outputs. Referenced to 

the geometric center of the two-element array, the sum of the 
voltages from the two hydrophones is given as 

kd 2e 0 cos (2 sin 8) 2e 0 cos (w'T) 

where k = 2n 
A ' 

d = element s pacing . 

Since k = wi c, where w is the angula r fre quency and c the velocity 
of sound in the medium, the pha se term can b e written as 

cos (Wd sin 8) 
c 

d sin e 

cos WT 

where 'T = re p resents t he time delay b etween constant phase c 
(spatial) arrivals at each hydrophone . Note that when the signal 

arrives at an angle 8= 0 (i.e . b roadside), ther'e is zero time delay, 
and the output voltage of the array is a maximum; i . e. 2eo. Suppose, 
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however, that fluctuations ln the medium produce a fluctuation in 
the delay time, such that ,. ="0 + ,.(t); i.e. the delay is 
characterized by a mean value and a fluctuation about that mean. 
In this case, for a signal incident along maximum response 
axis (8=0), "0=0, but ,.(t) may be finite. 
the array in this case is given as 

The output of 

e T = 2ee cos[W,.(t)] 

where ,.(t) may be treated as a random variable. 

To develop an average response we are interested ln the expected 
value of cos[wr(t)]. This value is given as 

(cos[W,.(t)J > J"" 
p ( ,. ) co S Ul'T' d 'f 

where p(,.) is the probability distribution of the time delay 

fluctuation. If we assume that the values of ,.(t) 
distributed, and have a zero mean, then 

(cos[W1"(t)] > = __ 1 __ _ 
J 211 0 ,. 

d ,-

The result of the integration yielding 

(cos [ W1" (t ) ] > 

are Gaussianly 

Since we assumed the amplitudes of the arrivals to be constant, 
the expected value of the array output voltage is 

Note that as 0 ... 0, the array response is maximum. However, as ,. 
the magnitude of the fluctuations increase, as reflected in 
increasing values of 0 2 of the value of 1" 
2e o for "on-beam" arrivals. 
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Intuitively , one might expect t he magnitude of the phase fluctuations 

to increase in proportion to the separation between elements. Thus, 
one might assume 0

2 a d, i. e. 0
2 

= yd, where y is the constant 
'T 'i 

of proportionality. In this case, the expected output voltage 
of the ideal two-element array is given as 

w2 d 

(e T) 2e o e 
-y -2-

Note that the degradation in response increase as the frequency, 
as well as with increased element spacing. 

The result derived here, although for a simple, if not trivial, 
case is illustrative of how such fluctuation information can be used 
by the sonar designer. The analysis techniques can be readily 
extended both to include multi-element large arrays, and also to 
allow for fluctuations in the amplitude of signal arrivals. The 
main point here, however, is the indication of a need for better 
measurements of characteristic delay time fluctuations induced by 
the medium, and most importantly the development of propagation 
models that incorporate and predict these parameters. 

Up to this point, I have been stressing the parameters required of 
propagation models, in addition to signal attenuation, to produce 
a driving influence on the sonar design and advanced development 
process . All too often it seems that the signal processing people 
proceed independently of the environmental people with the result 
that the idealizations that appear to perform so well ln radar 
fail to reach expectations in the underwater medium. My message 
then is that although the question of the best mathematical fit 
to a sound velocity profile is important, the character of the 
outputs in both space and time that are obtained from a propagation 
model are of perhaps greater importance. 
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As a final example to illustrate this point, I wish to consider a 
problem in the active sonar area. In general, as the threat becomes 
more quiet, active sonar must greatly increase its capability to 
enable more likely detections to occur in a shorter time frame; 
thereby reducing the threat of counter detection and localization. 
To achieve this increase in capability in the face of reverberation 
it appears that more than just an increase in source level will be 
required. In particular, it seems reasonable that increased gains 
in signal processing must be obtained. These gains in turn can 
only result from increased knowledge of the environmental conditions 
and their effect on the transmitted signal. 

Proceeding from this point, let us conceptualize a hypothetical 
system that might be realizable in the not too distant future. 
Such a system is shown in block diagram form in Fig. 6. We 
hypothesize an advanced active sonar sub-system capable of 
transmitting and receiving sonar signals and displaying the processed 
results. In addition, we include an environmental measurement 
sub-system capable of providing real time environmental parameters 
including measurements of the sound velocity profile. Interfacing 
these two sub-systems, we envision a ray trace propagation sub-system 
providing on-site estimates of the signal propagation situation based 
on the environmental (and historical) inputs. The outputs of the 
propagation sub-system perhaps with an operator interface dictate 

the type of sonar transmission mode to be employed, e.g. bottom bounce, 
direct path, etc., for the mission to be performed and also the type 
of signal to be transmitted. In addition, the propagation sub-system 
also determines the type of receiver processing both spatial and 
temporal to be employed. 

To illustrate how these sub-systems might interact, let me consider 
another simple example, based on some of the propagation modelling 
that was alluded to earlier in the talk. We assume an environment 
as depicted in Fig. 7 which might be representative of some 
generalized area during the winter/early spring months where upward 
refraction is obtained just below the surface because of the lack 
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of surface heating. Under the assumption of isogradient conditions, 
one characteristic of the propagation behaviour is that of a d e ep 
surface duct as shown in the figure. If a SVP gradient of 0.025/s 
is assumed then at short ranges the limiting ray of the duct would 
reach a vertex of about 200 ft. The rays "trapped" within this 
limiting ray would be surface-reflected and their energy 
contribution would arrive after that of the limiting ray. The 
transmission angle of the limiting ray would be much less than 6° , 
implying that the surface reflected rays are all reflected at 
grazing angles less than this value . Since surface reflected 
paths will undergo very little scattering, at reasonable sea 
states the sea surface reflection may be considered essentially 
specular. Under these conditions, the surface-reflected rays will 
all arrive at essentially the same intensity as that of the 
non-reflected limiting ray. 

The travel time for the limiting ray is the smallest among the 
duct arrivals and c on s equently the energy travelling this path 
is the first to arrive from the duct. The energy travelling the 
remaining ducted paths will arrive in a non-uniform manner following 
that of the energy travelling the limiting or refracted-only ray_ 
The order of arrival follows the number of surface reflections. 
In other words, the energy travelling the one surface reflection path 
will be following by that travelling the two surface reflection paths, 
and so on. In terms of our system design, it is envisioned that 
this type of information would be automatically displayed by our 
hypothesized ray path computer. 

As an approximation for illustrating the method by which the receiver 
processing might be determined by the ray path computer, let us 
assume that the ducted multipaths arrive uniformly in time with an 
equal delay of 6 seconds between each path. If the arrivals are 
assumed of equal intensity the normalized received signal can be 
expressed as shown by the equation: 

set) 
I N 
N ~ cos(wt - 6i ) 

i=l 
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In this equation the effects of doppler scattering causing shifts 
in the received frequency are neglected . The energy envelope of 
the received signal can easily be expressed by noting that it is 
of the form of t he off-axis response of an equally spaced coherent 
array [Ref. SJ . In particular, the envelope of set) is given by 

In general the re will be a large number of arrivals from the duct, 
and the delay between arrivals can be considered to approach zero. 
This fact may be incorporated in the expression by letting N~~ 

while 6~0 with N6~T, where T 1S the total time delay of the 
duct. Under these conditions 

etc 
[sin(W'T'/2)J

2 

W'T'/2 

This expression is termed the coherency factor and represents the 
normalized energy arriving via the duct as a function of the transmitted 
frequency and the duct time delay. 

At this point , we re quire some knowledge of the environment 
parameters. From the ray trace s ub-syste m, we are able to determine 
a value for the average duct time delay. If we use the shallow 
water propagation model referred to earlier in the talk, this is 
indeed possible. In fact , Smith has shown that for a shallow water 
isogradient duct, the average duct time delay can be expressed 
approximately by 

In this equation R is the range of interest, c s and 

the sound velocity values at the source and the vertex of the 

are 

limiting ray respectively, and c is the nominal velocity of sound 
in sea water (SOOO ft/s). For a SVP gradient of 0.02S /s, a depth 
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difference of 150 ft between the source and the vertex of the 

limiting ray and for the purpose of illustration a nominal range 

of 6.5 kyd, then a time delay of 1 ms results. 

Given this computation by the propagation sub-system, the sonar 
operator may determine that the energy transmitted in the duct at 
least at short ranges is quite concentrated in time. Thus if his 
sonar can transmit pulse burst transmissions which would generally 
have pulses long compared to 1 ms he need not concern himself with 
time dispersion caused by the surface duct transmission. In other 
words, in this situation he concludes that he need not worry about 
the time dispersion . 

In addition, if all of the reverberation energy associated with the 
termination of a given pulse decays before the arrival of the next 
transmitted pulse, then the pulse period within a burst, i.e., the 
pulse-on to pulse- off duty cycle, should be reasonably stable . All 
of these results arise from the fact that for alms duct delay 
as much as a 100% perturbation caused by medium variations amounts 
to only a maximum 2 ms delay in the signal time. 

At this point, the operator has used the propagation results to 
indicate the type of propagation to be encountered and the extent 
of the time delay and in turn has used this information to determine 
the type of signals he should transmit. Because of the short time 
delay, he has concluded that gated pulse signals will not be 
dispersed in time enough to cause them to be distorted greatly. 
Frequency distortion caused by the multipath situation 1S another 
matter of interest to the operator. If he has a range of transmission 
frequencies available to him he would like to choose a value to 
minimize the fading characteristics of the signal. 

Since the coherency factor has previously been determined this 
function with the appropriate time delay obtained from the propagation 
results may be used by the operator to choose from among the 
frequencies available to him. 
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Thus, based on calculations provided by the propagation computations 
the operator may select within the available range, the transmission 
frequency for which the signal fading is minimized. 

The total propagation situation in our example consists of a 
bottom bounce mode in addition to the surface duct transmission. 
[See Fig. 7J. In general, the energy arriving via these two 
paths will interfere and may cause degradation in the total 
received energy. However, with an adequate ray trace program in 
the system, it is conceivable that an on-the-spot determination of 
the arrival time difference between the two paths may be made and 
that this information could be used to either select an appropriate 
processing mode to eliminate the effects or by properly assessing 
the characteristics to use them to advantage. In the former 
approach, one might select a processor similar to the Rake System 
in radar which attempts to separate the various energy arrivals and 

then to coherently recombine them to enhance the total received 
energy. In the latter technique, by properly assessing the 
propagation situation, the operator might be able to range on the 
basis of received signal strength. 

Let me consider this latter technique in more detail since it 
provides a good illustration of incorporating propagation information 
into the operational problem . Without exact knowledge of bottom 
topography, it is always difficult to compute the bottom bounce paths; 
however, a reasonable approach is to assume an essentially flat 
bottom over the bounce region. If this assumption is made, then for 
the isogradient case representative calculations indicate that the 
time delay of the single bottom bounce path relative to the 
limiting ray (for a gradient of 0.025 / s) may be computed to be in the 
range of 10 ms. This result, of course, is extremely sensitive to 
parameter changes. However, a good lower bound may be 8 ms with 
an upper bound as high as 50 ms. 

Incorporating this result with the surface channel delay of 1 ms 
indicates that the total impulse response of the measurement 
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channel in the short range case we are considering consists of the 
narrow surface duct re sponse plus a bottom arrival impulse (probably 
a series of bottom arrivals) delayed 8 ms to 50 ms with respect to 
the surface arrivals. To k eep this example simple let us neglect 
the multiple bottom bounce arrivals on the basis of energy 
contributions. 

In the duct, the incoherent e nergy EIC 1S given by the incoherent 
addition of the energy of each multipath arrival E. This implies p 
that EIC is given by the number of significant arrival paths times 
the energy per path, 

The coherent energy, on the other hand , is given by 

EC = N2 E Q. P c 

In this equation a: is a measure of the coherency, If a: is 1, c c 
the energy arrivals are coherent and maximum energy is obtained. 
Eliminating N from the two equations results in the equation shown 
for the coherent energy. 

E c 

2 EIc Q. c 
E p 

If one bottom arrival is considered, then it contributes the energy 
per path E modified by the bottom loss f actor ~. Thus, the p 
ratio of the bottom to duct energy is given by 

E / ~ 
RBD ----~p-------

E~C Itc/Ep 

Since the source is common, the RBD ratio can be expressed in 
decibels in terms of the duct and bottom path transmission losses. 
This expression is given below. It expresses the ratio of the bottom 
to duct energy in terms of the duct and bottom transmission losses, 
the duct coherency factor and the bottom loss parameter 
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To utilize this expression, we determine duct and bottom transmission 
losses from the shallow water (range much greater than depth) 
propagation loss model of Smith [Ref. 2J. An approximate expression 
for the transmission loss in an isogradient duct is 

In this equation Rd is the horizontal range between the source 
and the receiver, ~ 1S the volumetric attenuation coefficient as a 
function of frequency, L is the depth of the duct measured from 
the surface to the limiting ray, and e~ is the angle of the 
limiting ray at the source which is determined by the equation 

Using a sound speed gradient of 0 0025/s in these equations and an 

assumed duct depth of 200 ft, we determine that 

e, = (~)/2 
'V \5000 

I 

In addition, for the 200 ft duct we determine the duct transmission 
loss as 

For the bottom transmission loss assume spherical spreading with a 
range of essentially the same as that of the duct and a volumetric 
attenuation Q, . Thus, the simple spherical spreading loss is 

From our previous calculations a representative value of the 
coherency factor may be determined to be -28 dB. Thus, we may 
combine our results to obtain the expression for the ratio of the 
bottom and duct energy, 

RBD 2(28 -10 19Rd ) + 28 -10 19 ~ . 
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Choosing a short h o rizont a l range of 6 · 5 kyd, 

RB D = 6 - 10 1 g i3 • 

A reasonable bottom loss value ln the range 4 dB to 9 dB may be 
chosen from Urick [Ref. 6J for a sand type composition. Using this 
range of values yields the range of RBD values of from 0 dB to -3 dB. 
Thus, on the basis of these calculations it may be expected that 
the duct and bottom energy arrivals are of the same order of 
intensity. This is a significant result for the sonar operator ln 
that it implies that pulse spreading caused by the bottom arrival is 
of the same order of intensity as that of the duct arrivals. 

The combination of the duct and bottom arrivals at a receiver implies 
a time spreading of an individual pulse and the generation of an 
interference pattern ln the region of time overlap . The magnitude 
of this interference is mo s t simply investigated by the simple 
Lloyd's Mi r ror t y p e of pattern generated by two arrivals of the same 
frequency. A plot of the expected envelope in the region of overlap 
is shown in Fig . 8 as a function of operating frequency and the 
difference between the path arrival times. The curve is also 
parameterized by the relative intensities of the two arrivals. 

An interpretation of this diagram is as follows. Assuming that the 
energy envelope of the initial pulse arrival is at zero dB (for 
convenience) when the energy arrives on the second path, an 
interference pattern is established during the duration of overlap of 
the two pulses. The magnitude of the envelope during this overlap 
period is a function of the degree to which the arrivals coherently 
add (measured by f T) and their relative intensities (measured in dB) 
and may be found from the diagram. When time progresse s beyond the 
overlap period, the envelope of the response reduces to that of the 
second arrival. In terms of the results we have found for the 
surface duct and bottom path, since the two arrivals are at 
essentially the same energy, one would expect a relatively continuous 
pulse with a discontinuity (either an increase or a decrease 
depending on the f , product) during the period of overlap. From 
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previous calculations the difference between the duct and bottom 
arrivals can be expected to be on the order of 8 ms to 50 ms. 
In these ranges one would expect both increases and decreases 
during the overlap of the duc t and bottom arrivals. In addition, 
of course, the pulse will be spread in time by the later bottom 
arrival. 

Although the computations we have presented may seem somewhat 
complicated, in reality, of course, they could easily be programmed 
on a mini-computer. In this manner, the operator could, at least 
ideally, be presented with an indication of the type of pulse 
distortion that he might expect and could either alter his 
frequency or signal shape accordingly. 

In summary, I have tried to indicate the importance of propagation 
models from the view-point of sonar design and future sonar 
systems. In doing so, I have tried to emphasize that simple 
predictions of transmission loss are not sufficient for these 
purposes. Rather, more emphasis must be placed upon the temporal 
and spatial influences of propagation, the fluctuations encountered, 
and the interference effects that may occur in transmitted signals. 
I hope that these remarks may serve to stimulate the direction of 
future work and operation. 
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DISCUSSION 

When asked whether sonars should not b e designed for more general use 
than just shallow-water operation, the author said that the trend was toward 
more specialised sonars, otherwise the necessary compromises become 
too difficult. 

PROPAGATION ANALYSIS: USUAL 
OBJECTIVES 

1. DELINEATE DOMINANT PATHS OF ENERGY TRANSMISSION 

2. ESTIMATE LOSS IN ENERGY AS SIGNAL PROPAGATION FROM 
SOURCE TO RECEIVER 

PROPAGATION ANALYSIS: ADDITIONAL 
OBJECTIVES 

1. SPATIAL DISTRIBUTION OF SIGNAL ARRIVALS (MULTIPATH EFFECTS) 

2. STATISTICS OF SPATIAL AND TEMPORAL FLUCTUATIONS IMPOSED 
ON SIGNAL BY MEDIUM ' 

3. IMPULSE RESPONSE OF MEDIUM AS IT INFLUENCES SHORT TERM 
(PULSE OR TRANSIENT SIGNALS) 

FIG. 1 
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FIG. 2 

SIMPLE SHALLOW WATER 
PROPAGATION MODEL 

REFERENCES : SMITH , P.w . Jr .. "SOUND TRANSMISSION IN SHALLOW WATER : 
PART I: ANALYSIS , " BB & N REPORT NO . 1563 , OCT. 24 , 1967 
McPHERSON , J.D .. AND DAINTITH , M.J., " PRACTICAL MODEL OF 
SHALLOW WATER ACOUSTIC PROPAGATION," J. ACOUST. SOC. AM. VOl. 41 

RAY CYCLE MODEL (AFTER SMITH) 
POSTULATES 1. ENERGY TRAVELS ALONG RAY PATHS 

SOURCE DEPTH, Zo 

2 . ENERGY IS BOTH CONTINUOUSLY ATTENUATED (VOLUME) AND 
INTERMITTENTLY ATTENUATED (SURFACE + BOTTOM REFLECTION/ 
SCATTERING ) 
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BOTTOM 
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DETERMINATION OF THE INTENSITY OF SOUND AT ARBITRARY POINTS 
IN THE SOUND-FIELD OF A SOURCE IN A HORIZONTALLY LAYERED MEDIUM 

by 

M.J. van der Scheur 
Physics Laboratory, T.N.O., 

The Hague, Netherlands 

The following method is based on finding all the rays through a point 
P and to add the corresponding intensities. 

Consider a layered medium with a linear depth-velocity profile. ' The 

ray-path and the corresponding intensity losses are calculated according 
to a number of well-known formulae (Fig. 1). 

To determine the intensity at P, we add an extra layer through P to 
the velocity/depth profile. When two rays, leaving the source with 
starting-angles close to each other, intersect the level through P on 
both sides of P, there will be generally at least 1 ray with a starting 
angle between the two mentioned ones, which reach the level at P. 

An iterative process will give uS the value of 80 • 

Of course we need a set of good starting values for this iterative 
process. Therefore, we define the characteristic velocities of the 
depth-velocity profile. These are the greatest velocities of each 
layer, provided that this value is greater than the velocity at the 
source-depth, CB, and greater than all values occurring between the 
source and the layer considered. The corresponding characteristic 

C 
values of K(8 0 ) = ~ gives the start angles of the rays, which cos 0 
will turn back just at the limit of a layer. 

The horizontal distance between the source and a point on the ray, S, 
is a function of K(9 0 ) : S = S(K(8 0 ))o We consider one specified 
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depth level. 3 c onsist s of a numbe r of pieces of the t y pe 63 1 ,632 , 

6 3 3 (see Fig. 1) . We can write in general 

Ai A2 A3 
S i4:l (6S 1)i +i~l (6S 2 )i +i~l ( 6 S 3 )i 

dS Consider the derivatives of S [Figo 2Jo We see that dK(9
o

) can be 
written as the sum of two monotonic functions, one increasing and the 
other decreasing. From this we can concluge that in the interval 
between two characteristic values of K( e), ~i has two zero points: K( 0 ~~ ). 

Now we add all the values K (8 ~t ) for which ~i = 0 to the array of 
characteristic values K(8). This meanS that in the interval between 
two successive values of array K, the function of the horizontal distance 
S at a certain level is monotonic o When two rays with successive 
values K[ i J and K[i+l ] intersect the considered level on both sides of P, 

there will be exactly 1 ray with a starting angle 8 between K[i] and 
K[i+l], inters ecting the level in P. 

In our computer model the ray path will be symmetric, fixed by three 
values a, b, c [see Fig. 3J. 

As you can see, 
The nth 

we make a difference between the direct and indirect 
intersection with the level through P of the ray with 

at 
rays. 
value K[i] lies 

DISTANCE (K[i],n) 

for the indirect rays: 

INDIST (K[i l , n) = d + [~] ~*" b + [nZl] ~*" c 

K[i]: the array of characteristic 
starting values. 

For every value of n we decide if array K[i] must be completed with 
values for which ~ = o. 
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Define: MAX{n)= max 
i DISTANC E{K{i),n) MIN{n)= min 

1 
DISTANCE{K{i),n) 

When for the horizontal distance between the source and the point P, 
range P, the following relation holds: 

MIN(n) ~ range P ~ MAX(n), 
then there will be rays intersecting the level considered for the Kth 
time in P. 

When we repeat this process for n=l, ••• , N both for direct as well as 
indirect rays, then we will find M rays going through P. For each 
of these rays we determine the intensity and finally we find for the 
total transmission loss at P 

N spr 

Of course there are some restrictions in the present computer model. 
Except for the restriction of a linear depth-velocity profile the most 
important assumption is that the sea surface is a flat plate in order 
to obtain a symmetric ray path. However, there is the possibility 
of giving an attenuation factor for each surface reflection. For the 
bottom similar assumptions are made a 

When we introduce a waving surface, the simplicity of the computation 
disappea rs since the function S becomes much more complicated. 

DISCUSSION 

The author said that no comparisons had yet been made with 
measurements . 
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POSITION AND SHAPE OF THE SURFACE SHADOW ZONE 

by 

B. de Raigniac 
SACLANT ASW Research Centre 

La Spezia, Italy 

From surface reverberation studies conducted by SACLANTCEN's 
Target Classification Group"C , it has been found necessary to know 
before any sea experiment the precise position of the first 
surface shadow zone. Since normal ray tracing programs usually 
do not answer such a question, a simple computer program has been 
implemented which, on a small shipborne computer, calculates 
within seconds: distance, extent and maximum thickness of the 
shadow zone as a function of the source depth. 

From submarine detection trials subsequently performed, it was 
seen that a more accurate shape of this shadow zone was desirable 
and an extension of the previous program is underway. 

DISTANCE, EXTENT AND THICKNESS OF THE SHADOW ZONE 

Figure I shows the rays which limit the shadow zone both in range 
and depth when the source is between the minimum velocity depth and 
the critical depth. At the surface, the shadow zone is bounded by 
the rays which have zero grazing angle. The maximum depth of the 
shadow zone is the depth at which a ray horizontal at source becomes 
horizontal again. A similar figure would be obtained with a source 

W. Bachmann and Be de Rai gniac , "The Cal culation of the Surface Backscattering 
Coefficient of Underwat er Soun d f r om Measu r ed Data", SACLANTCEN Technical Memorandum 
No. 174 , November 1971, NATO UNCLASSIFIED 
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between surface and minimum velocity depth; t;he s hadow zone is 

then of much larger dim ensions 0 Once the Snell! s constant k of 
the ray i ,'3 known ;> the dist·ance to the shadow zone is 

D 

where R . 
1 

= ~ Ri (sin a i ~l sin (l.) 
l 

is the radius of ray curvature in each layer 
a i ~l and 0: i are the grazing angles of the ray at the 

i, 

boundaries of the i th layer, and t ,he summation extends ov er 

all layers from the source to the s urface . 

The extent of the s hadow z one is given by 

E 2 2] R. (sin ct · I 
J . 1 1~ 

sin a .) 
1 

where t;he summation is now taken over the layers between the 
source and the critical d e pth Z k 

The maximum thickness of the shadow zone is 

Z max = 

where Vs is the sound s peed at the source depth. 

[ Eq. lJ 

[ Eq. 2 ] 

[Eq. 3 J 

In Fig. 2 these three qu anti ties are plot·ted as a function of 
source depth for a typical s ummer Medi terranean sound velocity 
profile. 

SHAPE OF THE SHADOW ZONE 

Figure 3 gives an idea of the shadow zone as obtained by a 
conventional ray tracing program. A precise determination of the 
shape requires a l arge number of rays and therefore a large amount 
of computer time is involved , particularly on a small shipborne 
machine. 

An alternative method is to look directly for the rays (in caustics 
or limiting rays) which del imit the s hadow zone, The exact s olution 
is mathematically difficult . The shape is then approximated as the 
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locus of the points where at closely spaced depths a ray vertexes. 
As limiting rays may occur when strong negative gradients are 
predominant, a comparison is performed at each depth between ranges 
of the vertex points and of intersection of rays vertexing at 
shallower depth. The points retained are those which indicate a 
smaller extent of the shadow zone, as indicated in Fig. 4. 

Figure 5 shows how the shape of the shadow zone varies as a function 
of the source depth for the same summe r velocity profile . It should 
be noted how the shape can be complicated and how the single 
knowledge of distance, extent and maximum thickness may not be 
sufficient . 

In Fig . 6 different shapes are obtained from a typical winter 
sound velocity profile . It should be noted that the maximum 
shadow zone depth given by Eq. 3 is not always reached because of 
limiting rays. 

DISCUSSION 

In reply to a question , the author reiterated the point that a complete 
ray tracing was not required to obtain the shape of the shadow zone; 
the method described being very much simpler than that. 
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] . 

INFORMAL PRESENTATIONS 

OCEANIC-ACOUSTIC EXPERIMENTS AT SACLANTCEN 
ToD. Allan (SACLANTCEN, La Spezia, Italy) 

Last year, at the Director's suggestion, a project in oceanic-
acoustics was set up at the Centre with scientists from at least 

3 groups playing some part in the planning and execution of 
experiments. The p roject represents a serious effort to break 
down the older concepts of ASW oceanographers and acousticians 
following broadly the same research lines but working independently 
of one another and planning s eparate cruises. With oceanographers 
a nd acousticians working together at sea the acoustic trials 
benefit from h aving much more detailed environmental data than 
usually available in trials while any prediction of sonar conditions 
that the oceanog r apher is likely to make from the environmental 
data can be checked by the acoustician. 

The relevance of ray-tracing to this type of research is obvious. 
It provides the bridge between the observed sound velocity or 
temperature structure and the p redicted sonar conditions with which 
to compare the observed sonar conditions. 

The first oceanic-acoustic cruise was carried out 1n February 1970 
in the N.W . Mediterranean [ Fig. l J . 

The area chosen for the experiment had been surveyed the previous 
February during a multi-ship expedition sponsored by the NATO Sub-
Committee on Oceanographic Research (MEDOC 69), and it appeared 
that during winter the Ligurian Sea could be divided into 3 
different zones according to the temperature structures shown in 
Figs. 2 - 4. Acoustic runs were therefore planned as shown by 
the full lines in Fig . 1 . Although hampered by appalling weather 
the experiment h a d some success. It certainly showed that 
acousticians and oceanographers could i ntegrate their programmes 
with little or no mutual interference. 
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We were fortunat e to be ofrered t ,h e services of one French and 
two Italian mineswee p ers besides our own research vessel MARIA 
PAOLINA. . The procedure was planne d as follows ~ 

(a) Over the three s horter profiles (10 miles each) the 
receiving ship, MARIA PAOLINA, was to remain stationary at the 
end of the profile with hydr ophones placed at 25 m, 50 m, 100 m, 
200 m and 500 m depth . XBT' s to be taken every 10 mi nutes 0 

(b) The F rench minesweeper to act as firing ship opening 
and closing range on MPG, firing deep and s hallow (25 m and 200 m) 
~ lb explosive charges every 5 minutes. 

(c) The two Italian mines weepers to follow behind the 
firing ship at distances of 2~ and 5 miles taking XBT 's every 
10 minutes [see Fig . 5J. 

(d) Each run to be repeated 3 times in succession. 

(e) At the end of the third run the French minesweeper 
to transmit CW pulses (50 ms pulses at 20 seconds interval, 
3.5 kHz) for a p eriod of 1 hour at a fixed range of 10 miles. 
All four ships to c ontinue to take XBT's every 10 minutes during 
thi.s time- series experiment. 

(f) CW transmissions to be repeated at a range of 5 miles 
for 1 hour, with the XBT ships again aligned between source and 
rec.eiver . 

(g) For the long profile (20 miles) ac ross the stable and 
unstable zones the same procedure to be used but with XBT's every 
5 minutes. (It might be noted her e that the major factor in 
deciding the time interval between XBT's was simply the total 
number available to us for the four ships.) 

(h) Two self-recording oceanographic buoys with suspended 
arrays of thermistors (20 from the surface to 300 m) to be situated 
at posit i ons B1 and B2 so that two further temperature inputs 
would be available a long the long profile 2 and one each along 
profiles 3a and 3b. 
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As stated, the weather was bad and for more than 80% of the time 
the minesweepers had to lie in harbour. Not only was the programme 
severely curtailed but the unusual frequency of high winds 
contributed to a radically di fferent oceanographic environment 
in 1970 from that found in 1969. 

Of the four acoustic profiles planned, only one complete profile 
and 1/3 of another (the latter made with two support ships instead 
of three) could be made. This was a great pity because the 
procedure went very smoothly at the first attempt. The locations 
of the XBT measurements are shown in Figs. 6 and 7. 

Dat a Processing and Analysis 

All XBT traces were digitised and hence interpolated to provide a 
temperature reading every 2 m down to 300 m and every 20 m from 
300 m to SOO m. Eac h trace was preceded by an identifying ship 
number , and distance along the profile from the receiving ship, 
MARIA PAOLINA. 

Through the good offices of Dr J.B . Hersey and Capt P. Wolff, the 
Fleet Numerical Weather Central ., Monterey agreed to carry out, the 
range-dependent ray-tracing required to compare the computed and 
observed rays from the two sources to the five hydrophones. 
The following information was requested, firstly, for a ray-trace 
made with only the BT taken from the firing ship and subsequently 
for a ray-trace made with 4 simultaneous BT's taken along the 
profile at the moment of fire: 

For each ray: 

(i) Path length in metres. 
(ii) Travel time in milliseconds to the third decimal place, 

if possible. 
(iii) Propagation 

A = 10 10glO 

loss anomaly, in decibels defined as 
I I + 20 loglO D 

where 
o 

I is acoustic intensity at receiver 
10 is acoustic intensity at 1 m from the source 
D is the straight-line distance from source to 

receiver in metres 
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(iv) Angle at the sourc e , i n d egr e e s measured to the 
horizont a l. 

(v ) Gr a zing angle , in d e g r ees s of the surface-reflected 
rays for each reflection. 

This involved a onsider able number of ray tracings-- over a 
hundred for the one profil~ successfully completed as planned. 

Although at the time of wri tingthe dat,a analysis is well underway 
it iSJ perhaps ~ too early to try t ,o draw conclusions. There have 
been some delays caused by working with two computers of different 
generations but for most of the events we now have plots, for 
each of ten hydrophone-source combinations, of the various ray 
paths predicted by four (or more, by moving backwards or forward 
1n time) temperature traces and by the single temperature trace 
at the fi .ring ship. Similarly all of the observed acoustic data 
are analysed and plotted for each event. Within a few months we 
should be able to say how well they match . 

A few words on anothe r oceanic-acoustic project carrj.ed out ag~in 

with the help of Monterey . 
effect of an oceanic front. 

This is an investigation of the acoustic 

Such a front was s urveyed in December 1970 by O. Johannessen using 
the thermistor chain on the LEE (U S) . Temperature traces measured 
every 6 minutes along a 45-mile track through the front were 
digitised and taken to Monterey together with one detailed 
section of 8 miles in the centre of the frontal region where the 
sampling interval was 90 seconds. 

From these traces, propaga-tion loss has been calculated in both 
directions through the front (east-west and west-east) for a 
of source and receiver depths and for three frequencies. The 
computer calculations already show that there are significant 
differences in propagation loss in the two directions. 

variety 

In December 1971 it is hoped to measure the effect directly in 
another joint oceanic-acoustic cruise. 
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2. ACOUSTIC PROPAGATION THROUGH OCEANIC FRONTS 
M.J. Daintith (A . U, W. E., Portland , Do r set, U.K . ) 

A resume was given of recent experiments in the Mediterranean, 
East of Malta, designed as a preliminary test of the effect of 
oceanic fronts on acoustic propagation. It was apparent that 
in certain circumstances the propagation loss was considerably 
increased by the presence o f a front; and it seems likely that 
the front's presence could lead to significant bearing errors . 
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SUMMARY AND RECOMMENDATIONS - A PERSONAL VIEW 

by 

Richard H. Clarke, Conference Secretary 

An unfortunate first impression might be that ray tracing is 
dull, simply because the idea is a very old one. In fact, ray 
tracing is the single most powerful method available to us for 
understanding the complexities of sound propagation in the 
ocean. And gaining this understanding is quite literally all 
our business. I will take the main topics of the conference in 
turn, attempt to give a personal summary of what has been 
presented, and suggest where future research should be directed. 

The Ocean 

We learned, or were forcefully reminded,that far from being 
uniform in the horizontal direction there are drastic changes 
that occur across fronts (analogous to atmospheric fronts), 
and that these fronts can be found in all oceans and seas. 
Further than that, the temperature and salinity (and hence 
the sound velocity) are not continuous in depth but often 
proceed in steps of isothermal and isohaline water, separated 
by thin sheets across which the temperature and salinity 
change abruptly. 

As acousticians we must thank the oceanographers for their 
awkward findings, but press them to give us more detail; both 
about the fine structure of temperature and salintiy and its 
global occurrence . 

362 



Sound Velocit,y 

That vital link which joins -J._ he oce anographer's de scr iption of 
the ocean to the acoustlclan's has made great strides in the 
last thirty y e ars o r so. But it is obvious that there is much 
painstaking work to do particularly with regard to pressure 

and depth. I will come back to this point later, in connection 
with modified ray theory. 

Computations 

This subject has reached a satisfactorily advanced stage, in 
consonance with the enormous and rapid machines that are now 
available. 

I have a very strong feeling, however, that now is the time to 
stand back and try to fit the computational aspects of ray 
tracing into a sensible perspective. A good example is the 
use of a mini-computer: obviously essential in small 
laboratories, or on board ship, where it is an invaluable 
tool in conducting fruitful experiments at sea; but equally 
valuable in computer investigations where the ultimate in 
accuracy or detail is not required (and would indeed be a 
hindrance, especially when such things as turn-around time 
and availability are concerned) such as in O.R. work, tests 
of ray tracing sensitivity, etc. But my general point is that 
we should seek a rational balance between such things as 
computational sophistication, required accuracy, accuracy of 
input data, computer availability, cost, flexibility and 
even decay time of scientists' enthusiasm. 

To go back to the beginning: we now have a variety of options 
with which to fit the sound velocity profile - linear segments, 
c ontinuous gradients, Epstein segments, polynomials, splines, 
and so on. 

This leads to the fundamental computational question of whether 
(a) to fit the p r ofile with segments for which there is an 
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easily obtained solution , or (b) to use something like a spline 
fit and ask for a diff e r e ntial - equation solution 0 The linear-
segment fit still seems the most convenient choice for mini-
computers , But on large compute r s the choice between (a) 
and (b) when one looks ahe ad, say ~ for the next five years 
seems much more problematical , Perhaps approach (a) is more 
suited to plotting rays and calculating travel times, whereas 
the differential equation approach yields more reliable 
intensities. It may still be too early to decide the point, 
but the point nevertheless needs attention . 

What does the ocean think of all this ? Possibly it feels a 
bit l i ke a transvestite . The sound velocity in a step-structure 
ocean is a s er ies of l i near segments, separated by di s continuities. 
So, the sound velocity is not n eces s a r ily continuous in its 
zeroth, first, or s e cond - order derivatives , But more of 
this later , 

We did not hear very much about· r ay- tracing when the sound 
velocity has a bivar iate p r ofile , although we are told that this 
often is the case in reality . Fr om a computational view point 
the re is again the choice b e tween (a) seeking simple ray 
solutions in rectangular sections co r responding to particularly 
chose n forms of profile a nd (b) seeking differential-equation 
solutions in regions whe r e the velocity description is made 
by something like bicubic spline s . However ~ we are not aware 
of any useful simple solut i ons, so the differential equation 
approach looks more promising at the present time . 

Finally, with regard to ray tracing computations, what is the 
general feeling about applying t e sts in the manner of Moler and 
Solomon's use of Pede r son and Gordon ' s Epstein profile results? 
We have recently launched a modest venture at SACLANTCEN in this 
direction, with beneficial results. Has anayone1s experience 
suggested using Epstein p r of i l e s different from that used by 
Moler and Solomon ? It seems that such test programs would be 
invaluable in the evaluation of ray-tracing programs, regarding not 
only their accuracy, but also their convenience, speed and cost. 
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Expe rime!!,.ts 

Due to the u n classifi e d n ature of our discussions in the last few 
days, there ma y b e many more experiments than we have heard about. 
Ne vertheless , I fe e l that the experimental validation of ray 
tracing has hardly started. This i s a pity, since the challenge 

of obtaining consi s tent and convincing explanations of 
expe rimental results is the mainspring of modern science it 
would have very beneficial e ffects on the development of new 
theories and computational techniques . Of course, one should 
continually remind onself of the painstaking care required and, 
with experiments at s e a, the sheer physical difficulty of even 
performing them . And overall, it seemed to me, "the agreement 
between theory and experiment was encouraging" . 

But for the futu r e, one can hope for more and better expe r iments. 
It would be particu larly useful to have many more experiments 
of the joint acous tic- oceanographic type, such as the 
experiment just described by T . D, Allan, in which dense spatial 
and temporal sampling of the t .emperature structure of the ocean 
is combined with acoustic p r opagation experiments, and the 
acoustic propagation through known fronts just described 
by MoJ . Daintith . 

Extensions to Ray Tracing 

There appears to have been a con s iderable increase ln 
understanding of the behaviour of sound fields in the region 
of caustics, turning points, and shadow boundaries. Some 
aspects of modified ray analysis are positively seductive. 
However, these topics are e xcellent examples of where the acid 
test of comparison with expe r iments is e ssential for future 
progress to occur ; e xperiments not only in sound propagation but 
also in the determination o f the sound velocity itself at depth. 

Theor'y 

I started by admitting that ray theo r y is an old subject, but 
the paper s on the Riesz Potential and Hami ltonian methods 
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demonstrated that fresh view points can be taken which may offer 
the benefit of techniques adopted in other disciplines. They 
certainly merit very careful consideration. The demonstration 
of the equivalence of the ray and wave approaches promises 
advances in the description of propagation in a medium with 
statistically defined properties. 

It was encouraging to hear of efforts being made to put 
quantitative limits on the oft-quoted conditions for the 
validity of ray theory. Obviously a great deal more n eeds to 
be done in this direction, with particular attention paid to 
the obliquity of the ray, as well as the scale size of the 
irregularities in terms of acoustic wavelength. 

A related topic is the validity of ray tracing at the 
discontinuous sheets separating the layers of a step-structure 
ocean . Of course, these discontinuities are physically large 
gradients, which can be viewed as discontinuities under 
certain conditions of sheet thickness to wavelength ratio and 
ray angle . But it is important to know what these conditions 
are; and what happens when the conditions are violated . 

We heard a little about what we might expect when a sound-
velocity profile, o r other oceanographic feature, is specified 
statistically . This is an important avenue that has hardly 
been entered. Though difficult, statistical approaches must 
be used to deal honestly with the real ocean . Perhaps the most 
promising first step is to examine the sensitivity of ray tracing 
to perturbations in the gradient or other features of the 
profile, and then to extend this to statistically specified 
profiles, either by analytical or numerical means. 

Applications 

The application of ray tracing to reverberation modelling is 
obviously receiving considerable attention, with encouraging 
agreement with observations . 

It was salutary to be reminded that the most important channel of 
our work lands up on the desk of the sonar systems designer, and 
extremely useful to have stated with such clarity his requirements. 
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CONCLUDING GENERAL DISCUSSION 

The Medium 

There was very little reaction by the meeting to the oceanographers! 
revelations cone erning the st.ep- like structure of the sound speed. 
A plea was made for more salinity data in these investigations. 

It was po i nted out that it was necessary for acousticians to 
s pecify the fineness of detail required in oceanographic 
measurements. 

Convent] o~l Ray.J2:ac]ng 

The considerable fraction of the dis . ussion devoted to the various 
aspects of conventional ray tracing i.ndicated a general concern with 
a need to refine present methods . 
this c onnection were: 

Some of the points raised in 

Is it possible to obtai.n reliable answers while still employing a 
linear.- segment approximat i on to the sound- speed profile, either by 
taking a sufficient,ly large number of segments, or by smoothing the 
output in some suitable manner? 

There is a possible danger in the use of spline fits to sound-speed 
data that, it might sometimes introduce artificial wiggles in the 
sound- speed profile, perhaps leading to local gradients of sign 
opposite to ·the actual gradi ent, for ex:ample. The opposing view 
was put that n splines are fine! : .Q pr'ovided that one works with 
sufficient data points and takes care with the end conditions. 

An alternati.ve approach to making a rational fit to sound-speed 
data was that the fit should be continuous up to) and including, 
the second deri,atlve , but that the correct morphoJ.ogy should be 
retained ~ presuma bly judged on oc eanographic grounds, 

The possibility wa~ mentioned of finding the eigenrays by the direct 
numerical appli ation of Fermatls principle, as an alternative to 
the !1 shootingt! method . 
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A variety of profiles, for which there are anal ytical solutions 
is available from L.P. Solomon, Tetra Tech., Inc . , 
1911 Fort Meyer Drive, Suite 601 , Arlington, Virginia 22209, U.S. 
These could be useful for testing ray tracing programs . 

~ange-Dependent ~ Tracing 

A recurring theme during the discussion was the need to extend 
p resent ray tracing capability to bivariate sound-speed profiles, 
and eventually to trivariate profiles. But there were no clear 
ideas put forward as to how this could best be achieved. 

Current methods include simply dividing the range into blocks, 
each block having a sound speed that depends on depth only, and 
then proceeding with the usual univariate methods within each 
block. Another technique is to divide the range between given 
profiles into triangular sections, the ray paths within each 
section then be ing circular arcs. Both these techniques suffer 
from implying oceanographically unacceptable sound-speed 
structures in regions between the given profiles. 

Mention was made of the Hudson Laboratories technique employing a 
special form of double Taylor series expansion (linear variation 
in range, linear plus curvature term in depth) specifying the 
sound speed in the region between two given profiles. There is 
also the possibility of representing the bivariate sound speed 
in terms of doubly~cubic spline functions. In both these cases 
the ray tracing could then be accomplished by numerically solving 
the ray differential equations. 

Statistical Aspects and Profile Sensitivity 

A difficult problem, but one requiring urgent attention, is that 
of allowing for the effect of the variability of the sound-speed 
profile. This can be viewed as a problem of the sensitivity of 
ray tracing to certain perturbations of the sound-speed profile. 
Or it can be viewed as a statistical problem, requiring the 
statistics of the output of ray tracing given the statistics of 
the input profile{s). 
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The sensitivity problem is impo rtant. when c onsidering the adequacy 
of proposed methods of curve fitting to the given sound-speed data 
po ints . 

A major difficulty with the statistical problem is that of posing 
the problem properly. For example, if one starts with a mean 
profile (obtained by averaging a large collection of profiles) 
this profile may be devoid of all the features (such as layer 

depth) which are known to affect the sound propagation drastically. 
Therefore, some method should be found by which the essential 
character of the profiles is preserved. In other words, one 
should work with a "typical ll profile, rather than with a 
strictly !!mean" profile. 

But more significant than working with mean values, the second-order 
statistics of the ray tracing output are an important measure of the 
variability caused by variations of the sound-speed profiles as 
inputs to ray tracing programs . 

General Points 

The opinion was expressed that insufficient attention had been paid 
to the final objectives of ray tracing in an ASW context. If we 
are not approaching anything of value, we might as well stop now 
and turn our attention to potentially more fruitful subjects, 
such as loudspeaker design~ 

Two drastic alternatives to the present highly computer-orientated 
approach to the solution of underwater sound propagation problems 
were proposed. One was to replace computers by mathematicians who 
would be cheaper, and whose task would be to develop alternative 
and more amenable theoretical approaches. The other alternative 
was to de - emphasize computers and mathematicians, and to 
accentuate in compensation experiments at sea. In other words, 
it might be easier and more reliable to use the Oceanic analogue 
computer. 

369 

• 



• 

There is, naturally, a bias of Americ an interests towards low--
frequency, long-range p r opagation, whereas SACLANTCEN interest 
is concentrated more on relatively short ranges at sonar 
frequencies. Thus the outcome of modified ray theory appears 
to be of greater interest to the former than to the latter; 
although some intriguing discrepancies between experiment and 
conventional ray theory at the shorter ranges need to be 
scrutinized in the light of modified ray theory. 
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